首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phenotypically different osteoclasts may be generated from different subsets of precursors. To what extent the formation of these osteoclasts is influenced or mediated by the inflammatory cytokine TNF‐α, is unknown and was investigated in this study. The osteoclast precursors early blasts (CD31hiLy‐6C?), myeloid blasts (CD31+Ly‐6C+), and monocytes (CD31?Ly‐6Chi) were sorted from mouse bone marrow using flow cytometry and cultured with M‐CSF and RANKL, with or without TNF‐α. Surprisingly, TNF‐α prevented the differentiation of TRAcP+ osteoclasts generated from monocytes on plastic; an effect not seen with early blasts and myeloid blasts. This inhibitory effect could not be prevented by other cytokines such as IL‐1β or IL‐6. When monocytes were pre‐cultured with M‐CSF and RANKL followed by exposure to TNF‐α, a stimulatory effect was found. TNF‐α also stimulated monocytes’ osteoclastogenesis when the cells were seeded on bone. Gene expression analysis showed that when TNF‐α was added to monocytes cultured on plastic, RANK, NFATc1, and TRAcP were significantly down‐regulated while TNF‐αR1 and TNF‐αR2 were up‐regulated. FACS analysis showed a decreased uptake of fluorescently labeled RANKL in monocyte cultures in the presence of TNF‐α, indicating an altered ratio of bound‐RANK/unbound‐RANK. Our findings suggest a diverse role of TNF‐α on monocytes’ osteoclastogenesis: it affects the RANK‐signaling pathway therefore inhibits osteoclastogenesis when added at the onset of monocyte culturing. This can be prevented when monocytes were pre‐cultured with M‐CSF and RANKL, which ensures the binding of RANKL to RANK. This could be a mechanism to prevent unfavorable monocyte‐derived osteoclast formation away from the bone.
  相似文献   

2.
Little is known about the effects of mechanical forces on osteoclastogenesis by bone marrow macrophages (BMMs) in the absence of mechanosensitive cells, including osteoblasts and fibroblasts. In this study, we examined the effects of mechanical force on osteoclastogenesis by applying centrifugal force to BMMs using a horizontal microplate rotor. Our findings, as measured by an in vitro model system, show that tumor necrosis factor (TNF)‐α is capable of inducing osteoclast differentiation from BMMs and bone resorption in the presence of macrophage‐colony stimulating factor (M‐CSF) and is further facilitated by receptor activator of nuclear factor‐kappaB (NF‐κB) ligand (RANKL). Application of force to BMMs accelerated TNF‐α‐induced osteoclastogenesis; this was inhibited either by anti‐TNF‐α or anti‐TNF‐α receptor but not by OPG. TNF‐α also increased c‐Fms expression at both mRNA and protein levels in BMMs. An anti‐c‐Fms antibody completely inhibited osteoclast differentiation and bone resorption induced by TNF‐α but partially blocked osteoclastogenesis stimulated in combination with RANKL. These results suggest that TNF‐α (in the presence of M‐CSF) is capable of inducing osteoclastogenesis from BMMs, and that osteoclastogenesis is significantly stimulated by force application through the activation of c‐Fms‐mediated signaling. Overall, the present study reveals the facilitating effect of mechanical force on osteoclastic differentiation from BMMs without the addition of mechanosensitive cells. J. Cell. Biochem. 111: 1260–1269, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
Osteoprotegerin (OPG) is a decoy receptor for receptor activator of NF‐κB ligand (RANKL) and TNF‐related apoptosis‐inducing ligand (TRAIL). While RANKL is essential for osteoclastogenesis and facilitates breast cancer migration into bone, TRAIL promotes breast cancer apoptosis. We analyzed the expression of OPG and TRAIL and its modulation in estrogen receptor‐positive MCF‐7 cells and receptor‐negative MDA‐MB‐231 cells. In both cells, OPG mRNA levels and protein secretion were dose‐ and time‐dependently enhanced by interleukin (IL)‐1β and suppressed by dexamethasone. In contrast to MCF‐7 cells, MDA‐MB‐231 abundantly expressed TRAIL mRNA, which was enhanced by IL‐1β and inhibited by dexamethasone. TRAIL activated pro‐apoptotic caspase‐3, ‐7, and poly‐ADP‐ribose polymerase and decreased cell numbers of MDA‐MB‐231, but had no effect on MCF‐7 cells. Gene silencing siRNA directed against OPG resulted in a 31% higher apoptotic rate compared to non‐target siRNA‐treated MDA‐MB‐231 cells. Furthermore, TRAIL induced significantly less apoptosis in cells cultured in conditioned media (containing OPG) compared to cells exposed to TRAIL in fresh medium lacking OPG (P < 0.01) and these protective effects were reversed by blocking OPG with its specific ligand RANKL (P < 0.05). The association between cancer cell survival and OPG production by MDA‐MB‐231 cells was further supported by the finding, that modulation of OPG secretion using IL‐1β or dexamethasone prior to TRAIL exposure resulted in decreased and increased rate of apoptosis, respectively (P < 0.05). Thus, OPG secretion by breast cancer cells is modulated by cytokines and dexamethasone, and may represent a critical resistance mechanism that protects against TRAIL‐induced apoptosis. J. Cell. Biochem. 108: 106–116, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
5.
