首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Cells infected with wild-type herpes simplex virus type 1 (HSV-1) show disruption of the organization of the nuclear lamina that underlies the nuclear envelope. This disruption is reflected in changes in the localization and phosphorylation of lamin proteins. Here, we show that HSV-1 infection causes relocalization of the LEM domain protein emerin. In cells infected with wild-type virus, emerin becomes more mobile in the nuclear membrane, and in cells infected with viruses that fail to express UL34 protein (pUL34) and US3 protein (pUS3), emerin no longer colocalizes with lamins, suggesting that infection causes a loss of connection between emerin and the lamina. Infection causes hyperphosphorylation of emerin in a manner dependent upon both pUL34 and pUS3. Some emerin hyperphosphorylation can be inhibited by the protein kinase Cdelta (PKCdelta) inhibitor rottlerin. Emerin and pUL34 interact physically, as shown by pull-down and coimmunoprecipitation assays. Emerin expression is not, however, necessary for infection, since virus growth is not impaired in cells derived from emerin-null transgenic mice. The results suggest a model in which pUS3 and PKCdelta that has been recruited by pUL34 hyperphosphorylate emerin, leading to disruption of its connections with lamin proteins and contributing to the disruption of the nuclear lamina. Changes in emerin localization, nuclear shape, and lamin organization characteristic of cells infected with wild-type HSV-1 also occur in cells infected with recombinant virus that does not make viral capsids, suggesting that these changes occur independently of capsid envelopment.  相似文献   

4.
5.
Poor recovery of cryopreserved human embryonic stem (hES) cells and induced pluripotent stem (iPS) cells is a significant impediment to progress with pluripotent stem cells. In this study, we demonstrate that Y‐27632, a specific inhibitor of Rho kinase (ROCK) activity, significantly enhances recovery of hES cells from cryopreserved stocks when cultured with or without a growth inactivated feeder layer. Furthermore, treatment with the ROCK inhibitor for several days increased the number of colonies and colony size of hES cells compared to shorter exposures. Remarkably, hES cells that had formed relatively few colonies 5 days after thawing exhibited rapid growth upon addition of Y‐27632. Additionally, we determined that Y‐27632 significantly improves the recovery of cryopreserved human iPS cells and their growth upon subculture. Thus, Y‐27632 provides a means to “kick‐start” slow‐growing human pluripotent stem cells, especially after being thawed from frozen stocks. Together, these results argue that Y‐27632 is a useful tool in overcoming obstacles to studies involving the cultivation of both hES cells and human iPS cells. Mol. Reprod. Dev. 76: 722–732, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
Emery-Dreifuss muscular dystrophy (EDMD) is caused by mutations in the gene encoding the nuclear membrane protein emerin (X-linked EDMD) or in the gene encoding lamins A/C (autosomal dominant EDMD). One hypothesis explaining the disease suggests that the mutations lead to weakness of the nuclear lamina. To test this hypothesis we investigated lamin solubility and distribution in skin fibroblasts from X-EDMD patients. Using in situ extraction of cells and immunofluorescence microscopy or biochemical fractionation and immunoblotting, we found that all lamin subtypes displayed increased solubility properties in fibroblasts from X-EDMD patients compared to normal individuals. Lamin and emerin solubility was mildly increased in fibroblasts from an X-EDMD carrier. Biochemical fractionation and immunoblotting also indicated that lamin C but no other lamin became redistributed from the nuclear lamina to the nucleoplasm in X-EDMD fibroblasts. Indirect immunofluorescence and confocal microscopy studies using lamin A- and lamin C-specific antibodies confirmed that lamin C but not lamin A became redistributed to the nucleoplasm. Interestingly, the lamin A/C binding protein LAP2alpha was also mislocalized in X-EDMD fibroblasts.  相似文献   

