首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glioma is the most aggressive malignant tumor in the adult central nervous system. Abnormal long noncoding RNA (lncRNA) FOXD2-AS1 expression was associated with tumor development. However, the possible role of FOXD2-AS1 in the progression of glioma is not known. In the present study, we used in vitro and in vivo assays to investigate the effect of abnormal expression of FOXD2-AS1 on glioma progression and to explore the mechanisms. FOXD2-AS1 was upregulated in glioma tissue, cells, and sphere subpopulation. Upregulation of FOXD2-AS1 was correlated with poor prognosis of glioma. Downregulation of FOXD2-AS1 decreased cell proliferation, migration, invasion, stemness, and epithelial-mesenchymal transition (EMT) in glioma cells and inhibited tumor growth in transplanted tumor. We also revealed that FOXD2-AS1 was mainly located in cytoplasm and microRNA (miR)-185-5p both targeted FOXD2-AS1 and CCND2 messenger RNA (mRNA) 3′-untranslated region (3′-UTR). miR-185-5p was downregulated in glioma tissue, cells, and sphere subpopulation. Downregulation of miR-185-5p was closely correlated with poor prognosis of glioma patients. In addition, miR-185-5p mimics decreased cell proliferation, migration, invasion, stemness, and EMT in glioma cells. CCND2 was upregulated in glioma tissue, cells, and sphere subpopulation. Upregulation of CCND2 was closely correlated with poor prognosis of glioma patients. CCND2 knockdown decreased cell proliferation, migration, invasion, and EMT in glioma cells. In glioma tissues, CCND2 expression was negatively associated with miR-185-5p, but positively correlated with FOXD2-AS1. FOXD2-AS1 knockdown and miR-185-5p mimics decreased CCND2 expression. Inhibition of miR-185-5p suppressed FOXD2-AS1 knockdown-induced decrease of CCND2 expression. Overexpression of CCND2 suppressed FOXD2-AS1 knockdown-induced inhibition of glioma malignancy. Taken together, our findings highlight the FOXD2-AS1/miR-185-5p/CCND2 axis in the glioma development.  相似文献   

2.
Long noncoding RNAs (lncRNAs) are vital mediators involved in cancer progression. Previous studies confirmed that FOXD2 adjacent opposite strand RNA 1 (FOXD2-AS1) is upregulated in tumor diseases. The potential influence of FOXD2-AS1 in glioma progression, however, remains unknown. In this paper, FOXD2-AS1 was found to be upregulated in glioma tissues. Its level was linked with glioma stage. Moreover, glioma patients expressing high level of FOXD2-AS1 suffered worse prognosis. Biological functions of FOXD2-AS1 in glioma cells were analyzed through integrative bioinformatics and TCGA RNA sequencing data analysis. Pathway enrichment analysis uncovered that FOXD2-AS1 was mainly linked with cell cycle regulation in both low-grade glioma and glioblastoma. Further experiments demonstrated that silence of FOXD2-AS1 inhibited proliferation, arrested cell cycle and downregulated cyclin-dependent kinase 1 (CDK1) in human glioma cells. Dual-luciferase reporter assay confirmed that FOXD2-AS1 upregulated CDK1 by sponging miR-31. Rescue assays were performed and confirmed the regulatory loop FOXD2-AS1/miR-31/CDK1 in glioma. Collectively, our results indicated that the FOXD2-AS1/miR-31/CDK1 axis influenced glioma progression, providing a potential new target for glioma patients.  相似文献   

