首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Runx2 regulates osteogenic differentiation and bone formation, but also suppresses pre‐osteoblast proliferation by affecting cell cycle progression in the G1 phase. The growth suppressive potential of Runx2 is normally inactivated in part by protein destabilization, which permits cell cycle progression beyond the G1/S phase transition, and Runx2 is again up‐regulated after mitosis. Runx2 expression also correlates with metastasis and poor chemotherapy response in osteosarcoma. Here we show that six human osteosarcoma cell lines (SaOS, MG63, U2OS, HOS, G292, and 143B) have different growth rates, which is consistent with differences in the lengths of the cell cycle. Runx2 protein levels are cell cycle‐regulated with respect to the G1/S phase transition in U2OS, HOS, G292, and 143B cells. In contrast, Runx2 protein levels are constitutively expressed during the cell cycle in SaOS and MG63 cells. Forced expression of Runx2 suppresses growth in all cell lines indicating that accumulation of Runx2 in excess of its pre‐established levels in a given cell type triggers one or more anti‐proliferative pathways in osteosarcoma cells. Thus, regulatory mechanisms controlling Runx2 expression in osteosarcoma cells must balance Runx2 protein levels to promote its putative oncogenic functions, while avoiding suppression of bone tumor growth. J. Cell. Physiol. 228: 714–723, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
3.
Mechanically induced biological responses in bone cells involve a complex biophysical process. Although various mechanosensors have been identified, the precise mechanotransduction pathway remains poorly understood. PIEZO1 is a newly discovered mechanically activated ion channel in bone cells. This study aimed to explore the involvement of PIEZO1 in mechanical loading (fluid shear stress)‐induced signaling cascades that control osteogenesis. The results showed that fluid shear stress increased PIEZO1 expression in MC3T3‐E1 cells. The fluid shear stress elicited the key osteoblastic gene Runx‐2 expression; however, PIEZO1 silencing using small interference RNA blocked these effects. The AKT/GSK‐3β/β‐catenin pathway was activated in this process. PIEZO1 silencing impaired mechanically induced activation of the AKT/GSK‐3β/β‐catenin pathway. Therefore, the results demonstrated that MC3T3‐E1 osteoblasts required PIEZO1 to adapt to the external mechanical fluid shear stress, thereby inducing osteoblastic Runx‐2 gene expression, partly through the AKT/GSK‐3β/β‐catenin pathway.  相似文献   

4.
5.
Various osteoblastic cell lines were examined for the relationship between the presence of cell-surface transforming growth factor (TGF)-β receptors and the synthesis of matrix proteins with their responsiveness to TGF-β. Treatment with TGF-β1 inhibited proliferation and stimulated proteoglycan and fibronectin synthesis in MC3T3-E1 and MG 63 cells. The major proteoglycans synthesized by these cells were decorin and biglycan, and TGF-β1 markedly stimulated the synthesis of decorin in MC3T3-E1 and of biglycan in MG 63 cells. SaOS 2 and UMR 106 cells synthesized barely detectable amounts of decorin or biglycan, and TGF-β1 did not stimulate the synthesis of these proteoglycans. In SaOS 2 cells, however, TGF-β1 enhanced fibronectin synthesis. TGF-β1 did not show any of these effects in UMR 106 cells. Receptor cross-linking studies revealed that only MC3T3-E1 and MG 63 cells had both types I and II signal-transducing receptors for TGF-β in addition to betaglycan. SaOS 2 cells possessed type I but no type II receptor on the cell surface. In contrast, SaOS 2 as well as MC3T3-E1 and MG 63 cells expressed type II receptor mRNA by Northern blot analysis, and cell lysates contained type II receptor by Western blot analysis. Thus, it appears that type II receptor present in SaOS 2 cells is not able to bind TGF-β1 under these conditions. UMR 106 cells with no response to TGF-β1 had neither of the signal-transducing receptors by any of the analyses. These observations using clonal osteoblastic cell lines demonstrate that the ability of osteoblastic cells to synthesize bone matrix proteoglycans is associated with the responsiveness of these cells to TGF-β1, that the responsiveness of osteoblastic cells to TGF-β1 in cell proliferation and proteoglycan synthesis correlates with the presence of both types I and II receptors, and that the effect of TGF-β1 on fibronectin synthesis can develop with little binding of TGF-β1 to type II receptor if type I receptor is present. It is suggested that the combination of cell-surface receptors for TGF-β determines the responsiveness of osteoblastic cells to TGF-β and that changes in cell-surface TGF-β receptors may play a role in the regulation of matrix protein synthesis and bone formation in osteoblasts. © 1995 Wiley-Liss, Inc.  相似文献   