Interleukin (IL)‐27 is a member of IL‐6/IL‐12 family cytokines produced by antigen‐presenting cells in immune responses. IL‐27 can drive the commitment of naive T cells to a T helper type 1 (Th1) phenotype and inhibit inflammation in later phases of infection. Human bronchial epithelial cells have been shown to express IL‐27 receptor complex. In this study, we investigated the in vitro effects of IL‐27, alone or in combination with inflammatory cytokine tumor necrosis factor (TNF)‐α on the pro‐inflammatory activation of human primary bronchial epithelial cells and the underlying intracellular signaling mechanisms. IL‐27 was found to enhance intercellular adhesion molecule 1 (ICAM‐1) expression on the surface of human bronchial epithelial cells, and a synergistic effect was observed in the combined treatment of IL‐27 and TNF‐α on the expression of ICAM‐1. Although IL‐27 did not alter the basal IL‐6 secretion from bronchial epithelial cells, it could significantly augment TNF‐α‐induced IL‐6 release. These synergistic effects on the up‐regulation of ICAM‐1 and IL‐6 were partially due to the elevated expression of TNF‐α receptor (p55TNFR) induced by IL‐27. Further investigations showed that the elevation of ICAM‐1 and IL‐6 in human bronchial epithelial cells stimulated by IL‐27 and TNF‐α was differentially regulated by phosphatidylinositol 3‐OH kinase (PI3K)‐Akt, p38 mitogen‐activated protein kinase, and nuclear factor‐κB pathways. Our results therefore provide a new insight into the molecular mechanisms involved in airway inflammation. J. Cell. Physiol. 223:788–797, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
Objectives: Osteoclasts are descended from the CD14+ monocyte/macrophage lineage, but influence of other haematopoietic cells on osteoclastic commitment of their precursors has remained poorly understood. In this study, osteoclastogenic behaviour of peripheral blood mononuclear cells (PBMC) and their CD14+ and CD14? subpopulations has been accessed, in the absence or presence of M‐CSF and RANKL. Materials and Methods: Cell cultures were characterized for presence of actin rings and vitronectin and calcitonin receptors, TRAP activity and calcium phosphate resorbing activity, expression of osteoclast‐related genes and secretion of M‐CSF and RANKL. Results: In the absence of growth factors, PBMC and CD14+ cultures had some degree of cell survival, and some spontaneous osteoclastogenesis was observed, only on cultures of the former. Supplementation with M‐CSF and RANKL significantly increased osteoclastogenic behaviour of cell cultures, particularly CD14+ cell cultures. Nevertheless, PBMC derived a higher degree of osteoclastogenesis, either as absolute values or after normalization by protein content. It was observed that unlike CD14+ cells, PBMC were able to express M‐CSF and RANKL, which increased following growth factor treatment. Also, expression of TNF‐α, GM‐CSF, IL‐1β, IL‐6 and IL‐17 was higher in PBMC cultures. Finally, CD14? cultures exhibited limited cell survival and did not reveal any osteoclast features. Conclusions: Results show that although osteoclastic precursors reside in the CD14+ cell subpopulation, other populations (such as CD14? cells) derived from PBMC, have the ability to modulate osteoclastogenesis positively.  相似文献   

7.