3.
More and more documents have proved that the abnormal expression of long noncoding RNAs (lncRNAs) are correlated with the initiation and progression of colorectal cancer (CRC). lncRNA FOXD3-AS1 has been reported in glioma for its oncogenic property. According to the survival analysis of The Cancer Genome Atlas database, FOXD3-AS1 upregulation implied lower survival rate of patients with CRC. Quantitative real-time polymerase chain reaction showed the overexpression of FOXD3-AS1 in both CRC tissues and cells. The Kaplan–Meier method demonstrated the prognostic value of FOXD3-AS1 for patients with CRC. To explore the effect of FOXD3-AS1 on CRC progression, loss-of-function experiments were carried out, whose results indicated that knockdown of FOXD3-AS1 suppressed cell proliferation, migration, and invasion, inhibited cell cycle and promoted cell apoptosis in vitro. In vivo experiments affirmed that FOXD3-AS1 affected tumor growth. FOXD3-AS1 expression was enriched in the cytoplasm of CRC cells. Mechanism experiments revealed that FOXD3-AS1 served as a competing endogenous RNA to upregulate SIRT1 by sponging miR-135a-5p. In addition, SIRT1 silencing also restrained cell proliferation and motility. Rescue assays revealed the biological function of FOXD3-AS1/miR-135a-5p/SIRT1 axis in CRC progression. In conclusion, FOXD3-AS1 promotes CRC progression by regulating miR-135a-5p/SIRT1 axis, shedding lights on the way to CRC treatments.  相似文献   

4.
Through the microarray analysis, long noncoding RNA TPT1-AS1 (TPT1-AS1) was identified in the development of glioma. However, the specific effect of TPT1-AS1 on glioma autophagy in the recent years has not fully been investigated. Therefore, the purpose of our present study is to investigate the function of TPT1-AS1 on affecting autophagy of glioma cells through regulation of microRNA-770-5p (miR-770-5p)-mediated stathmin 1 (STMN1). Initially, the expression of TPT1-AS1, miR-770-5p, and STMN1 were determined in glioma cell lines, followed by the prediction and validation of their interaction. After that, the effects of TPT1-AS1, miR-770-5p, and STMN1 on the in vitro glioma cell proliferation and autophagy were assessed using EdU assay and macrophage-derived chemokine (MDC) and on the in vivo tumor development and autophagy were evaluated using a nude mouse xenograft tumor assay and immunofluorescence assay. In comparison with the normal cells, the glioma cells displayed upregulated expression of TPT1-AS1 and STMN1, but a downregulated miR-770-5p expression. miR-770-5p, which directly targeted STMN1, could be downregulated by TPT1-AS1. Subsequently, in glioma cells, TPT1-AS1 can function to competitively bind to miR-770-5p, thus regulatEing STMN1 expression. Moreover, glioma cell proliferation and autophagy could be mediated through the TPT1-AS1/miR-770-5p/STMN1 axis. From our data we conclude an inhibitory function of TPT1-AS1 in glioma cell autophagy by downregulating miR-770-5p and upregulating STMN1, which may be instrumental for the therapeutic targeting and clinical management of glioma.  相似文献   

5.
Increasing evidence has suggested that gliomas can supply blood through vasculogenic mimicry. In this study, the expression and function of ZNRD1-AS1-144aa-uORF (144aa-uORF) and some non-coding RNAs in gliomas were assessed. Real-time quantitative PCR or Western blot was used to discover the expression of 144aa-uORF, ZNRD1-AS1, miR-499a-5p, ELF1 and EMI1 in gliomas. In addition, RIP and RNA pull-down assays were applied to explore the interrelationship between 144aa-uORF and ZNRD1-AS1. The role of the 144aa-uORF\ZNRD1-AS1\miR-499a-5p\ELF1\EMI1 axis in vasculogenic mimicry formation of gliomas was analysed. This study illustrates the reduced expression of the 144aa-uORF in glioma tissues and cells. Up-regulation of 144aa-uORF inhibits proliferation, migration, invasion and vasculogenic mimicry formation within glioma cells. The up-regulated 144aa-uORF can increase the degradation of ZNRD1-AS1 through the nonsense-mediated RNA decay (NMD) pathway. Knockdown of ZNRD1-AS1 inhibits vasculogenic mimicry in glioma cells by modulating miR-499a-5p. At the same time, miR-499a-5p is down-regulated and has a tumour-suppressive effect in gliomas. In addition, ZNRD1-AS1 serves as a competitive endogenous RNA (ceRNA) and regulates the expression of ELF1 by binding to miR-499a-5p. Notably, ELF1 binds to the promoter region of EMI1 and up-regulates EMI1 expression, while simultaneously promoting vasculogenic mimicry in glioma cells. This study suggests that the 144aa-uORF\ZNRD1-AS1\miR-499a-5p\ELF1\EMI1 axis takes key part in regulating the formation of vasculogenic mimicry in gliomas and may provide a potential target for glioma treatment.  相似文献   