6.
7.
Canonical BMP and Wnt signaling pathways play critical roles in regulation of osteoblast function and bone formation. Recent studies demonstrate that BMP‐2 acts synergistically with β‐catenin to promote osteoblast differentiation. To determine the molecular mechanisms of the signaling cross‐talk between canonical BMP and Wnt signaling pathways, we have used primary osteoblasts and osteoblast precursor cell lines 2T3 and MC3T3‐E1 cells to investigate the effect of BMP‐2 on β‐catenin signaling. We found that BMP‐2 stimulates Lrp5 expression and inhibits the expression of β‐TrCP, the F‐box E3 ligase responsible for β‐catenin degradation and subsequently increases β‐catenin protein levels in osteoblasts. In vitro deletion of the β‐catenin gene inhibits osteoblast proliferation and alters osteoblast differentiation and reduces the responsiveness of osteoblasts to the BMP‐2 treatment. These findings suggest that BMP‐2 may regulate osteoblast function in part through modulation of the β‐catenin signaling. J. Cell. Biochem. 108: 896–905, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
A water‐soluble polysaccharide (APP‐AW) was isolated from Agrimonia pilosa and prepared to three sulphated derivatives (S1, S2 and S3). The results showed that pre‐treatment with APP‐AW, S1, S2 and S3 each at the concentration of 50 μg/mL for 48 hours was able to prevent cytotoxicity induced by 1 μmol/L dexamethasone (Dex) in MC3T3‐E1 cells via inhibition of apoptosis, which is in line with the findings in flow cytometry analysis. Meanwhile, the decreased ALP activity, collagen content, mineralization, BMP2, Runx2, OSX and OCN protein expression in DEX‐treated MC3T3‐E1 cells were reversed by the addition of APP‐AW, S1, S2 and S3. Moreover, APP‐AW, S1, S2 and S3 rescued DEX‐induced increase of Bax, cytochrome c and caspase‐3 and decrease of Bcl‐2, Wnt3, β‐catenin and c‐Myc protein expression in MC3T3‐E1 cells. Our findings suggest that pre‐treatment with APP‐AW, S1, S2 and S3 could significantly protect MC3T3‐E1 cells against Dex‐induced cell injury via inhibiting apoptosis and activating Wnt/β‐Catenin signalling pathway, thus application of these polysaccharides may be a promising alternative strategy for steroid‐induced avascular necrosis of the femoral head (SANFH) therapy.  相似文献   

9.
Polyunsaturated fatty acids (PUFAs) as well as oestrogen (E2) and parathyroid hormone (PTH) affect bone cells. The aim of the study was to determine whether arachidonic acid (AA), E2, and PTH increase prostaglandin E2 (PGE2) synthesis in MG-63 and MC3T3-E1 osteoblastic cells and the level of mediation by COX-1 and COX-2. PGE2 levels were determined in the conditioned culture media of MG-63 and MC3T3-E1 osteoblasts after exposure to AA, PTH and E2. Cells were pre-incubated in some experiments with the unselective COX inhibitor indomethacin or the COX-2 specific blocker NS-398. Indirect immunofluorescence was performed on MG-63 cells to detect the presence and location of the two enzymes involved. AA increased PGE2 secretion in both cell lines; production by MC3T3-E1 cells, however, was significantly higher than that of MG-63 cells. This could be due to autoamplification via the EP1 subtype of PGE receptors in mouse MC3T3-E1 osteoblasts. Both COX-1 and COX-2 affected the regulation of PGE2 synthesis in MG-63 cells. E2 had no effect on PGE2 secretion in both cell lines, while PTH caused a slight increase in PGE2 synthesis in the MG-63 cell line.  相似文献   

10.
Impaired osteoblast proliferation plays fundamental roles in microgravity‐induced bone loss, and cell cycle imbalance may result in abnormal osteoblast proliferation. However, whether microgravity exerts an influence on the cell cycle in osteoblasts or what mechanisms may underlie such an effect remains to be fully elucidated. Herein, we confirmed that simulated microgravity inhibits osteoblast proliferation. Then, we investigated the effect of mechanical unloading on the osteoblast cell cycle and found that simulated microgravity arrested the osteoblast cell cycle in the G2 phase. In addition, our data showed that cell cycle arrest in osteoblasts from simulated microgravity was mainly because of decreased cyclin B1 expression. Furthermore, miR‐181c‐5p directly inhibited cyclin B1 protein translation by binding to a target site in the 3′UTR. Lastly, we demonstrated that inhibition of miR‐181c‐5p partially counteracted cell cycle arrest and decreased the osteoblast proliferation induced by simulated microgravity. In conclusion, our study demonstrates that simulated microgravity inhibits cell proliferation and induces cell cycle arrest in the G2 phase in primary mouse osteoblasts partially through the miR‐181c‐5p/cyclin B1 pathway. This work may provide a novel mechanism of microgravity‐induced detrimental effects on osteoblasts and offer a new avenue to further investigate bone loss induced by mechanical unloading.  相似文献   

