首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The K+‐Cl? cotransporters (KCCs) belong to the cation‐Cl? cotransporter family and consist of four isoforms and many splice variants. Their main role is to promote electroneutral efflux of K+ and Cl? ions across the surface of many cell types and, thereby, to regulate intracellular ion concentration, cell volume, and epithelial salt movement. These transport systems are induced by an increase in cell volume and are less active at lower intracellular [Cl?] (Cli), but the mechanisms at play are still ill‐defined. In this work, we have exploited the Xenopus laevis expression system to study the role of lysine‐deficient protein kinases (WNKs), protein phosphatases 1 (PP1s), and SPS1‐related proline/alanine‐rich kinase (SPAK) in KCC4 regulation during cell swelling. We have found that WNK4 and PP1 regulate KCC4 activity as part of a common signaling module, but that they do not exert their effects through SPAK or carrier dephosphorylation. We have also found that the phosphatases at play include PP1α and PP1γ1, but that WNK4 acts directly on the PP1s instead of the opposite. Unexpectedly, however, both cell swelling and a T926A substitution in the C‐terminus of full‐length KCC4 led to higher levels of heterologous K+‐Cl? cotransport and overall carrier phosphorylation. These results imply that the response to cell swelling must also involve allosteric‐sensitive kinase‐dependent phosphoacceptor sites in KCC4. They are thus partially inconsistent with previous models of KCC regulation.  相似文献   

2.
K+/Cl? cotransporters (KCCs) are known to be crucial in the control of neuronal electrochemical Cl? gradient. However, the role of these proteins in glial cells remains largely unexplored despite a number of studies showing expression of KCC proteins in glial cells of many species. Here, we show that the Caenorhabditis elegans K+/Cl? cotransporter KCC‐3 is expressed in glial‐like cells and regulates the thermosensory behavior through modifying temperature‐evoked activity of a thermosensory neuron. Mutations in the kcc‐3 gene were isolated from a genetic screen for mutants defective in thermotaxis. KCC‐3 is expressed and functions in the amphid sheath glia that ensheathes the AFD neuron, a major thermosensory neuron known to be required for thermotaxis. A genetic analysis indicated that the regulation of the thermosensory behavior by KCC‐3 is mediated through AFD, and we further show that KCC‐3 in the amphid sheath glia regulates the dynamics of the AFD activity. Our results show a novel mechanism by which the glial KCC‐3 protein non‐cell autonomously modifies the stimulus‐evoked activity of a sensory neuron and highlights the functional importance of glial KCC proteins in modulating the dynamics of a neural circuitry to control an animal behavior.  相似文献   

3.
Benzodiazepines are commonly used as sedatives, sleeping aids, and anti‐anxiety drugs. However, chronic treatment with benzodiazepines is known to induce dependence, which is considered related to neuroplastic changes in the mesolimbic system. This study investigated the involvement of K+‐Cl? co‐transporter 2 (KCC2) in the sensitization to morphine‐induced hyperlocomotion after chronic treatment with zolpidem [a selective agonist of γ‐aminobutyric acid A‐type receptor (GABAAR) α1 subunit]. In this study, chronic treatment with zolpidem enhanced morphine‐induced hyperlocomotion, which is accompanied by the up‐regulation of KCC2 in the limbic forebrain. We also found that chronic treatment with zolpidem induced the down‐regulation of protein phosphatase‐1 (PP‐1) as well as the up‐regulation of phosphorylated protein kinase C γ (pPKCγ). Furthermore, PP‐1 directly associated with KCC2 and pPKCγ, whereas pPKCγ did not associate with KCC2. On the other hand, pre‐treatment with furosemide (a KCC2 inhibitor) suppressed the enhancing effects of zolpidem on morphine‐induced hyperlocomotion. These results suggest that the mesolimbic dopaminergic system could be amenable to neuroplastic change through a pPKCγ‐PP‐1‐KCC2 pathway by chronic treatment with zolpidem.  相似文献   

