首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mammalian endothelial cells are deficient in cystathionine β synthetase (CBS) activity, which is responsible for homocysteine (Hcy) clearance. This deficiency makes the endothelium theprime target for Hcy toxicity. Hcy induces integrin shedding in microvascular endothelial cells (MVEC) by increasing matrix metalloproteinase (MMP). Hcy competes with inhibitory neurotransmitter γ aminobutyric acid (GABA)-A receptor. We hypothesized that Hcy transduces MVEC remodeling by increasing metalloproteinase activity and shedding β-1 integrin by inactivating the GABA-A/B receptors, thus behaving as an excitatory neurotransmitter. MVEC were isolated from mouse brain. The presence of GABA-A receptor was determined by immunolabeling. It was induced by muscimol, an agonist of GABA-A receptors as measured by Western blot analysis. Hcy induced MMP-2 activity in a dose- and time-dependent maner, measured by zymography. GABA-A/B receptors ameliorated the Hcy-mediated MMP-2 activation. Hcy selectively increased the levels of tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-3 but decreased the levels of TIMP-4. Treatment with muscimol decreased the levels of TIMP-1 and TIMP-3 and increased the levels of TIMP-4 to control. Hcy caused a robust increae in the levels of a disintegrin and metalloproteinase (ADAM)-12. In the medium of MVEC reated with Hcy, the levels of β-1 integrin were significantly increased. Treatment with muscimol or baclofen (GABA-B receptor agonist) ameliorated the levels significantly increased. Treatment with muscimol or baclofen (GABA-B receptor agonist) ameliorated the levels of β-1 integrin in the medium. These results suggested that Hcy induced DAM-12. Significantly, Hcy facilitated the β-1 integrin shedding. Treatment of MVEC with muscimole or baclofen during Hcy administration ameliorated the expression of metalloproteinase, integrin-shedding, and constrictive collagen remodeling, suggesting a role of Hcy in GABA receptor-mediated cerebrovascular remodeling.  相似文献   

2.
Recent evidence suggests that breast cancer is one of the most common forms of malignancy in females, and metastasis from the primary cancer site is the main cause of death. Aromatic (ar)‐turmerone is present in Curcuma longa and is a common remedy and food. In the present study, we investigated the inhibitory effects of ar‐turmerone on expression and enzymatic activity levels of 12‐O‐tetradecanoylphorbol‐13‐acetate (TPA)‐induced matrix metalloproteinase (MMP)‐9 and cyclooxygenaase‐2 (COX‐2) in breast cancer cells. Our data indicated that ar‐turmerone treatment significantly inhibited enzymatic activity and expression of MMP‐9 and COX‐2 at non‐cytotoxic concentrations. However, the expression of tissue inhibitor of metalloproteinase (TIMP)‐1, TIMP‐2, MMP‐2, and COX‐1 did not change upon ar‐turmerone treatment. We found that ar‐turmerone inhibited the activation of NF‐κB, whereas it did not affect AP‐1 activation. Moreover, The ChIP assay revealed that in vivo binding activities of NF‐κB to the MMP‐9 and COX‐2 promoter were significantly inhibited by ar‐turmerone. Our data showed that ar‐turmerone reduced the phosphorylation of PI3K/Akt and ERK1/2 signaling, whereas it did not affect phosphorylation of JNK or p38 MAPK. Thus, transfection of breast cancer cells with PI3K/Akt and ERK1/2 siRNAs significantly decreased TPA‐induced MMP‐9 and COX‐2 expression. These results suggest that ar‐turmerone suppressed the TPA‐induced up‐regulation of MMP‐9 and COX‐2 expression by blocking NF‐κB, PI3K/Akt, and ERK1/2 signaling in human breast cancer cells. Furthermore, ar‐turmerone significantly inhibited TPA‐induced invasion, migration, and colony formation in human breast cancer cells. J. Cell. Biochem. 113: 3653–3662, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
Homocysteine in microvascular endothelial cell barrier permeability   总被引:1,自引:0,他引:1  
Redox stress activates the endothelium and upregulates matrix metalloproteinases (MMPs), which degrade the matrix and lead to blood-endothelial barrier leakage. Interestingly, elevated levels of plasma homocysteine (Hcy) are associated with vascular dementia, seizure, stroke, and Alzheimer disease. Hcy competes with the γ-aminobutyric acid (GABA)-A/B receptors and behave like an excitatory neurotransmitter. GABA stimulates the inhibitory neurotransmitter GABA-A/B receptor and decreases arterial blood pressure. However, the neural mechanisms of microvascular remodeling in hyperhomocysteinemia are unclear. This review addresses the idea that Hcy induces microvascular permeability by attenuating the GABA-A/B receptors and increasing redox stress, which activates a disintegrin and metalloproteinase that suppresses tissue inhibitors of metalloproteinase. This process causes disruption of the matrix in the blood-brain barrier. Understanding the mechanism of Hcy-mediated changes in permeability of the blood-brain barrier and extracellular matrix that can alter the neuronal environment in cerebral-vascular dementia is of great importance in developing treatments for this disease.  相似文献   

