首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
At optimum magnesium, the translation of rat heart mRNA in the nuclease treated rabbit reticulocyte lysate system was inhibited by low concentrations of spermidine or spermine but not of putrescine. Spermidine and spermine cause a general reduction in the translation of all the heart mRNAs since no differential effects were observed when the translation products were examined by gel electrophoresis. Spermine was a five times more potent inhibitor than spermidine but no inhibition was obtained with N1-acetylspermidine or N1-acetylspermine. Since analyses of endogenous polyamines demonstrate that the inhibitory concentrations of spermine could be obtained by converting a small fraction of the endogenous spermidine to spermine, these results indicate that interconversions of the polyamines might be a sensitive regulatory mechanism for protein synthesis.  相似文献   

2.
The present experiments are the first survey of the association of endogenous and exogenous putrescine, spermidine, and spermine with subcellular structures of rat brain cortex. The differences of distribution in subfractions obtained from salt-free and salt-containing density gradients were studied, with the following results: (1) In contrast with liver preparation, putrescine and the polyamines spermidine and spermine are not distributed in parallel with RNA. (2) In salt-containing media, putrescine and the polyamines were preferentially associated with synaptosomes and with synaptosomal membranes. Significant association with myelin constituents was observed only in salt-free media. (3) Exogenous putrescine and the polyamines were less firmly attached to synaptosomes and to synaptosomal membrane fractions than the endogenous amines. There is good evidence for similar subcellular localizations of putrescine and GABA. Putrescine seems to be entrapped in the nerve endings. (4) Uptake studies with crude mitochondria under conditions of high-affinity uptake showed no temperature-sensitive component of polyamine accumulation in synaptosomes, in contrast with GABA, monoacetylputrescine, and ornithine. (5) Polyamines bound to myelin constituents or mitochondria could be displaced by a 200-fold concentration of nonradioactive amines; this was not the case with polyamines bound to synaptosomes. Mg2+ did not effectively compete with spermine for binding sites at synaptic regions. (6) Electrical stimulation and stimulation by mono- and bivalent cations did not change the concentrations of the polyamines and GABA in guinea pig cortex. (7) There is no evidence for a neurotransmitter role of putrescine, spermidine, or spermine, although these compounds might function as modulators of neurotransmission.  相似文献   

3.
4.
Knott JM  Römer P  Sumper M 《FEBS letters》2007,581(16):3081-3086
Polyamines are involved in many fundamental cellular processes. Common polyamines are putrescine, spermidine and spermine. Spermine is synthesized by transfer of an aminopropyl residue derived from decarboxylated S-adenosylmethionine to spermidine. Thermospermine is an isomer of spermine and assumed to be synthesized by an analogous mechanism. However, none of the recently described spermine synthases was investigated for their possible activity as thermospermine synthases. In this work, putative spermine synthases from the diatom Thalassiosira pseudonana and from Arabidopsis thaliana could be identified as thermospermine synthases. These findings may explain the previous result that two putative spermine synthase genes in Arabidopsis produce completely different phenotypes in knock-out experiments. Likely, part of putative spermine synthases identifiable by sequence comparisons represents in fact thermospermine synthases.  相似文献   

5.
The polyamines spermidine and spermine are ubiquitous in animal cells and have been shown to bind to cell membranes. At least two types of immune processes, secretion of active substances during inflammation and lymphocyte activation in cellular immunity, involve cell membranes and calcium ions. Although these processes are activated by polyvalent substances, spermidine and spermine appear to inhibit them. This action of polyamines is discussed in the context of regulating both cell membrane fluidity and calcium fluxes.  相似文献   

6.
7.
The in vitro effects of polyamines on the activity of proline endopeptidase (PEPase) in rat brain cytosol, which contains an endogenous PEPase inhibitor, have been studied. Of the three amines tested (spermine, spermidine, and putrescine), spermine and spermidine markedly enhanced the enzyme activity in brain cytosol. At 6.25 mM spermine or 25 mM spermidine, a 13- or 14-fold enhancement of the enzyme activity was observed. When Mg2+ was used, an approximately fourfold enhancement of the enzyme activity was observed at 50 mM. The enhancement produced by spermine or spermidine was unaffected by Mg2+ up to 50 mM. The activity of purified PEPase was only slightly affected by each polyamine, but it was inhibited 50% by 50 mM Mg2+. On the other hand, 50% inhibition of the enzyme produced by the purified PEPase inhibitor (Mr 7,000: Ki 0.67 mM) was completely restored by addition of 0.7 mM spermine, 3.5 mM spermidine, or 28 mM putrescine. This restoration of inhibition by polyamines was reversed by increasing the inhibitor concentration. These data suggest that polyamines effectively reverse the inhibition of PEPase by its endogenous inhibitor by the reversible formation of a kinetically significant complex. The possible functions of polyamines in the regulation of PEPase in vivo are discussed.  相似文献   