Multinuclear osteoclasts are derived from CD11b-positive mononuclear cells in bone marrow and in circulation. FACS sorting experiments showed impaired osteoclastogenesis in RAW264.7 cells with low CD11b expression. Neutralizing antibodies and siRNA against CD11b inhibited osteoclastogenesis induced by RANKL. Although primary cultured mouse bone marrow macrophages expressed CD11a and CD11b, osteoclastogenesis induced by M-CSF and RANKL was inhibited in the presence of anti-CD11b or anti-CD18 but not anti-CD11a antibodies. Furthermore, anti-CD11b antibodies inhibited NFATc1 expression induced by M-CSF and RANKL in BMMs. These findings suggest, at least partly, an important role of CD11b in osteoclastogenesis.  相似文献   

8.
Osteopontin as a positive regulator in the osteoclastogenesis of arthritis   总被引:2,自引:0,他引:2  
We examined the role of osteopontin (OPN) in the osteoclastogenesis of arthritis using collagen-induced arthritis (CIA). Cells from arthritic joints of wild-type (OPN +/+) mice spontaneously developed bone-resorbing osteoclast-like cells (OCLs). The cultured cells showed an enhanced expression of receptor activator of nuclear factor kappaB ligand (RANKL) and a decreased expression of osteoprotegerin (OPG). The addition of OPG reduced the number of OCLs, indicating that the osteoclastogenesis depends on the RANK/RANKL/OPG system. The cells also produced OPN abundantly and anti-OPN neutralizing antibodies suppressed the development of OCLs. Moreover, the addition of OPN increased the expression of RANKL and augmented differentiation of OCLs from OPN-deficient (OPN -/-) cells. OPN, like the combination of 1alpha,25-dihydroxyvitamin D(3) and dexamethasone, also enhanced the RANKL expression and decreased OPG expression in a stromal cell line, ST2. These results suggest that OPN acts as a positive regulator in the osteoclastogenesis of arthritis through the RANK/RANKL/OPG system.  相似文献   

9.
TNFalpha is a major osteoclastogenic cytokine and a primary mediator of inflammatory osteoclastogenesis. We have previously shown that this cytokine directly targets osteoclasts and their precursors and that deletion of its type-1 receptor (TNFr1) lessens osteoclastogenesis and impacts RANK signaling molecules. Osteoclastogenesis is primarily a RANK/RANKL-dependent event and occurs in an environment governed by both hematopoietic and mesenchymal compartments. Thus, we reasoned that TNF/TNFr1 may regulate RANKL and possibly RANK expression by stromal cells and osteoclast precursors (OCPs), respectively. RT-PCR experiments reveal that levels of RANKL mRNA in WT stromal cells are increased following treatment with 1,25-VD3 compared to low levels in TNFr1-null cells. Expression levels of OPG, the RANKL decoy protein, were largely unchanged, thus supporting a RANKL/OPG positive ratio favoring WT cells. RANK protein expression by OCPs was lower in TNFr1-null cells despite only subtle differences in mRNA expression in both cell types. Mix and match experiments of different cell populations from the two mice phenotypes show that WT stromal cells significantly, but not entirely, restore osteoclastogenesis by TNFr1-null OCPs. Similar results were obtained when the latter cells were cultured in the presence of exogenous RANKL. Altogether, these findings indicate that in the absence of TNFr1 both cell compartments are impaired. This was further confirmed by gain of function experiments using TNFr1- null cultures of both cell types at which exogenous TNFr1 cDNA was virally expressed. Thus, restoration of TNFr1 expression in OCPs and stromal cells was sufficient to reinstate osteoclastogenesis and provides direct evidence that TNFr1 integrity is required for optimal RANK-mediated osteoclastogenesis.  相似文献   

10.