4.
Adequate fluid secretion from airway mucosa is essential for maintaining mucociliary clearance, and fluid hypersecretion is a prominent feature of inflammatory airway diseases such as allergic rhinitis. House dust mite extract (HDM) has been reported to activate protease‐activated receptors (PARs), which play various roles in airway epithelia. However, the role of HDM in regulating ion transporters and fluid secretion has not been investigated. We examined the effect of HDM on ion transport in human primary nasal epithelial cells. The Ca2+‐sensitive dye Fura2‐AM was used to determine intracellular Ca2+ concentration ([Ca2+]i) by means of spectrofluorometry in human normal nasal epithelial cells (NHNE). Short‐circuit current (Isc) was measured using Ussing chambers. Fluid secretion from porcine airway mucosa was observed by optical measurement. HDM extract (10 µg/Ml) effectively cleaved the PAR‐2 peptide and induced an increase of [Ca2+]i that was abolished by desensitization with trypsin, but not with thrombin. Apical application of HDM‐induced Isc sensitive to both a cystic fibrosis transmembrane conductance regulator (CFTR) inhibitor and a Ca2+‐activated Cl? channel (CaCC) inhibitor. HDM extract also stimulated fluid secretion from porcine airway mucosa. HDM extract activated PAR‐2 and apical Cl? secretion via CaCC and CFTR, and HDM‐induced fluid secretion in porcine airway mucosa. Our results suggest a role for PAR‐2 in mucociliary clearance and fluid hypersecretion of airway mucosa in response to air‐borne allergens such as HDM. J. Cell. Biochem. 109: 1254–1263, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
Abstract. Net efflux of Cl? was measured potentiometrically (Ag/AgCl electrode) during turgor regulation which was induced by hypotonic treatment (hypotonic turgor regulation) in the alga Lamprothamnium succinctum. The efflux of Cl? reached the peak value (11 μmol m ?2s?1) several minutes after the hypotonic treatment was started and then declined. The efflux of Cl? and inhibition of the cytoplasmic streaming [reflection of an increase in cytoplasmic concentration of free Ca2+([Ca2+]c)] were blocked under a low external concentration of Ca2+ ([Ca2+]e) (0·01 mol m?3) and resumed after raising [Ca2+]e to the normal value (3·9 mol m?3). The decrease in cell-osmotic pressure upon hypotonic treatment was inhibited by lowering either turgor pressure or [Ca2h]e. The inhibition was reflected in decreases of both the efflux of Cl? and the membrane conductance. Recovery of the cytoplasmic streaming from the inhibition was also accelerated by the same treatments. It is concluded that an increase in turgor pressure is continuously sensed by the cells and that continuous presence of external Ca2+ is necessary for the hypotonic turgor regulation.  相似文献   

6.
Recently, we reported that reduction of intracellular Cl? concentration ([Cl?]i) inhibited proliferation of MKN28 gastric cancer cells by diminishing the transition rate from G1 to S cell‐cycle phase through upregulation of p21, cyclin‐dependent kinase inhibitor, in a p53‐independent manner. However, it is still unknown how intracellular Cl? regulates p21 expression level. In this study, we demonstrate that mitogen‐activated protein kinases (MAPKs) are involved in the p21 upregulation and cell‐cycle arrest induced by reduction of [Cl?]i. Culture of MKN28 cells in a low Cl? medium significantly induced phosphorylation (activation) of MAPKs (ERK, p38, and JNK) and G1/S cell‐cycle arrest. To clarify the involvement of MAPKs in p21 upregulation and cell growth inhibition in the low Cl? medium, we studied effects of specific MAPKs inhibitors on p21 upregulation and G1/S cell‐cycle arrest in MKN28 cells. Treatment with an inhibitor of p38 or JNK significantly suppressed p21 upregulation caused by culture in a low Cl? medium and rescued MKN28 cells from the low Cl?‐induced G1 cell‐cycle arrest, whereas treatment with an ERK inhibitor had no significant effect on p21 expression or the growth of MKN28 cells in the low Cl? medium. These results strongly suggest that the intracellular Cl? affects the cell proliferation via activation of p38 and/or JNK cascades through upregulation of the cyclin‐dependent kinase inhibitor (p21) in a p53‐independent manner in MKN28 cells. J. Cell. Physiol. 223:764–770, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
Ionic channels regulated by extracellular Ca2+ concentration ([Ca2+]0) were examined in freshly isolated rabbit osteoclasts. K+ current was suppressed by intracellular and extracellular Cs+ ions. In this condition, high [Ca2+]0 evoked an outwardly rectifying current with a reversal potential of about −25 mV. When the concentration of extracellular Cl ions was altered, the reversal potential of the outwardly rectifying current shifted as predicted by the Nernst equation. 4′,4-diisothiocyanostilbene-2′,2-disulphonic acid (DIDS) inhibited the outwardly rectifying current. These results indicated that this current was carried through Cl channels. Cd2+ or Ni2+ caused a transient activation of the Cl current in contrast to the sustained activation elicited by Ca2+. Intracellular 20 mM ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid (EGTA) inhibited the divalent cation-induced Cl current. Either when the osmolarity of extracellular medium was increased, or when 100 μM cAMP was dissolved in the patch pipette solution, high [Ca2+]0 still elicited the Cl current, indicating that the divalent cation-induced Cl current was carried through Ca2+-activated Cl channels. Under perforated whole cell clamp extracellular divalent cations evoked the Cl current, indicating that the activation of Cl current did not arise from possible leakage of divalent cations from the extracellular medium under the whole cell clamp condition. This experiment further excluded a possible activation of volume-sensitive Cl channels under whole cell clamp. Intracellular application of guanosine 5′-O-(3-thiotriphosphate) (GTPγS) activated the Cl current and it was inhibited by intracellular 20 mM EGTA, suggesting that the activation of Cl current was mediated through a G protein, and that an increase in [Ca2+]i was critical for the activation of Cl channels. A protein phosphatase inhibitor, okadaic acid (100 nM), caused an irreversible activation of the Cl current, suggesting that protein phosphatase 1 or 2A was involved in the regulation of Ca2+-activated Cl channels. © 1996 Wiley-Liss, Inc.  相似文献   