8.
The influence of polyamines (putrescine, spermidine, and spermine) on the activity of human platelet soluble guanylate cyclase and the stimulation of the enzyme by sodium nitroprusside (SNP), YC-1 and their combination was investigated. All these polyamines stimulated the guanylate cyclase activity and potentiated its activation by sodium nitroprusside. The stimulatory effects of sodium nitroprusside and putrescine (or spermine) were addidive; spermidine produced a synergistic activation and increased the additive effect. All the polyamines inhibited the enzyme activation by YC-1 and decreased the synergistic activation of SNP-stimulated guanylate cyclase activity by YC-1 with nearly the same potency. The ability of the investigated polyamines to potentiate and to increase synergistically (similar to to YC-1, but less effective) NO-dependent activation of soluble guanylate cyclase represents a new biochemical effect of these compounds; this effect should be taken into consideration, especially due to the endogenous nature of polyamines. The data obtained suggest, that specific biological functions of polyamines in the processes of growth and differentiation of cells may be also related to the ability of compounds to activate soluble guanylate cyclase and to increase intracellular cGMP level.  相似文献   

9.
Polyamines as physiological substrates for transglutaminases   总被引:20,自引:0,他引:20  
When normal human blood lymphocytes are treated with mitogen in the presence of [3H]putrescine, label is incorporated into a few cellular proteins. Labeled N-(gamma-glutamyl) putrescine, N1-(gamma-glutamyl)spermidine, and N8-(gamma-glutamyl)spermidine were identified in exhaustive proteolytic digests of the cellular protein fraction. The enzyme-mediated clotting of rat seminal plasma to which 14C-labeled spermidine and spermine are added is accompanied by incorporation of the polyamines into a number of seminal plasma proteins. Proteolytic digests of the protein fraction from this clotted seminal plasma contain labeled N1-(gamma-glutamyl)spermidine, N8-(gamma-glutamyl)spermidine, N1,N8-bis(gamma-glutamyl)spermidine, N1-(gamma-glutamyl)spermine, and N1,N12-bis(gamma-glutamyl)spermine. These findings support a proposal that polyamines serve as substrates for transglutaminases both in cells and in an extracellular fluid. They show differences in cellular and extracellular substrate properties of the polyamines and indicate cross-linking through these amines in the extracellular system, but provide no evidence for such cross-linking in the cells.  相似文献   

10.
We have generated mouse embryonic stem cells with targeted disruption of spermidine/spermine N(1)-acetyltransferase (SSAT) gene. The targeted cells did not contain any inducible SSAT activity, and the SSAT protein was not present. The SSAT-deficient cells proliferated normally and appeared to maintain otherwise similar polyamine pools as did the wild-type cells, with the possible exception of constantly elevated (about 30%) cellular spermidine. As expected, the mutated cells were significantly more resistant toward the growth-inhibitory action of polyamine analogues, such as N(1),N(11)-diethylnorspermine. However, this resistance was not directly attributable to cellular depletion of the higher polyamines spermidine and spermine, as the analogue depleted the polyamine pools almost equally effectively in both wild-type and SSAT-deficient cells. Tracer experiments with [C(14)]-labeled spermidine revealed that SSAT activity is essential for the back-conversion of spermidine to putrescine as radioactive N(1)-acetylspermidine and putrescine were readily detectable in N(1),N(11)-diethylnorspermine-exposed wild-type cells but not in SSAT-deficient cells. Similar experiments with [C(14)]spermine indicated that the latter polyamine was converted to spermidine in both cell lines and, unexpectedly, more effectively in the targeted cells than in the parental cells. This back-conversion was only partly inhibited by MDL72527, an inhibitor of polyamine oxidase. These results indicated that SSAT does not play a major role in the maintenance of polyamine homeostasis, and the toxicity exerted by polyamine analogues is largely not based on SSAT-induced depletion of the natural polyamines. Moreover, embryonic stem cells appear to operate an SSAT-independent system for the back-conversion of spermine to spermidine.  相似文献   

11.
Summary. The polyamines spermidine and spermine have been hypothesized to possess different functions in the protection of DNA from reactive oxygen species. The growth and survival of mouse fibroblasts unable to synthesize spermine were compared to their normal counterparts in their native and polyamine-depleted states in response to oxidative stress. The results of these studies suggest that when present at normal or supraphysiological concentrations, either spermidine or spermine can protect cells from reactive oxygen species. However, when polyamine pools are pharmacologically manipulated to produce cells with low levels of predominately spermine or spermidine, spermine appears to be more effective. Importantly, when cells are depleted of both glutathione and endogenous polyamines, they exhibit increased sensitivity to hydrogen peroxide as compared to glutathione depletion alone, suggesting that polyamines not only play a role in protecting cells from oxidative stress but this role is distinct from that played by glutathione.  相似文献   