Macrophage surface antigen‐1 (Mac‐1, CD11b/CD18) has been implicated in the regulation of osteoclastogenesis. In the synovial tissues of patients with aseptic loosening after total hip replacement, CD11b was up‐regulated, which indicated that CD11b is closely involved in osteolysis around the prosthesis. We found that CD11b, but not CD18, promoted osteoclast (OC) maturation. Here, we show CD11b up‐regulated the levels of spleen tyrosine kinase (Syk), c‐Fos and nuclear factor of activated T cells, cytoplasmic‐1 (NFATc1), as well as the activity of extracellular‐regulated kinase (Erk), and as a result, osteoclast precursors (OCPs) differentiated and became tartrate‐resistant acid phosphatase (TRAP)‐positive. In addition, increased tumour necrosis factor‐α (TNF‐α) induced by ultra‐high molecular weight polyethylene (UHMWPE) particles up‐regulated the level of CD11b. Taken together, these findings suggest that CD11b is a positive regulator of osteoclastogenesis and that it functions by activating the Syk signalling pathway, while CD18 does not have the same effect.  相似文献   

11.
Yago T  Nanke Y  Kawamoto M  Yamanaka H  Kotake S 《Cytokine》2012,59(2):252-257
Tacrolimus (FK506, Prograf?) is an orally available, T cell specific and anti-inflammatory agent that has been proposed as a therapeutic drug in rheumatoid arthritis (RA) patients. It has been known that T cells have a critical role in the pathogenesis of RA. Recent studies suggest that Th17 cells, which mainly produce IL-17, are involved in many autoimmune inflammatory disease including RA. The present study was undertaken to assess the effect of tacrolimus on IL-17-induced human osteoclastogenesis and human Th17 differentiation. Human CD14(+) monocytes were cultured in the presence of macrophage-colony stimulating factor (M-CSF) and IL-17. From day 4, tacrolimus was added to these cultures. Osteoclasts were immunohistologically stained for vitronectin receptor 10days later. IL-17 production from activated T cells stimulated with IL-23 was measured by enzyme-linked immunosorbent assay (ELISA). Th17 differentiation from na?ve T cells was assayed by flow cytometry. Tacrolimus potently inhibited IL-17-induced osteoclastogenesis from human monocytes and osteoclast activation. Addition of tacrolimus also reduced production of IL-17 in human activated T cells stimulated with IL-23. Interestingly, the population of human IL-17(+)IFN-γ(-) CD4 T cells or IL-17(+)TNF-α(+) CD4 T cells were decreased by adding of tacrolimus. The present study demonstrates that the inhibitory effect of tacrolimus on IL-17-induced osteoclastogenesis from human monocytes. Tacrolimus also inhibited expression of IL-17 or TNF-α by reducing the proportion of Th17, suggesting that therapeutic effect on Th17-associated disease such as RA, inflammatory bowel disease, multiple sclerosis, psoriasis, or allograft rejection.  相似文献   

12.
Inflammatory mediator prostaglandin E2 (PGE2) contributes to bone resorption in several inflammatory conditions including periodontitis. The terminal enzyme, microsomal prostaglandin E synthase‐1 (mPGES‐1) regulating PGE2 synthesis is a promising therapeutic target to reduce inflammatory bone loss. The aim of this study was to investigate effects of mPGES‐1 inhibitors, aminothiazoles TH‐848 and TH‐644, on PGE2 production and osteoclastogenesis in co‐cultures of periodontal ligament (PDL) and osteoclast progenitor cells RAW 264.7, stimulated by lipopolysaccharide (LPS), and bone resorption in RANKL‐mediated peripheral blood mononuclear cells (PBMCs). PDL and RAW 264.7 cells were cultured separately or co‐cultured and treated with LPS alone or in combination with aminothiazoles. Multinucleated cells stained positively for tartrate‐resistant acid phosphatase (TRAP) were scored as osteoclast‐like cells. Levels of PGE2, osteoprotegerin (OPG) and interleukin‐6, as well as mRNA expression of mPGES‐1, OPG and RANKL were analysed in PDL cells. PBMCs were treated with RANKL alone or in combination with aminothiazoles. TRAP‐positive multinucleated cells were analysed and bone resorption was measured by the CTX‐I assay. Aminothiazoles reduced LPS‐stimulated osteoclast‐like cell formation both in co‐cultures and in RAW 264.7 cells. Additionally, aminothiazoles inhibited PGE2 production in LPS‐stimulated cultures, but did not affect LPS‐induced mPGES‐1, OPG or RANKL mRNA expression in PDL cells. In PBMCs, inhibitors decreased both osteoclast differentiation and bone resorption. In conclusion, aminothiazoles reduced the formation of osteoclast‐like cells and decreased the production of PGE2 in co‐cultures as well as single‐cell cultures. Furthermore, these compounds inhibited RANKL‐induced bone resorption and differentiation of PBMCs, suggesting these inhibitors for future treatment of inflammatory bone loss such as periodontitis.  相似文献   

13.