8.
The neuronal K+-Cl cotransporter (KCC2) is a membrane transport protein that extrudes Cl from neurons and helps maintain low intracellular [Cl] and hyperpolarizing GABAergic synaptic potentials. Depolarizing γ-aminobutyric acid (GABA) responses in neonatal neurons and following various forms of neuronal injury are associated with reduced levels of KCC2 expression. Despite the importance for plasticity of inhibitory transmission, less is known about cellular mechanisms involved in more dynamic changes in KCC2 function. In this study, we investigated the role of tyrosine phosphorylation in KCC2 localization and function in hippocampal neurons and in cultured GT1-7 cells. Mutation to the putative tyrosine phosphorylation site within the long intracellular carboxyl terminus of KCC2(Y1087D) or application of the tyrosine kinase inhibitor genistein shifted the GABA reversal potential (EGABA) to more depolarized values, indicating reduced KCC2 function. This was associated with a change in the expression pattern of KCC2 from a punctate distribution to a more uniform distribution, suggesting that functional tyrosine-phosphorylated KCC2 forms clusters in restricted membrane domains. Sodium vanadate, a tyrosine phosphatase inhibitor, increased the proportion of KCC2 associated with lipid rafts membrane domains. Loss of tyrosine phosphorylation also reduced oligomerization of KCC2. A loss of the punctuate distribution and oligomerization of KCC2 and a more depolarized EGABA were seen when the 28-amino-acid carboxyl terminus of KCC2 was deleted. These results indicate that direct tyrosine phosphorylation of KCC2 results in membrane clusters and functional transport activity, suggesting a mechanism by which intracellular Cl concentrations and GABA responses can be rapidly modulated.The inhibitory neurotransmitters GABA2 and glycine activate ionotropic Cl channels, typically leading to membrane hyperpolarization in the adult central nervous system. The neuronal K+-Cl cotransporter (KCC2) is the principal membrane transport protein that maintains low intracellular [Cl] ([Cl]i) in mature and healthy neurons to allow such Cl influx and hyperpolarization. However, in immature neurons and in neurons following various forms of neuronal injury, [Cl]i is elevated and GABA and glycine can cause membrane depolarization and neuronal excitation (13). A reduced expression of KCC2 protein in immature neurons (4) and a decrease of KCC2 expression in response to various pathophysiological conditions, e.g. axotomy (5, 6) and global ischemia (7), are primarily responsible for this increased [Cl]i and for the depolarizing GABA response.In addition to changes in the expression levels of KCC2 protein, the function of KCC2 can be more dynamically and rapidly modulated by the availability of transport substrates and by various forms of kinase activity. Cl extrusion is quantitatively regulated by the K+ driving force across the membrane (8). Protein kinase C can down-regulate both KCC2 function (9) and surface expression (10). Staurosporine, a broad spectrum kinase inhibitor, produces a rapid up-regulation of KCC2 function in immature neurons (11). Brain-type creatinine kinase binding to KCC2 may also regulate its function (12). Finally, WNK3, by interacting with Ste20-related proline-alanine-rich kinase, prevents the cell swelling-induced activation of KCC2 in Xenopus oocytes (13, 14).KCC2 contains one tyrosine protein kinase phosphorylation consensus site (Tyr-1087) within the long carboxyl terminus in the intracellular region (15). Tyr-1087 is not present in KCC1, another family of KCCs, suggesting that direct tyrosine phosphorylation may uniquely regulate KCC2. The receptor tyrosine kinase, IGF-1, and the soluble tyrosine kinase, Src kinase, activate KCC2 during maturation of hippocampal neurons (16). Oxidative stress decreases the tyrosine phosphorylation of KCC2 and reduces KCC2 function (17). However, just how tyrosine phosphorylation regulates KCC2 function under more physiological conditions is unclear, although modulation of KCC2 has important implications for inhibitory synaptic transmission and neuronal excitability. Furthermore, although KCC2 is uniquely expressed in neurons and may be influenced by the neuronal microenvironment, many of the studies on modulation of KCC function have been done in non-neuronal cell lines, e.g. HEK293 cells, and Xenopus oocytes. In this study, we therefore examined the role and mechanisms of tyrosine phosphorylation in the regulation of KCC2 function in cultured hippocampal neurons and in GT1-7 cells, a brain-derived cell line that possesses many neuronal characteristics but does not express endogenous KCC2 (18, 19) (also, see “Experimental Procedures”). The present study proposes that tyrosine phosphorylation of KCC2 results in clustering within lipid rafts via interactions within the carboxyl terminus of KCC2 and that this clustering results in efficient extrusion of Cl.  相似文献   