12.
It is well known that the polyamines spermidine and spermine, along with the diamine putrescine, are involved in many cellular processes and they are known to play an important role in the control of the innate immune response in higher vertebrates. However, to the best of our knowledge, no studies have focused on their immunological implications in other vertebrates, such as fish. For this reason, the effects of polyamines on the cellular innate immune response and immune-related gene expression were evaluated in vitro, using seabream head-kidney leucocytes (HKL). For this study, head-kidney leucocytes were incubated with the polyamines putrescine, spermine or spermidine (0.005 and 0.0025%) for 0.50, 1, 2 or 4 h. No significant effect was observed on either leucocyte viability or the innate cellular immune responses (peroxidase content and phagocytic and respiratory burst activities). The polyamines produced an increase in respiratory burst and phagocytic ability when leucocytes were incubated principally with putrescine (0.005 and 0.0025%) after 2 and 4 h of the experiment. Finally, the expression levels of immune-associated genes (IgM, MHCIα, MHCIIα, C3, IL-1β, CD8, Hep, NCCRP-1, CSF-1 and TLR) were quantified by real-time PCR and some of them (C3, MHCI, CD8, IgM and Hep) were up-regulated by the higher polyamine concentration. Further studies are needed to ascertain how polyamines control the immune system of seabream as well as which mechanisms are involved.  相似文献   

13.
多胺是一类小分子脂肪族类化合物,存在于微生物体内,其合成代谢与微生物细胞的增殖和分化密切相关,参与微生物的多种生理过程,在促进细胞分化、增殖,维持细胞膜、DNA 和 RNA 的稳定,以及生理应激方面发挥重要作用。该文就多胺的代谢、转运以及多胺在微生物中的生理功能等方面进行综述,为多胺在微生物中的研究提供较为丰富的资料。  相似文献   

14.
Abstract— The clearance of the polyamines spermidine and spermine from cerebrospinal fluid was investigated in the rabbit by ventriculocisternal perfusion. Clearance involved both saturable and nonsaturable uptake processes. The saturable component was a high affinity system with an affinity constant of 21 μ m for spermidine and 24 μ m for spermine. The clearance of spermidine was reduced by the presence of spermine and vice-versa. Other polyamine congeners also reduced spermidine and spermine clearance and it is suggested that the two polyamines share the same carrier. Evidence for concentrative uptake of polyamines into choroid plexus is presented and it is suggested that an active system may also transport polyamines into brain tissue. At high perfusion concentrations simple diffusion may also take place.  相似文献   

15.
The effects of alpha-difluoromethylornithine, a specific inhibitor of ornithine decarboxylase, on cell growth rate, polyamine content and the content of decarboxylated S-adenosylmethionine in SV-3T3 transformed mouse fibroblasts were studied. DL-alpha-Difluoromethylornithine at 1 mM or higher concentrations decreased the growth rate by over 90% after 2 or more days of exposure, but the cells remained viable, although quiescent for at least 9 days. Addition of 10 microM-spermidine or -spermine or 50 microM-putrescine at any time throughout this period completely reversed the inhibition of growth. Treatment with alpha-difluoromethylornithine decreased putrescine and spermidine contents by more than 98% and that of spermine by 60%, but cells exposed to exogenous polyamines did not require complete replenishment of the polyamine pools to resume growth. In fact, a virtually normal growth rate was obtained in cells lacking putrescine, having 2% of normal spermidine content and 156% of normal spermine. These results suggest that the well-known increase in putrescine and spermidine in cells stimulated for growth is not essential for this to occur and that mammalian cells can utilize spermine as their only polyamine. A substantial reversal of the growth-inhibitory effect of alpha-difluoromethylornithine was produced by a number of polyamines not normally found in mammalian cells, including the spermidine analogues aminopropylcadaverine and sym-homospermidine, which were partially converted into their respective spermine analogues by addition of an aminopropyl group within the cell. The spermine analogue sym-norspermine was also effective, but the maximal growth rate produced by these unphysiological polyamines was only 60-70% of that produced by the normal polyamines. These results indicate that spermidine and spermine have the optimal length for activation of the cellular processes critically dependent on polyamines and should help in identifying these processes. Exposure to alpha-difluoromethylornithine leads to an enormous rise in the concentration of decarboxylated S-adenosylmethionine, which reached a peak at 530-fold after 3 days of exposure and steadily declined to 140-fold after 11 days. This increase was abolished by addition of exogenous polyamines, which rapidly decreased the activity of S-adenosylmethionine decarboxylase. The increase in decarboxylated S-adenosylmethionine is unlikely to be solely responsible for the decrease to the same extent by spermine, sym-norspermidine and sym-homospermidine, which produce 97%, 16% and 60% of the control growth rate, respectively.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Treatment of Ehrlich ascites tumor cell cultures invitro with interferon induces a protein kinase activity that is activated by the polyamines, spermidine and spermine. Putrescine antagonizes the activation. The protein kinase yields a phosphorylated endogenous polypeptide of Mr 68,000–70,000. The polyamine-dependent protein kinase activity cofractionates with a double-stranded RNA-dependent protein kinase activity during affinity chromatography on poly (I) ·poly (C) - agarose or by chromatography on phosphocellulose. The double-stranded RNA-dependent protein kinase also phosphorylates an endogenous polypeptide of Mr 68,000–70,000. Unsuccessful attempts to discriminate between these two protein kinase activities on the bases of their respective capacities to be activated by either double-stranded RNA or spermidine/spermine, suggest that a single protein kinase enzyme may be activated by these strikingly dissimilar modifiers.  相似文献   