7.
Emery–Dreifuss muscular dystrophy (EDMD) is caused by mutations in the gene encoding the nuclear membrane protein emerin (X-linked EDMD) or in the gene encoding lamins A/C (autosomal dominant EDMD). One hypothesis explaining the disease suggests that the mutations lead to weakness of the nuclear lamina. To test this hypothesis we investigated lamin solubility and distribution in skin fibroblasts from X-EDMD patients. Using in situ extraction of cells and immunofluorescence microscopy or biochemical fractionation and immunoblotting, we found that all lamin subtypes displayed increased solubility properties in fibroblasts from X-EDMD patients compared to normal individuals. Lamin and emerin solubility was mildly increased in fibroblasts from an X-EDMD carrier. Biochemical fractionation and immunoblotting also indicated that lamin C but no other lamin became redistributed from the nuclear lamina to the nucleoplasm in X-EDMD fibroblasts. Indirect immunofluorescence and confocal microscopy studies using lamin A- and lamin C-specific antibodies confirmed that lamin C but not lamin A became redistributed to the nucleoplasm. Interestingly, the lamin A/C binding protein LAP2α was also mislocalized in X-EDMD fibroblasts.  相似文献   

8.
Integral proteins of the nuclear envelope inner membrane have been proposed to reach their sites by diffusion after their co-translational insertion in the rough endoplasmic reticulum. They are then retained in the inner nuclear membrane by binding to nuclear structures. One such structure is the nuclear lamina, an intermediate filament meshwork composed of A-type and B-type lamin proteins. Emerin, MAN1, and LBR are three integral inner nuclear membrane proteins. We expressed these proteins fused to green fluorescent protein in embryonic fibroblasts from wild-type mice and Lmna -/- mice, which lack A-type lamins. We then studied the diffusional mobilities of emerin, MAN1, and LBR using fluorescence recovery after photobleaching. We show that emerin and MAN1, but not LBR, are more mobile in the inner nuclear membrane of cells from Lmna -/- mice than in cells from wild-type mice. In cells from Lmna -/- mice expressing exogenous lamin A, the protein mobilities were similar to those in cells from wild-type mice. This supports a model where emerin and MAN1 are at least partly retained in the inner nuclear membrane by binding to A-type lamins, while LBR depends on other binding partners for its retention.  相似文献   

9.
Summary Immunolocalization studies have concluded that the nuclear membrane protein, emerin, is absent from many cell types and that lamin B1 is absent from adult heart and skeletal muscle. We now show that epitope masking in the nucleus is often responsible for failure to detect emerin and lamins in human, rat and pig tissues. Human heart cardiomyocyte nuclei were negative for lamin B1 using a commercial mAb, but were positive using two other lamin B1 antibodies, mAb8D1 and pAbB1-cbs. Rat hippocampal neuronal nuclei were immunostained by mAb8D1, but not pAbB1-cbs, while the commercial antibody stained only a subset. These data suggest that different regions of the lamin B1 molecule are masked in different tissues. Similarly, pig spleen had fewer emerin-positive nuclei than lung (5% vs. 32%), although their emerin content was similar by Western blotting. As mAbs against six epitopes gave the same result, the whole emerin molecule is either masked or redistributed in a subset of cells. Our findings argue that immunostaining evidence can be misleading for expression of nuclear envelope proteins. Problems with lamin B1 immunostaining can be avoided by using mAb8D1, but use of antibodies recognizing different epitopes may reveal cell-specific protein interactions in the nucleus.  相似文献   

10.
The production of highly specialized spermatozoa from undifferentiated spermatogonia is a strictly organized and programmed process requiring extensive restructuring of the entire cell. One of the most remarkable cellular transformations accompanying the various phases of spermatogenesis is the profound remodelling of the nuclear architecture, in which the nuclear envelope (NE) seems to be crucially involved. In recent years, several proteins from the distinct layers forming the NE (i.e. the inner and outer nuclear membranes as well as the nuclear lamina) have been associated with meiosis and/or spermiogenesis in different mammalian species. Among these are A‐ and B‐type lamins, Dpy‐19‐like protein 2 (DPY19L2), lamin B receptor (LBR), lamina‐associated polypeptide 1 (LAP1), LAP2/emerin/MAN1 (LEM) domain‐containing proteins, spermatogenesis‐associated 46 (SPATA46) and diverse elements of the linker of nucleoskeleton and cytoskeleton (LINC) complex, namely Sad‐1/UNC‐84 homology (SUN) and Klarsicht/ANC‐1/Syne‐1 homology (KASH) domain‐containing proteins. Herein, we summarize the current state of the art on the cellular and subcellular distribution of NE proteins expressed during mammalian spermatogenesis, and discuss the latest research developments regarding their testis‐specific functions. This review provides a comprehensive and innovative overview of the NE network as a regulatory platform and as an essential determinant of efficient meiotic chromosome recombination as well as spermiogenesis‐associated nuclear remodelling and differentiation in mammalian male germline cells. Thus, this review provides important novel insights on the biological relevance of NE proteins for male fertility.  相似文献   