9.
Xenopus follicles are endowed with specific receptors for ATP, ACh, and AII, transmitters proposed as follicular modulators of gamete growth and maturation in several species. Here, we studied ion‐current responses elicited by stimulation of these receptors and their activation mechanisms using the voltage‐clamp technique. All agonists elicited Cl? currents that depended on coupling between oocyte and follicular cells and on an increase in intracellular Ca2+ concentration ([Ca2+]i), but they differed in their activation mechanisms and in the localization of the molecules involved. Both ATP and ACh generated fast Cl? (FCl) currents, while AII activated an oscillatory response; a robust Ca2+ influx linked specifically to FCl activation elicited an inward current (Iiw,Ca) which was carried mainly by Cl? ions, through channels with a sequence of permeability of SCN? > I? > Br? > Cl?. Like FCl, Iiw,Ca was not dependent on oocyte [Ca2+]i; instead both were eliminated by preventing [Ca2+]i increase in the follicular cells, and also by U73122 and 2‐APB, drugs that inhibit the phospolipase C (PLC) pathway. The results indicated that FCl and Iiw,Ca were produced by the expected, PLC‐stimulated Ca2+‐release and Ca2+‐influx, respectively, and by the opening of ICl(Ca) channels located in the follicular cells. Given their pharmacological characteristics and behavior in conditions of divalent cation deprivation, Ca2+‐influx appeared to be driven through store‐operated, calcium‐like channels. The AII response, which is also known to require PLC activation, did not activate Iiw,Ca and was strictly dependent on oocyte [Ca2+]i increase; thus, ATP and ACh receptors seem to be expressed in a population of follicular cells different from that expressing AII receptors, which were coupled to the oocyte through distinct gap‐junction channels. J. Cell. Physiol. 227: 3457–3470, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