11.
We investigated the effects of acerogenin A, a natural compound isolated from Acer nikoense Maxim, on osteoblast differentiation by using osteoblastic cells. Acerogenin A stimulated the cell proliferation of MC3T3-E1 osteoblastic cells and RD-C6 osteoblastic cells (Runx2-deficient cell line). It also increased alkaline phosphatase activity in MC3T3-E1 and RD-C6 cells and calvarial osteoblastic cells isolated from the calvariae of newborn mice. Acerogenin A also increased the expression of mRNAs related to osteoblast differentiation, including Osteocalcin, Osterix and Runx2 in MC3T3-E1 cells and primary osteoblasts: it also stimulated Osteocalcin and Osterix mRNA expression in RD-C6 cells. The acerogenin A treatment for 3 days increased Bmp-2, Bmp-4, and Bmp-7 mRNA expression levels in MC3T3-E1 cells. Adding noggin, a BMP specific-antagonist, inhibited the acerogenin A-induced increase in the Osteocalcin, Osterix and Runx2 mRNA expression levels. These results indicated that acerogenin A stimulates osteoblast differentiation through BMP action, which is mediated by Runx2-dependent and Runx2-independent pathways.  相似文献   

12.
13.
14.
15.
16.
17.
18.
E11/podoplanin is critical in the early stages of osteoblast‐to‐osteocyte transitions (osteocytogenesis), however, the upstream events which regulate E11 expression are unknown. The aim of this study was to examine the effects of FGF‐2 on E11‐mediated osteocytogenesis and to reveal the nature of the underlying signaling pathways regulating this process. Exposure of MC3T3 osteoblast‐like cells and murine primary osteoblasts to FGF‐2 (10 ng/ml) increased E11 mRNA and protein expression (p < 0.05) after 4, 6, and 24 hr. FGF‐2 induced changes in E11 expression were also accompanied by significant (p < 0.01) increases in Phex and Dmp1 (osteocyte markers) expression and decreases in Col1a1, Postn, Bglap, and Alpl (osteoblast markers) expression. Immunofluorescent microscopy revealed that FGF‐2 stimulated E11 expression, facilitated the translocation of E11 toward the cell membrane, and subsequently promoted the formation of osteocyte‐like dendrites in MC3T3 and primary osteoblasts. siRNA knock down of E11 expression achieved >70% reduction of basal E11 mRNA expression (p < 0.05) and effectively abrogated FGF‐2‐related changes in E11 expression and dendrite formation. FGF‐2 strongly activated the ERK signaling pathway in osteoblast‐like cells but inhibition of this pathway did not block the ability of FGF‐2 to enhance E11 expression or to promote acquisition of the osteocyte phenotype. The results of this study highlight a novel mechanism by which FGF‐2 can regulate osteoblast differentiation and osteocyte formation. Specifically, the data suggests that FGF‐2 promotes osteocytogenesis through increased E11 expression and further studies will identify if this regulatory pathway is essential for bone development and maintenance in health and disease.  相似文献   

19.
The translocations of lipopolysaccharide (LPS) from the gut and its effects on bone healing are usually of clinical interest during bone fracture. As already widely stuided, Cyclooxygenase‐2 (COX‐2) is a key enzyme for prostaglandin E2 (PGE2) production, which induces the nuclear factor kappa B (NFκB) activation and is beneficial to fracture healing. In order to know their roles in skeletal regeneration, mouse MC3T3‐E1 osteoblasts were treated with NFκB inhibitor BAY 11‐7082 and sc791 (a selective COX‐2 inhibitor), in the presence of LPS. Interestingly, LPS could induce osteoblasts proliferation through increasing NFκB activation and translocation. This induction was not related to COX‐2 expression, suggesting that LPS‐induced NFκB activiation is independent of COX‐2. It is possible that low concentration of LPS can act as a stimulating factor of the NFκB pathway in nonstimulated cells such as osteoblasts. COX‐2 is not necessary for the NFκB pathway during LPS‐induced proliferation of osteoblasts since sc791 had no effects on this induction. These studies provide insight into a potential mechanism by which LPS can affect bone tissue repair in the initial phase of inflammation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号