11.
Self‐renewal of human embryonic stem (hES) cells proceeds by a unique abbreviated cell cycle with a shortened G1 phase and distinctions in molecular cell cycle regulatory parameters. In this study, we show that early lineage‐commitment of pluripotent hES cells modifies cell cycle kinetics. Human ES cells acquire a lengthened G1 within 72 h after lineage‐programming is initiated, as reflected by loss of the pluripotency factor Oct4 and alterations in nuclear morphology. In hES cells that maintain the pristine pluripotent state, we find that autocrine mechanisms contribute to sustaining the abbreviated cell cycle. Our data show that naïve and mitotically synchronized pluripotent hES cells are competent to initiate two consecutive S phases in the absence of external growth factors. We conclude that short‐term self‐renewal of pluripotent hES cells occurs autonomously, in part due to secreted factors, and that pluripotency is functionally linked to the abbreviated hES cell cycle. J. Cell. Physiol. 222:103–110, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
The nuclear lamina is a protein meshwork lining the nucleoplasmic face of the inner nuclear membrane and represents an important determinant of interphase nuclear architecture. Its major components are the A- and B-type lamins. Whereas B-type lamins are found in all mammalian cells, A-type lamin expression is developmentally regulated. In the mouse, A-type lamins do not appear until midway through embryonic development, suggesting that these proteins may be involved in the regulation of terminal differentiation. Here we show that mice lacking A-type lamins develop to term with no overt abnormalities. However, their postnatal growth is severely retarded and is characterized by the appearance of muscular dystrophy. This phenotype is associated with ultrastructural perturbations to the nuclear envelope. These include the mislocalization of emerin, an inner nuclear membrane protein, defects in which are implicated in Emery-Dreifuss muscular dystrophy (EDMD), one of the three major X-linked dystrophies. Mice lacking the A-type lamins exhibit tissue-specific alterations to their nuclear envelope integrity and emerin distribution. In skeletal and cardiac muscles, this is manifest as a dystrophic condition related to EDMD.  相似文献   

13.
The lamina is a filamentous meshwork beneath the inner nuclear membrane that confers mechanical stability to nuclei. The E145K mutation in lamin A causes Hutchinson‐Gilford progeria syndrome (HGPS). It affects lamin filament assembly and induces profound changes in the nuclear architecture. Expression of wild‐type and E145K lamin A in Xenopus oocytes followed by atomic force microscopy (AFM) probing of isolated oocyte nuclei has shown significant changes in the mechanical properties of the lamina. Nuclei of oocytes expressing E145K lamin A are stiffer than those expressing wild‐type lamin A. Here we present mechanical measurements by AFM on dermal fibroblasts obtained from a 4‐year‐old progeria patient bearing the E145K lamin A mutation and compared it to fibroblasts obtained from 2 healthy donors of 10 and 61 years of age, respectively. The abnormal shape of nuclei expressing E145K lamin A was analyzed by fluorescence microscopy. Lamina thickness was measured using electron micrographs. Fluorescence microscopy showed alterations in the actin network of progeria cells. AFM probing of whole dermal fibroblasts did not demonstrate significant differences in the elastic moduli of nuclear and cytoplasmic cell regions. In contrast, AFM measurements of isolated nuclei showed that nuclei of progeria and old person's cells are significantly stiffer than those of the young person, indicating that the process of aging, be it natural or abnormal, increases nuclear stiffness. Our results corroborate AFM data obtained using Xenopus oocyte nuclei and prove that the presence of E145K lamin A abnormally increases nuclear stiffness.  相似文献   