10.
Abstract: We determined if changes in intraneuronal Cl? occur early after ischemia in the hippocampal slice. Slices from juvenile rats (14–19 days old) were loaded with the cell-permeant form of 6-methoxy-N-ethylquinolinium chloride (MEQ), a Cl?-sensitive fluorescent dye. Real-time changes in intracellular chloride concentration ([Cl?]i) were measured with UV laser scanning confocal microscopy in multiple neurons within each slice. In vitro ischemia (26–28°C, 10 min) was confirmed by the loss of synaptic transmission (evoked field excitatory postsynaptic potentials) from pyramidal cells in area CA1. After ischemia and reoxygenation (10 min), MEQ fluorescence decreased significantly in CA1 pyramidal cells and interneurons. The decreased fluorescence corresponded to an ischemia-induced increase in [Cl?]i of ~10 mM. Pretreatment with the GABAA-gated Cl? channel antagonist picrotoxin (100 µM) blocked the ischemia-induced change in [Cl?]i. Analysis of the superfusates indicated that ischemia also caused a transient amino acid (GABA, glutamate, and aspartate) release that was maximal at ~10 min, returning to baseline shortly thereafter. Recovery from ischemia was confirmed by the return of synaptic transmission in area CA1, the return toward baseline of the ischemia-induced decrease in MEQ fluorescence, and exclusion of propidium iodide from MEQ fluorescent cells. Furthermore, pyramidal cells did not undergo cell swelling during this early phase of reoxygenation, as indicated by the volume-sensitive dye calcein. Thus, mild ischemia induces the accumulation of [Cl?]i secondary to GABAA receptor activation, in the absence of cellular swelling or death. In contrast, depolarization of the slice with K+ (50 mM) decreased MEQ fluorescence significantly but caused cell swelling. Picrotoxin did not prevent the K+-induced increase in [Cl?]i. It is possible that an increased [Cl?]i, following either an ischemic event or an episode of depolarization, would reduce the Cl? driving force and thereby limit synaptic transmission by GABA. To support this hypothesis, ischemia caused a reduction in the ability of the GABA agonist muscimol to increase [Cl?]i after 20-min reoxygenation.  相似文献   

11.
The K+:Cl cotransporter (KCC) activity is modulated by phosphorylation/dephosphorylation processes. In isotonic conditions, KCCs are inactive and phosphorylated, whereas hypotonicity promotes their dephosphorylation and activation. Two phosphorylation sites (Thr-991 and Thr-1048) in KCC3 have been found to be critical for its regulation. However, here we show that the double mutant KCC3-T991A/T1048A could be further activated by hypotonicity, suggesting that additional phosphorylation site(s) are involved. We observed that in vitro activated STE20/SPS1-related proline/alanine-rich kinase (SPAK) complexed to its regulatory MO25 subunit phosphorylated KCC3 at Ser-96 and that in Xenopus laevis oocytes Ser-96 of human KCC3 is phosphorylated in isotonic conditions and becomes dephosphorylated during incubation in hypotonicity, leading to a dramatic increase in KCC3 function. Additionally, WNK3, which inhibits the activity of KCC3, promoted phosphorylation of Ser-96 as well as Thr-991 and Thr-1048. These observations were corroborated in HEK293 cells stably transfected with WNK3. Mutation of Ser-96 alone (KCC3-S96A) had no effect on the activity of the cotransporter when compared with wild type KCC3. However, when compared with the double mutant KCC3-T991A/T1048A, the triple mutant KCC3-S96A/T991A/T1048A activity in isotonic conditions was significantly higher, and it was not further increased by hypotonicity or inhibited by WNK3. We conclude that serine residue 96 of human KCC3 is a third site that has to be dephosphorylated for full activation of the cotransporter during hypotonicity.  相似文献   

12.
Pathways for HCO3 transport across the basolateral membrane were investigated using membrane vesicles isolated from rat renal cortex. The presence of Cl---HCO3 exchange was assessed directly by 36Cl tracer flux measurements and indirectly by determinants of acridine orange absorbance changes. Under 10% CO2/90% N2 the imposition of an outwardly directed HCO3 concentration gradient (pHo 6/pHi 7.5) stimulated Cl uptake compared to Cl uptake under 100% N2 in the presence of a pH gradient alone. Mediated exchange of Cl for HCO3 was suggested by the HCO3 gradient-induced concentrative accumulation of intravesicular Cl. Maneuvers designed to offset the development of ion-gradient-induced diffusion potentials had no significant effect on the magnitude of HCO3 gradient-driven Cl uptake further suggesting chemical as opposed to electrical Cl−HCO3 exchange coupling. Although basolateral membrane vesicle Cl uptake was observed to be voltage sensitive, the DIDS insensitivity of the Cl conductive pathway served to distinguish this mode of Cl translocation from HCO3 gradient-driven Cl uptake. No evidence for cotransport was obtained. As determined by acridine orange absorbance measurements in the presence of an imposed pH gradient (pHo 7.5/pHi 6), a HCO3 dependent increase in the rate of intravesicular alkalinization was observed in response to an outwardly directed Cl concentration gradient. The basolateral membrane vesicle origin of the observed Cl−HCO3 exchange activity was verified by experiments performed with purified brush-border membrane vesicles. In contrast to our previous observations of the effect of Cl on HCO3 gradient-driven Na+ uptake suggesting a basolateral membrane Na+−HCO3 for Cl exchange mechanism, no effect of Na+ on Cl−HCO3 exchange was observed in the present study.  相似文献   