6.
7.
Long noncoding RNA (lncRNA) FOXD2 adjacent opposite strand RNA 1 (FOXD2-AS1) has been shown to be dysregulated in several types of human cancer. However, the role of FOXD2-AS1 in cutaneous melanoma was still unclear. In our study, FOXD2-AS1 expression has been found to be upregulated in cutaneous melanoma tissue specimens and cell lines compared with that in normal tissue specimens and normal human epidermal melanocyte, respectively. Furthermore, high expression of FOXD2-AS1 was obviously correlated with deep Breslow thickness, present ulceration, high Clark level and distant metastasis in cutaneous melanoma patients. However, there were no statistical associations between FOXD2-AS1 expression and cutaneous melanoma patients’ disease-free survival and overall survival. The results of loss-of-function study showed that inhibition of FOXD2-AS1 suppresses cutaneous melanoma cell proliferation, migration and invasion through regulating phospho-Akt expression. In conclusion, FOXD2-AS1 is associated with clinical progression in cutaneous melanoma patients, and functions as oncogenic lncRNA in cutaneous melanoma cells.  相似文献   

8.
Growing evidence has shown that long noncoding RNAs (lncRNAs) play crucial roles in cervical cancer. Dy000sregulation of lncRNA SOX21 antisense RNA 1 (SOX21-AS1) has been reported in several tumors. However, its expression pattern and potential biological function in cervical cancer (CC) have not been investigated. In this study, we first reported that SOX21-AS1 expression was significantly upregulated in both CC tissues and cell lines. High expression of SOX21-AS1 was found to be significantly correlated with Federation of Gynecology and Obstetrics (FIGO) stage, lymph node metastasis and depth of cervical invasion. Further clinical assay confirmed that high SOX21-AS1 expression was associated with shorter overall survival and could be used as a potential prognostic biomarker for CC patients. Functional investigation showed that knockdown of SOX21-AS1 suppressed CC cells proliferation, migration, and invasion, as well as epithelial to mesenchymal transition progress. Furthermore, our data showed that microRNA-7 (miR-7) interacted with SOX21-AS1 by directly targeting the miRNA-binding site in the SOX21-AS1 sequence, and quantitative real-time polymerase chain reaction results showed overexpression of SOX21-AS1 decreased the levels of miR-7 in CC cells. Moreover, we confirmed that miR-7 directly targeted the 3′-untranslated region of voltage dependent anion channel 1 (VDAC1). Final in vitro assay suggested that in CC cells with SOX21-AS1, VDAC1 overexpression resulted in an increase of cell proliferation, migration, and invasion. Overall, our findings illuminate how SOX21-AS1 formed a regulatory network to confer an oncogenic function in CC and SOX21-AS1 could be regarded as an efficient therapeutic target and potential biomarker for CC patients.  相似文献   

9.
10.
Long noncoding RNAs (lncRNAs) display essential roles in cancer progression. FLVCR1-AS1 is a rarely investigated lncRNAs involved in various human cancers, such as hepatocellular carcinoma and lung cancer. However, its function in glioma has not been clarified. In our study, we found that FLVCR1-AS1 was highly expressed in glioma tissues and cell lines. And upregulation of FLVCR1-AS1 predicted poor prognosis in patients with glioma. Moreover, FLVCR1-AS1 knockdown inhibited proliferation, migration and invasion of glioma cells. Through bioinformatics analysis, we identified that FLVCR1-AS1 was a sponge for miR-4731-5p to upregulate E2F2 expression. Moreover, rescue assays indicated that FLVCR1-AS1 modulated E2F2 expression to participate in glioma progression. Altogether, our research demonstrates that the FLVCR1-AS1/miR-4731-5p/E2F2 axis is a novel signaling in glioma and may be a potential target for tumor therapy.  相似文献   