14.
15.
Progerin accumulation disrupts nuclear lamina integrity and causes nuclear structure abnormalities, leading to premature aging, that is, Hutchinson–Gilford progeria syndrome (HGPS). The roles of nuclear subcompartments, such as PML nuclear bodies (PML NBs), in HGPS pathogenesis, are unclear. Here, we show that classical dot‐like PML NBs are reorganized into thread‐like structures in HGPS patient fibroblasts and their presence is associated with late stage of senescence. By co‐immunoprecipitation analysis, we show that farnesylated Progerin interacts with human PML2, which accounts for the formation of thread‐like PML NBs. Specifically, human PML2 but not PML1 overexpression in HGPS cells promotes PML thread development and accelerates senescence. Further immunofluorescence microscopy, immuno‐TRAP, and deep sequencing data suggest that these irregular PML NBs might promote senescence by perturbing NB‐associated DNA repair and gene expression in HGPS cells. These data identify irregular structures of PML NBs in senescent HGPS cells and support that the thread‐like PML NBs might be a novel, morphological, and functional biomarker of late senescence.  相似文献   

16.
We have developed a simple and rapid method for isolation of purified nuclear lamina from Ehrlich ascites tumor cells. The procedure employs chromatin structures prepared from whole cells at low ionic strength and is carried out under conditions that minimize the formation of artifactual protein-DNA complexes. When the isolation is performed in the presence of EDTA, nuclear lamina without distinct pore complexes is obtained. In the absence of EDTA, intact pore complexes and a large amount of vimentin 100 A filaments are seen associated with nuclear lamina. The main nuclear lamina proteins are characterized using gel electrophoresis, immunoblotting, and two-dimensional peptide mapping. An extensive structural homology is found between lamin A and lamin C, whose peptide maps differ by only one major spot, whereas lamin B has apparently unrelated pattern.  相似文献   

17.
18.
The nuclear envelope (NE) LINC complex, in mammals comprised of SUN domain and nesprin proteins, provides a direct connection between the nuclear lamina and the cytoskeleton, which contributes to nuclear positioning and cellular rigidity. SUN1 and SUN2 interact with lamin A, but lamin A is only required for NE localization of SUN2, and it remains unclear how SUN1 is anchored. Here, we identify emerin and short nesprin-2 isoforms as novel nucleoplasmic binding partners of SUN1/2. These have overlapping binding sites distinct from the lamin A binding site. However, we demonstrate that tight association of SUN1 with the nuclear lamina depends upon a short motif within residues 209–228, a region that does not interact significantly with known SUN1 binding partners. Moreover, SUN1 localizes correctly in cells lacking emerin. Importantly then, the major determinant of SUN1 NE localization has yet to be identified. We further find that a subset of lamin A mutations, associated with laminopathies Emery-Dreifuss muscular dystrophy (EDMD) and Hutchinson-Gilford progeria syndrome (HGPS), disrupt lamin A interaction with SUN1 and SUN2. Despite this, NE localization of SUN1 and SUN2 is not impaired in cell lines from either class of patients. Intriguingly, SUN1 expression at the NE is instead enhanced in a significant proportion of HGPS but not EDMD cells and strongly correlates with pre-lamin A accumulation due to preferential interaction of SUN1 with pre-lamin A. We propose that these different perturbations in lamin A-SUN protein interactions may underlie the opposing effects of EDMD and HGPS mutations on nuclear and cellular mechanics.  相似文献   

19.
The nuclear lamina and inherited disease   总被引:9,自引:0,他引:9  
Inherited disorders of the nuclear lamina present some of the most intriguing puzzles in cell biology. Mutations in lamin A and lamin C – nuclear intermediate filament proteins that are expressed in nearly all somatic cells – cause tissue-specific diseases that affect striated muscle, adipose tissue and peripheral nerve or skeletal development. Recent studies provide clues about how different mutations in these proteins cause either muscle disease or partial lipodystrophy. Although the precise pathogenic mechanisms are currently unknown, the involvement of lamins in several different disorders shows that research on the nuclear lamina will shed light on common human pathologies.  相似文献   

20.
The nuclear lamina is a fundamental component involved in the assembly of the nuclear envelope and higher order chromosomal structures in eukaryotes. In mammals, it is composed of four major lamin proteins, termed lamins A, B1, B2 and C. Here we first report cDNA cloning of a new 53 kDa lamin protein from mouse spermatocytes, termed lamin B3, the expression of which appears restricted to spermatogenic cells. Its gene structure indicates that lamin B3 is generated by differential splicing and alternative polyadenylation from lamin B2. When lamin B3 is introduced into somatic cells in culture, their nuclear morphology is transformed from spherical to hook-shaped. On the basis of the results obtained, we suggest that the germ cell specific lamin B3 is involved in the reorganization of nuclear and chromosomal structures during meiotic division.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号