Periodontitis is characterized by chronic inflammation and osteoclast‐mediated bone loss regulated by the receptor activator of nuclear factor‐κB (RANK), RANK ligand (RANKL) and osteoprotegerin (OPG). The aim of this study was to investigate the effect of aminothiazoles targeting prostaglandin E synthase‐1 (mPGES‐1) on RANKL‐ and lipopolysaccharide (LPS)‐mediated osteoclastogenesis and prostaglandin E2 (PGE2) production in vitro using the osteoclast precursor RAW 264.7 cells. RAW 264.7 cells were treated with RANKL or LPS alone or in combination with the aminothiazoles 4‐([4‐(2‐naphthyl)‐1,3‐thiazol‐2‐yl]amino)phenol (TH‐848) or 4‐(3‐fluoro‐4‐methoxyphenyl)‐N‐(4‐phenoxyphenyl)‐1,3‐thiazol‐2‐amine (TH‐644). Aminothiazoles significantly decreased the number of multinucleated tartrate‐resistant acid phosphatase (TRAP)‐positive osteoclast‐like cells in cultures of RANKL‐ and LPS‐stimulated RAW 264.7 cells, as well as reduced the production of PGE2 in culture supernatants. LPS‐treatment induced mPGES‐1 mRNA expression at 16 hrs and the subsequent PGE2 production at 72 hrs. Conversely, RANKL did not affect PGE2 secretion but markedly reduced mPGES‐1 at mRNA level. Furthermore, mRNA expression of TRAP and cathepsin K (CTSK) was reduced by aminothiazoles in RAW 264.7 cells activated by LPS, whereas RANK, OPG or tumour necrosis factor α mRNA expression was not significantly affected. In RANKL‐activated RAW 264.7 cells, TH‐848 and TH‐644 down‐regulated CTSK but not TRAP mRNA expression. Moreover, the inhibitory effect of aminothiazoles on PGE2 production was also confirmed in LPS‐stimulated human peripheral blood mononuclear cell cultures. In conclusion, the aminothiazoles reduced both LPS‐ and RANKL‐mediated osteoclastogenesis and PGE2 production in RAW 264.7 cells, suggesting these compounds as potential inhibitors for treatment of chronic inflammatory bone resorption, such as periodontitis.  相似文献   

14.
Interleukin‐35 (IL‐35), a member of the IL‐12 family, functions as a new anti‐inflammatory factor involved in arthritis, psoriasis, inflammatory bowel disease (IBD) and other immune diseases. Although IL‐35 can significantly prevent the development of inflammation in many diseases, there have been no early studies accounting for the role of IL‐35 recombinant protein in IBD and psoriasis. In this study, we assessed the therapeutic potential of IL‐35 recombinant protein in three well‐known mouse models: the dextransulfate sodium (DSS)‐induced colitis mouse model, the keratin14 (K14)‐vascular endothelial growth factor A (VEGF‐A)‐transgenic (Tg) psoriasis mouse model and the imiquimod (IMQ)‐induced psoriasis mouse model. Our results indicated that IL‐35 recombinant protein can slow down the pathologic process in DSS‐induced acute colitis mouse model by decreasing the infiltrations of macrophages, CD4+T and CD8+T cells and by promoting the infiltration of Treg cells. Further analysis demonstrated that IL‐35 recombinant protein may regulate inflammation through promoting the secretion of IL‐10 and inhibiting the expression of pro‐inflammatory cytokines such as IL‐6, TNF‐α and IL‐17 in acute colitis model. In addition, lower dose of IL‐35 recombinant protein could achieve long‐term treatment effects as TNF‐α monoclonal antibody did in the psoriasis mouse. In summary, the remarkable therapeutic effects of IL‐35 recombinant protein in acute colitis and psoriasis mouse models indicated that IL‐35 recombinant protein had a variety of anti‐inflammatory effects and was expected to become an effective candidate drug for the treatment of inflammatory diseases.  相似文献   

15.