13.
The transmembrane potential (Vm) of vascular endothelial cells (EC) is an important property that may be involved in intra- and intercellular signal transduction for various vascular functions. In this study, Vm of intact aortic and vena caval EC from hamsters were measured using conventional microelectrodes. Vascular strips with the luminal surface upwards were suffused in a tissue chamber with krebs solution in physiological conditions. The resting Vm of aortic and vena caval EC was found to be ?40± 1 mV (n = 55) and ?43± 1 mV (n = 15), respectively. The Vm recordings were confirmed to have originated from EC by scanning and transmission electron microscopy combined with the comparison of electrical recordings between normal and endothelium-denuded aortic strips. The input resistance varied from 10–240 MΩ, which implied the presence of electrical coupling between vascular EC. Elevating the K+ level in the suffusate from 4.7 mM to 50 and 100 mM depolarized aortic EC by 19% and 29% and vena caval EC by 18% and 29%, respectively. These low percentages indicated a relatively small contribution of [K+] to the resting Vm of vascular EC. A positive correlation (r> 0.69) between the resting Vm and the magnitude of depolarization by the high [K+]0 may be related to the involvement of voltage-dependent K+ channels. The hyperpolarization caused by lowering both [Na+]0 and [CI?]0 suggested the disengagement of some electrogenic transport systems in the membrane, such as a Na+ -K+ -CI? cotransporter. The transference number (tion), as an index of membrane conductance for specific ions, was calculated for K+ (15-20%), Na+ (16%), and Cl? (9-15%), demonstrating that both Na+ and Cl? as well as K+ contribute to the overall resting Vm. Our study documented some basic electrophysiology of the vascular EC when both structural and functional properties of the cell were maintained, thus furthering the understanding of the essential role of endothelial cells in mediating vascular functions. © 1993 Wiley-Liss, Inc.  相似文献   

14.
The kinetics of the light-driven Cl? uptake pump of Synechococcus R-2 (PCC 7942) were investigated. The kinetics of Cl? uptake were measured in BG-11 medium (pHo, 7·5; [K+]o, 0·35 mol m?3; [Na+]o, 18 mol m?3; [Cl?]o, 0·508 mol m?3) or modified media based on the above. Net36Cl? fluxes (?Cl?o,i) followed Michaelis-Menten kinetics and were stimulated by Na+ [18 mol m?3 Na+ BG-11 ?Cl?max= 3·29±0·60 (49) nmol m?2 s?1 versus Na+-free BG-11 ?Cl?max= 1·02±0·13 (54) nmol m?2 s?1] but the Km was not significantly different in the presence or absence of Na+ at pHo 10; the Km was lower, but not affected by the presence or absence of Na+ [Km = 22·3±3·54 (20) mmol m?3]. Na+ is a non-competitive activator of net ?Cl?o,i. High [K+]o (18 mol m?3) did not stimulate net ?Cl?o,i or change the Km in Na+-free medium. High [K+]o (18 mol m?3) added to Na+ BG-11 medium decreased net ?Cl?o,i [18 mol m?3K+ BG-11; ?Cl?max= 2·50±0·32 (20) nmol m?2 s?1 versus BG-11 medium; ?Cl?max= 3·35±0·56 (20) nmol m?2 s?1] but did not affect the Km 55·8±8·100 (40) mmol m?3]. Na+-stimulation of net ?Cl?o,i followed Michaelis-Menten kinetics up to 2–5 mol m?3 [Na+]o but higher concentrations were inhibitory. The Km for Na+-stimulation of net ?Cl?o,i [K1/2(Na+)] was different at 47 mmol m?3 [Cl?]o (K1/2[Na+] = 123±27 (37) mmol m?3]. Li+ was only about one-third as effective as Na+ in stimulating Cl? uptake but the activation constant was similar [K1/2(Li+) = 88±46 (16) mmol m?3]. Br? was a competitive inhibitor of Cl? uptake. The inhibition constant (Ki) was not significantly different in the presence and absence of Na+. The overall Ki was 297±23 (45) mmol m?3. The discrimination ratio of Cl? over Br? (δCl?/δBr?) was 6·38±0·92 (df = 147). Synechococcus has a single Na+-stimulated Cl? pump because the Km of the Cl? transporter and its discrimination between Cl? and Br? are not significantly different in the presence and absence of Na+. The Cl? pump is probably driven by ATP.  相似文献   