11.
12.
The long noncoding RNA MNX1-AS1 has been reported to facilitate the progression of glioblastoma and ovarian cancer. Nevertheless, the biological roles and underlying mechanisms of MNX1-AS1 in colon adenocarcinoma have not been studied until now. In the current study, MNX1-AS1 was upregulated in colon adenocarcinoma. JASPAR prediction tool showed that E2F1 could bind to the promoter region of MNX1-AS1. The chromatin immunoprecipitation assay and luciferase reporter assay were used to verify the interactions between MNX1-AS1 and E2F1. Then functional assays revealed that downregulation of MNX1-AS1 decreased cell proliferation, migration, and invasion in colon adenocarcinoma, but upregulation of E2F1 reversed the effects. Moreover, subcellular fractionation assay manifested that MNX1-AS1 was enriched in the cytoplasm of colon adenocarcinoma cells, thus we speculated whether MNX1-AS1 could function as a competing endogenous RNA (ceRNA) to play roles in colon adenocarcinoma. Bioinformatics analysis and luciferase reporter assay indicated that MNX1-AS1 could sponge microRNA-218-5p (miR-218-5p). Furthermore, we discovered that SEC61A1 was downstream target of miR-218-5p, and MNX1-AS1 acted as a ceRNA to upregulate the expression of SEC61A1 through sponging miR-218-5p. Finally, rescue assays confirmed that MNX1-AS1 facilitated the progression of colon adenocarcinoma through regulating miR-218-5p/SEC61A1 axis. Taken together, we concluded that E2F1-mediated MNX1-AS1-miR-218-5p-SEC61A1 feedback loop contributed to the progression of colon adenocarcinoma.  相似文献   

13.
Accumulating evidence has proved that long noncoding RNAs (lncRNAs) are involved in cancer progression. The abnormal expression of lncRNAs might mediate cancer in various ways. Liver hepatocellular carcinoma (LIHC) is the third leading cause of tumor-related deaths. Due to the difficulty in its early recognition, the therapeutic outcomes of LIHC are far from satisfactory. The lncRNA Coagulation Factor XI Antisense RNA 1 (F11-AS1) is underexpressed in LIHC and suppresses LIHC progression in return. F11-AS1 can bind with and negatively regulate miR-3146, while miR-3146 can bind with and negatively regulate PTEN. Moreover, F11-AS1 positively regulates the messenger RNA and protein level of PTEN. Also, miR-3146, F11-AS1, and PTEN could all be immunoprecipitated by antibody against Ago2, indicating the existence of RNA–induced silencing complex. Therefore, F11-AS1 mediates PTEN expression by acting as competing endogenous RNA of miR-3146. Further rescue assays demonstrated that F11-AS1 suppressed LIHC progression via such pattern. To sum up, F11-AS1 suppresses LIHC progression by competitively binding with miR-3146 to regulate PTEN expression. The F11-AS1/miR-3146/PTEN axis is brand new. Taken together, the results indicate that F11-AS1 might serve as a therapeutic target of LIHC.  相似文献   

14.
Long noncoding RNA (lncRNA) AGAP2 antisense RNA 1 (AGAP2-AS1) has been suggested to function as an oncogenic lncRNA in lung cancer, breast cancer, and anaplastic glioma. However, the expression pattern and molecular mechanism of AGAP2-AS1 in glioblastoma multiforme (GBM) remains unknown. The purpose of this study is to present more evidence about the clinical and biological function of AGAP2-AS1 in GBM. In our results, we found AGAP2-AS1 expression was increased in GBM compared with adjacent normal brain tissues or low-grade glioma tissues, and there was no significantly different between low-grade glioma tissues and normal tissues. Kaplan-Meier survival analysis indicated patients with GBM having high-expression of AGAP2-AS1 had shorter overall survival time than those with low expression of AGAP2-AS1. The loss-of-function studies showed that downregulation of AGAP2-AS1 depressed cell proliferation, migration, and invasion, and promoted cell apoptosis in GBM. In summary, AGAP2-AS1 is a prognostic biomarker for patients with GBM, and functions as an oncogenic lncRNA to modulate GBM cell proliferation, apoptosis, migration, and invasion, which suggests that AGAP2-AS1 is potential therapeutic target for GBM.  相似文献   