Tumor necrosis factor‐α (TNF‐α) is a pleiotropic cytokine produced by activated macrophages. IL‐6 is a multifunctional cytokine that plays a central role in both innate and acquired immune responses. We investigated the signaling pathway involved in IL‐6 production stimulated by TNF‐α in cultured myoblasts. TNF‐α caused concentration‐dependent increases in IL‐6 production. TNF‐α‐mediated IL‐6 production was attenuated by focal adhesion kinase (FAK) mutant and siRNA. Pretreatment with phosphatidylinositol 3‐kinase inhibitor (PI3K; Ly294002 and wortmannin), Akt inhibitor, NF‐κB inhibitor (pyrrolidine dithiocarbamate, PDTC), and IκB protease inhibitor (L ‐1‐tosylamido‐2‐phenyl phenylethyl chloromethyl ketone, TPCK) also inhibited the potentiating action of TNF‐α. TNF‐α increased the FAK, PI3K, and Akt phosphorylation. Stimulation of myoblasts with TNF‐α activated IκB kinase α/β (IKKα/β), IκBα phosphorylation, p65 phosphorylation, and κB‐luciferase activity. TNF‐α mediated an increase of κB‐luciferase activity which was inhibited by Ly294002, wortmannin, Akt inhibitor, PDTC and TPCK or FAK, PI3K, and Akt mutant. Our results suggest that TNF‐α increased IL‐6 production in myoblasts via the FAK/PI3K/Akt and NF‐κB signaling pathway. J. Cell. Physiol. 223: 389–396, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
This study was designed to evaluate the effect of Z‐FA.FMK (benzyloxycarbonyl‐l ‐phenylalanyl‐alanine‐fluoromethylketone), a pharmacological inhibitor of cathepsin B, on the proliferation of duodenal mucosal epithelial cells and the cellular system that controls this mechanism in these cells in vivo. For this investigation, BALB/c male mice were divided into four groups. The first group received physiological saline, the second group was administered Z‐FA.FMK, the third group received d ‐GalN (d ‐galactosamine) and TNF‐α (tumour necrosis factor‐α) and the fourth group was given both d ‐GalN/TNF‐α and Z‐FA.FMK. When d ‐GalN/TNF‐α was administered alone, we observed an increase in IL‐1β‐positive and active NF‐κB‐positive duodenal epithelial cells, a decrease in PCNA (proliferative cell nuclear antigen)‐positive duodenal epithelial cells and an increase in degenerative changes in duodenum. On the other hand, Z‐FA.FMK pretreatment inhibited all of these changes. Furthermore, lipid peroxidation, protein carbonyl and collagen levels were increased, glutathione level and superoxide dismutase activity were decreased, while there was no change in catalase activity by d ‐GalN/TNF‐α injection. On the contrary, the Z‐FA.FMK pretreatment before d ‐GalN/TNF‐α blocked these effects. Based on these findings, we suggest that Z‐FA.FMK might act as a proliferative mediator which is controlled by IL‐1β through NF‐κB and oxidative stress in duodenal epithelial cells of d ‐GalN/TNF‐α‐administered mice.  相似文献   

17.
Inflammation plays a major role in progression of rheumatoid arthritis, a disease treated with antagonists of tumor necrosis factor‐alpha (TNF‐α) and interleukin 1β (IL‐1β). New in vitro testing systems are needed to evaluate efficacies of new anti‐inflammatory biological drugs, ideally in a patient‐specific manner. To address this need, we studied microspheroids containing 10,000 human osteoarthritic primary chondrocytes (OACs) or chondrogenically differentiated mesenchymal stem cells (MSCs), obtained from three donors. Hypothesizing that this system can recapitulate clinically observed effects of anti‐inflammatory drugs, spheroids were exposed to TNF‐α, IL‐1β, or to supernatant containing secretome from activated macrophages (MCM). The anti‐inflammatory efficacies of anti‐TNF‐α biologicals adalimumab, infliximab, and etanercept, and the anti‐IL‐1β agent anakinra were assessed in short‐term microspheroid and long‐term macrospheroid cultures (100,000 OACs). While gene and protein expressions were evaluated in microspheroids, diameters, amounts of DNA, glycosaminoglycans, and hydroxiproline were measured in macrospheroids. The tested drugs significantly decreased the inflammation induced by TNF‐α or IL‐1β. The differences in potency of anti‐TNF‐α biologicals at 24 h and 3 weeks after their addition to inflamed spheroids were comparable, showing high predictability of short‐term cultures. Moreover, the data obtained with microspheroids grown from OACs and chondrogenically differentiated MSCs were comparable, suggesting that MSCs could be used for this type of in vitro testing. We propose that in vitro gene expression measured after the first 24 h in cultures of chondrogenically differentiated MSCs can be used to determine the functionality of anti‐TNF‐α drugs in personalized and preclinical studies. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:1045–1058, 2018  相似文献   

18.