15.
The ion currents, activated by depolarizations, across the plasma membrane of Arabidopsis thaliana cultured cells were studied by means of the patch-clamp technique in the whole-cell configuration. The electrical conductance of the membrane could be shifted from a cation to an anion conducting state by changes in the [K+]: [Cl] ratio in the external medium. For ratios between 1:1 and 1:5 the currents were due to K+ efflux and for a ratio of 1:10 to Cl influx. In the cation conducting state the permeability ratio of K+ over NH+4 and the alkali metal ions was: K+ ≅ NH>Na+ ≅ Li+ >Cs+. In the anion conducting state the permeability of NO3 was the same as that of Cl. These channels were activated by depolarizations in the range of physiological potentials (-70/-80mV) and, either by mediating the efflux of cations or the influx of anions, they could function to re-hyperpolarize the membrane potential after depolarizations due to the influx of cations or of solutes cotransported with protons and/or to the inhibition of electrogenic pumps.  相似文献   

16.
Genetic variation in SLC12A5 which encodes KCC2, the neuron-specific cation-chloride cotransporter that is essential for hyperpolarizing GABAergic signaling and formation of cortical dendritic spines, has not been reported in human disease. Screening of SLC12A5 revealed a co-segregating variant (KCC2-R952H) in an Australian family with febrile seizures. We show that KCC2-R952H reduces neuronal Cl extrusion and has a compromised ability to induce dendritic spines in vivo and in vitro. Biochemical analyses indicate a reduced surface expression of KCC2-R952H which likely contributes to the functional deficits. Our data suggest that KCC2-R952H is a bona fide susceptibility variant for febrile seizures.  相似文献   

17.
K+Cl cotransporters (KCCs) play fundamental physiological roles in processes such as inhibitory neurotransmission and cell volume regulation. Mammalian genomes encode four distinct KCC paralogs, which share basic transport characteristics but differ significantly in ion affinity, pharmacology, and relative sensitivity to cell volume. Studies to identify divergence in functional characteristics have thus far focused on the cytoplasmic termini. Here, we investigated sequence requirements of the large extracellular loop (LEL) for function in KCC2 and KCC4. Mutation of all four evolutionarily conserved cysteines abolished KCC2 transport activity. This behavior differs from that of its closest relative, KCC4, which is insensitive to this mutation. Chimeras supported the differences in the LEL of the two cotransporters, because swapping wild-type LEL resulted in functional KCC2 but rendered KCC4 inactive. Insertion of the quadruple cysteine substitution mutant of the KCC4 loop, which was functional in the parental isoform, abolished transport activity in KCC2. Dose-response curves of wild-type and chimeric KCCs revealed that the LEL contributes to the different sensitivity to loop diuretics; a KCC2 chimera containing the KCC4 LEL displayed an IC50 of 396.5 μm for furosemide, which was closer to KCC4 (548.8 μm) than to KCC2 (184.4 μm). Cell surface labeling and immunocytochemistry indicated that mutations do not affect trafficking to the plasma membrane. Taken together, our results show a dramatic and unexpected difference in the sequence requirements of the LEL between the closely related KCC2 and KCC4. Furthermore, they demonstrate that evolutionarily highly conserved amino acids can have different functions within KCC members.  相似文献   

18.
Here, an effective design strategy of polymer thermoelectric materials based on structural control in doped polymer semiconductors is presented. The strategy is illustrated for two archetypical polythiophenes, e.g., poly(2,5‐bis(3‐dodecyl‐2‐thienyl)thieno[3,2‐b]thiophene) (C12‐PBTTT) and regioregular poly(3‐hexylthiophene) (P3HT). FeCl3 doping of aligned films results in charge conductivities up to 2 × 105 S cm?1 and metallic‐like thermopowers similar to iodine‐doped polyacetylene. The films are almost optically transparent and show strongly polarized near‐infrared polaronic bands (dichroic ratio >10). The comparative study of structure–property correlations in P3HT and C12‐PBTTT identifies three conditions to obtain conductivities beyond 105 S cm?1: i) achieve high in‐plane orientation of conjugated polymers with high persistence length; ii) ensure uniform chain oxidation of the polymer backbones by regular intercalation of dopant molecules in the polymer structure without disrupting alignment of π‐stacked layers; and iii) maintain a percolating nanomorphology along the chain direction. The highly anisotropic conducting polymer films are ideal model systems to investigate the correlations between thermopower S and charge conductivity σ. A scaling law S ∝ σ?1/4 prevails along the chain direction, but a different S ∝ ?ln(σ) relation is observed perpendicular to the chains, suggesting different charge transport mechanisms. The simultaneous increase of charge conductivity and thermopower along the chain direction results in a substantial improvement of thermoelectric power factors up to 2 mW m?1 K?2 in C12‐PBTTT.  相似文献   