17.
The natural polyamines spermine and spermidine, and the diamine putrescine, were extracted from rooster testis cells separated by sedimentation at unit gravity, and from vas-deferens spermatozoa. The ratios spermine/DNA and spermidine/DNA were kept relatively constant throughout spermatogenesis, whereas the ratio putrescine/DNA rose in elongated spermatids. The cellular content of spermine, spermidine and putrescine decreased markedly in mature spermatozoa. Two rate-limiting enzymes in the biosynthetic pathway of polyamines, ornithine decarboxylase and S-adenosyl-L-methionine decarboxylase, showed their highest activities at the end of spermiogenesis and were not detectable in vas-deferens spermatozoa. A marked reduction in cell volume during spermiogenesis without a parallel decrease in the cellular content of polyamines suggests the possibility that the marked changes in chromatin composition and structure occurring in rooster late spermatids could take place in an ambience of high polyamine concentration.  相似文献   

18.
This is the first report correlating levels of polyamines and its fractions with differentiation in Dictyostelium discoideum. Temporal changes in endogenous levels of free, conjugated and bound putrescine, spermidine and spermine were analysed at critical stages of morphogenesis in this organism. No spermine was found at any given stage and putrescine was the most abundant polyamine. There was a sharp increase in the levels of both free (and total) and conjugated forms of putrescine and spermidine at the slug stage as compared to the growth phase. The levels of putrescine and spermidine were found to be higher in isolated prespore cells as compared to the prestalk cells. Remarkably, the levels of polyamine decreased at the early culminant stage. Data suggest that a moderate level of polyamines is needed for growth but it is important to have high levels of polyamines at the time of differentiation.  相似文献   

19.
Summary. The polyamines spermine, spermidine and putrescine are ubiquitous cell components. If they accumulate excessively within the cells, due either to very high extracellular concentrations or to deregulation of the systems which control polyamine homeostasis, they can induce toxic effects. These molecules are substrates of a class of enzymes that includes monoamine oxidases, diamine oxidases, polyamine oxidases and copper containing amine oxidases. Polyamine concentrations are high in growing tissues such as tumors. Amine oxidases are important because they contribute to regulate levels of mono- and polyamines. These enzymes catalyze the oxidative deamination of biogenic amines and polyamines to generate the reaction products H2O2 and aldehyde(s) that are able to induce cell death in several cultured human tumor cell lines. H2O2 generated by the oxidation reaction is able to cross the inner membrane of mitochondria and directly interact with endogenous molecules and structures, inducing an intense oxidative stress. Since amine oxidases are involved in many crucial physiopathological processes, investigations on their involvement in human diseases offer great opportunities to enter novel classes of therapeutic agents.  相似文献   

20.
A comparative study of polyamine (putrescine, spermidine and spermine) levels was conducted with maize calli originating from a) immature embryos and b) pollen embryos capable of plant regeneration. The differences observed in the studied parameters of the two kinds of calluses are related to their cellular origin and to their regeneration capacity. Moreover, only the calluses proceeding from immature embryos differentiated into preembryogenic structures, which eventually developed into plants. Although total polyamine levels in pollenderived calluses were significantly higher than those from immature embryos, spermidine and spermine were the predominant polyamines in both culture types. Furthermore, polyamine fractions of these calluses also showed differences. All these phenomena may be related with the differences observed in the callus embryogenic response. These findings may be useful in understanding the implication of polyaminesin embryogenetic processes.Abbreviations IEC immature-embryo calluses - PAs polyamines - PEC pollen-embryo calluses - PH insoluble conjugated PA fraction - Put putrescine - S free PA fraction - SH soluble conjugated PA fraction - Spd spermidine - Spm spermine 2,4d-2,4 dichlorophenoxyacetic acid  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号