19.
Bone is the preferred site of prostate cancer metastasis, contributing to the morbidity and mortality of this disease. A key step in the successful establishment of prostate cancer bone metastases is activation of osteoclasts with subsequent bone resorption causing the release of several growth factors from the bone matrix. CD11b+ cells in bone marrow are enriched for osteoclast precursors. Conditioned media from prostate cancer PC‐3 cells induces CD11b+ cells from human peripheral blood to differentiate into functional osteoclasts with subsequent bone resorption. Analysis of PC‐3 conditioned media revealed high amounts of IL‐6 and IL‐8. CD11b+ cells were cultured with M‐CSF and RANKL, IL‐6, IL‐8, and CCL2, alone or in combination. All of these conditions induced osteoclast fusion, but cells cultured with M‐CSF, IL‐6, IL‐8, and CCL2 were capable of limited bone resorption. Co‐incubation with IL‐6 and IL‐8 and the RANK inhibitor, RANK‐Fc, failed to inhibit osteoclast fusion and bone resorption, suggesting a potential RANKL‐independent mechanism of functional osteoclast formation. This study demonstrates that functional osteoclasts can be derived from CD11b+ cells derived from human PBMCs. Prostate cancer cells secrete factors, including IL‐6 and IL‐8, that play an important role in osteoclast fusion by a RANKL‐independent mechanism. J. Cell. Biochem. 106: 563–569, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
Studies have shown that administration of 17β‐estradiol prevents trauma‐hemorrhage‐induced increase in proinflammatory cytokine production by Kupffer cells and associated multiple organ injury. Since activation of peroxisome proliferator‐activated receptor γ (PPARγ) following ischemic conditions has been shown to be protective, we examined if PPARγ plays any role in the salutary effects of 17β‐estradiol on Kupffer cell cytokine production following trauma‐hemorrhage. Male mice underwent trauma‐hemorrhage (mean blood pressure 40 mmHg for 90 min, then resuscitation). 17β‐estradiol (50 µg/kg) or vehicle with or without PPARγ antagonist GW9662 was injected subcutaneously at the middle of resuscitation. At 2 h after trauma‐hemorrhage, plasma interleukin (IL)‐6 and tumor necrosis factor (TNF)‐α levels, Kupffer cell IL‐6 and TNF‐α production and mRNA expression, and PPARγ, nuclear factor (NF)‐κB and activator protein (AP)‐1 DNA binding activity were determined. Kupffer cell IL‐6 and TNF‐α production, as well as plasma IL‐6 and TNF‐α levels, increased following trauma‐hemorrhage. Moreover, NF‐κB and AP‐1 DNA binding activity and IL‐6 and TNF‐α mRNA expression were also enhanced under such conditions. However, 17β‐estradiol administration normalized all these parameters. Although PPARγ activity decreased after trauma‐hemorrhage, administration of 17β‐estradiol following trauma‐hemorrhage elevated PPARγ activity above the normal level. Inhibition of PPARγ by co‐administration of GW9662, however, abolished the salutary effects of 17β‐estradiol on plasma cytokine and Kupffer cells. Thus, activation of PPARγ appears to play an important role in mediating the salutary effects of 17β‐estradiol on plasma cytokine levels and Kupffer cell cytokine production after trauma‐hemorrhage, which are likely mediated via NF‐κB and AP‐1. J. Cell. Physiol. 226: 205–211, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号