19.
A cellular suspension from rat submandibular glands was exposed to different concentrations of NH4Cl, and the variations of the intracellular concentration of calcium ([Ca2+]i) and the intracellular pH (pHi) were measured using fura-2 and 2′,7′-bis-(2-carboxy-ethyl)-5(6)-carboxyfluorescein. More than 5 mmol/l NH4Cl significantly increased the [Ca2+]i without affecting the response to 100 µmol/l carbachol. When exposed to 1 and 5 mmol/l NH4Cl, the cells acidified immediately. At 30 mmol/l, NH4Cl first alkalinized the cells and the pHi subsequently dropped. This drop reflects the uptake of NH ions that dissociate to NH3 and H+ in the cytosol. These protons are exchanged for extracellular sodium by the Na+/H+ exchanger because the presence of an inhibitor of the exchanger in the medium increased the acidification induced by 1 mmol/l NH4Cl. Ouabain partly blocked the uptake of NH. In the combined presence of ouabain and bumetanide (an inhibitor of the Na+-K+-2Cl cotransporter), 1 mmol/l NH4Cl alkalinized the cells. The contribution of the Na/K ATPase and the Na+-K+-2Cl cotransporter in the uptake of NH was independent of the presence of calcium in the medium. Isoproterenol increased the uptake of NH by the cotransporter. Conversely, 1 mmol/l extracellular ATP blocked the basal uptake of NH by the cotransporter. This inhibition was reversed by extracellular magnesium or Coomassie Blue. It was mimicked by benzoyl-ATP but not by CTP, GTP, UTP, ADP, or ADPβS. ATP only slightly inhibited the increase of cyclic AMP (−22%) by isoproterenol but fully blocked the stimulation of the cotransporter by the β-adrenergic agonist. ATP increased the release of 3H-arachidonic acid from prelabeled cells but SK&F 96365, an imidazole-based cytochrome P450 inhibitor, did not affect the inhibition by ATP. It is concluded that the activation of a purinoceptor inhibits the basal and the cyclic AMP-stimulated activity of the Na+-K+-2Cl cotransporter. J. Cell. Physiol. 180:422–430, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

20.
DIDS, NPPB, tannic acid (TA) and AO1 are widely used inhibitors of Cl channels. Some Cl channel inhibitors (NPPB, DIDS, niflumic acid) were shown to affect phosphatidylserine (PS) scrambling and, thus, the life span of human red blood cells (hRBCs). Since a number of publications suggest Ca2+ dependence of PS scrambling, we explored whether inhibitors of Cl channels (DIDS, NPPB) or of Ca2+-activated Cl? channels (DIDS, NPPB, TA, AO1) modified intracellular free Ca2+ concentration ([Ca2+]i) and activity of Ca2+-activated K+ (Gardos) channel in hRBCs. According to Fluo-3 fluorescence in flow cytometry, a short treatment (15 min, +37 °C) with Cl? channels inhibitors decreased [Ca2+]i in the following order: TA > AO1 > DIDS > NPPB. According to forward scatter, the decrease of [Ca2+]i was accompanied by a slight but significant increase in cell volume following DIDS, NPPB and AO1 treatments. TA treatment resulted in cell shrinkage. According to whole-cell patch-clamp experiments, TA activated and NPPB and AO1 inhibited Gardos channels. The Cl channel blockers further modified the alterations of [Ca2+]i following ATP depletion (glucose deprivation, iodoacetic acid, 6-inosine), oxidative stress (1 mM t-BHP) and treatment with Ca2+ ionophore ionomycin (1 μM). The ability of the Cl? channel inhibitors to modulate PS scrambling did not correlate with their influence on [Ca2+]i as TA and AO1 had a particularly strong decreasing effect on [Ca2+]i but at the same time enhanced PS exposure. In conclusion, Cl channel inhibitors affect Gardos channels, influence Ca2+ homeostasis and induce PS exposure of hRBCs by Ca2+-independent mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号