15.
Emerging studies have revealed the critical role of long non-coding RNAs (lncRNAs) in epithelial ovarian cancer (EOC) development and progression. Till now, the roles and potential mechanisms regarding FEZF1 antisense RNA 1 (FEZF1-AS1) within ovarian cancer (OC) remain unclear. The objective of this study was to uncover the biological function and the underlying mechanism of LncRNA FEZF1-AS1 in OC progression. FEZF1-AS1 expression levels were studied in cell lines and tissues of human ovarian cancer. In vitro studies were performed to evaluate the impact of FEZF1-AS1 knock-down on the proliferation, invasion, migration and apoptosis of OC cells. Interactions of FEZF1-AS1 and its target genes were identified by luciferase reporter assays. Our data showed overexpression of FEZF1-AS1 in OC cell lines and tissues. Cell migration, proliferation, invasion, wound healing and colony formation were suppressed by silencing of FEZF1-AS1. In contrast, cell apoptosis was promoted by FEZF1-AS1 knock-down in vitro. Furthermore, online bioinformatics analysis and tools suggested that FEZF1-AS1 directly bound to miR-130a-5p and suppressed its expression. Moreover, the inhibitory effects of miR-130a-5p on the OC cell growth were reversed by FEZF1-AS1 overexpression, which was associated with the increase in SOX4 expression. In conclusion, our results revealed that FEZF1-AS1 promoted the metastasis and proliferation of OC cells by targeting miR-130a-5p and its downstream SOX4 expression.  相似文献   

16.
17.
Cucurbitacin B (CuB) is a natural tetracyclic triterpene product that displays antitumor activity against a wide variety of cancers. In this study, we explored the antipancreatic cancer activity of CuB via the inhibition of expression of the cancer-related long noncoding RNA, actin filament-associated protein 1-antisense RNA 1 (AFAP1-AS1). CuB arrested pancreatic cancer (PC) cells in the G2/M cell cycle phase by suppressing the expression of AFAP1-AS1. Insights into the mechanisms of competing endogenous RNAs (ceRNAs) gained from bioinformatics analysis and luciferase activity assays showed that the epidermal growth factor receptor (EGFR) and AFAP1-AS1 directly compete for miR-146b-5p binding. CuB-induced high miR-146b-5p expression and inhibited the expression of AFAP1-AS1. In summary, reducing the expression of endogenous AFAP1-AS1 effectively increased the available concentration of miR-146b-5p in PC, whereas miR-146b-5p overexpression prevented the expression of endogenous AFAP1-AS1. In particular, we hypothesized that AFAP1-AS1 might act as a ceRNA, effectively becoming a sponge for miR-146b-5p, thereby activating the expression of the EGFR. Thus, CuB suppresses the proliferation, in vitro and in vivo, of PC cells through the ceRNA effect of AFAP1-AS1 on miR-146b-5p.  相似文献   

18.
19.
Long noncoding RNAs (lncRNAs) played an important role in tumorigenesis and development of hepatocellular carcinoma (HCC). In this study, we first demonstrated that lncRNA DLX6 antisense RNA 1 (DLX6-AS1) was upregulated in cancer tissues and cells lines compared with normal adjacent and cell line. Knock-down DLX6-AS1 by transfection with small interfering RNA (siRNA) suppressed cell proliferation, migration, and invasion of HCC cells. Cell cycle analysis showed that cells transfected with siRNA were arrested in G0/G1 phase. Then, we performed dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay to show that DLX6-AS1 could bind with miR-424-5p. And cotransfection inhibitor of miR-424-5p with siRNA of DLX6-AS1 could abolish the inhibitory effect of siRNA of DLX6-AS1 on cell proliferation, migration, and invasion. Moreover, we further demonstrated that the oncogene WEE1 G2 checkpoint kinase (WEE1) was the target of miR-424-5p and expression levels of WEE1 were positive correlation with that of DLX6-AS1. Taken together, these results suggested that upregulated DLX6-AS1 promoted cell proliferation, migration, and invasion of HCC through increasing expression of WEE1 via targeting miR-424-5p.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号