4.
5.
Caffeine attenuated invasion of human leukemia U937 cells with characteristic of decreased protein expression and mRNA levels of matrix metalloproteinase‐2 (MMP‐2) and MMP‐9. Down‐regulation of MMP‐2 and MMP‐9 in U937 cells was abrogated by abolishment of caffeine‐elicited increase in intracellular Ca2+ concentration and ROS generation. Pretreatment with BAPTA‐AM (Ca2+ chelator) and N‐acetylcysteine (ROS scavenger) abolished caffeine‐induced ERK inactivation and p38 MPAK activation. Moreover, caffeine treatment led to MAPK phosphatase‐1 (MKP‐1) down‐regulation and protein phosphatase 2A catalytic subunit (PP2Ac) up‐regulation, which were involved in cross‐talk between p38 MAPK and ERK. Transfection of constitutively active MEK1 or pretreatment with SB202190 (p38 MAPK inhibitor) restored MMP‐2 and MMP‐9 protein expression in caffeine‐treated cells. Caffeine treatment repressed ERK‐mediated c‐Fos phosphorylation but evoked p38 MAPK‐mediated c‐Jun phosphorylation. Knock‐down of c‐Fos and c‐Jun by siRNA reflected that c‐Fos counteracted the effect of c‐Jun on MMP‐2/MMP‐9 down‐regulation. Taken together, our data indicate that MMP‐2/MMP‐9 down‐regulation in caffeine‐treated U937 cells is elicited by Ca2+/ROS‐mediated suppression of ERK/c‐Fos pathway and activation of p38 MAPK/c‐Jun pathway. J. Cell. Physiol. 224: 775–785, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
Regulation of homocysteine-induced MMP-9 by ERK1/2 pathway   总被引:6,自引:0,他引:6  
Homocysteine (Hcy) induces matrix metalloproteinase (MMP)-9 in microvascular endothelial cells (MVECs). We hypothesized that the ERK1/2 signaling pathway is involved in Hcy-mediated MMP-9 expression. In cultured MVECs, Hcy induced activation of ERK, which was blocked by PD-98059 and U0126 (MEK inhibitors). Pretreatment with BAPTA-AM, staurosporine (PKC inhibitor), or Gö6976 (specific inhibitor for Ca2+-dependent PKC) abrogated ERK phosphorylation, suggesting the role of Ca2+ and Ca2+-dependent PKC in Hcy-induced ERK activation. ERK phosphorylation was suppressed by pertussis toxin (PTX), suggesting the involvement of G protein-coupled receptors (GPCRs) in initiating signal transduction by Hcy and leading to ERK activation. Pretreatment of MVECs with genistein, BAPTA-AM, or thapsigargin abrogated Hcy-induced ERK activation, suggesting the involvement of the PTK pathway in Hcy-induced ERK activation, which was mediated by intracellular Ca2+ pool depletion. ERK activation was attenuated by preincubation with N-acetylcysteine (NAC) and SOD, suggesting the role of oxidation in Hcy-induced ERK activation. Pretreatment with an ERK1/2 blocker (PD-98059), staurosporine, folate, or NAC modulated Hcy-induced MMP-9 activation as measured using zymography. Our results provide evidence that Hcy triggers the PTX-sensitive ERK1/2 signaling pathway, which is involved in the regulation of MMP-9 in MVECs. calcium signaling; protein kinase C; Src; G protein-coupled receptor; nonreceptor tyrosine kinase; protein Gi; protein Gq; protein tyrosine kinase 2; microvascular endothelial cell; cardiovascular remodeling  相似文献   

7.
Fibrillar amyloid plaques are largely composed of amyloid‐beta (Aβ) peptides that are metabolized into products, including Aβ1‐16, by proteases including matrix metalloproteinase 9 (MMP‐9). The balance between production and degradation of Aβ proteins is critical to amyloid accumulation and resulting disease. Regulation of MMP‐9 and its endogenous inhibitor tissue inhibitor of metalloproteinase (TIMP)‐1 by nitric oxide (NO) has been shown. We hypothesize that nitric oxide synthase (NOS2) protects against Alzheimer's disease pathology by increasing amyloid clearance through NO regulation of MMP‐9/TIMP‐1 balance. We show NO‐mediated increased MMP‐9/TIMP‐1 ratios enhanced the degradation of fibrillar Aβ in vitro, which was abolished when silenced for MMP‐9 protein translation. The in vivo relationship between MMP‐9, NO and Aβ degradation was examined by comparing an Alzheimer's disease mouse model that expresses NOS2 with a model lacking NOS2. To quantitate MMP‐9 mediated changes, we generated an antibody recognizing the Aβ1‐16 fragment, and used mass spectrometry multi‐reaction monitoring assay for detection of immunoprecipitated Aβ1‐16 peptides. Aβ1‐16 levels decreased in brain lysates lacking NOS2 when compared with strains that express human amyloid precursor protein on the NOS2 background. TIMP‐1 increased in the APPSwDI/NOS2?/? mice with decreased MMP activity and increased amyloid burden, thereby supporting roles for NO in the regulation of MMP/TIMP balance and plaque clearance.  相似文献   

8.
Elevated plasma levels of homocysteine (Hcy) are associated with vascular dementias and Alzheimer's disease. The role of Hcy in brain microvascular endothelial cell (MVEC) remodeling is unclear. Hcy competes with muscimol, an gamma-amino butyric acid (GABA)-A receptor agonist. GABA is the primary inhibitory neurotransmitter in the brain. Our hypothesis is that Hcy induces constrictive microvascular remodeling by altering GABA-A/B receptors. MVEC from wild type, matrix metalloproteinase-9 (MMP-9) knockout (-/-), heterozygote cystathionine beta synthase (CBS-/+), and endothelial nitric oxide synthase knockout (eNOS-/-) mouse brains were isolated. The MVEC were incorporated into collagen (3.2 mg/ml) gels and the decrease in collagen gel diameter at 24 h was used as an index of constrictive MVEC remodeling. Gels in the absence or presence of Hcy were incubated with muscimol or baclofen, a GABA-B receptor agonist. The results suggested that Hcy-mediated MVEC collagen gel constriction was ameliorated by muscimol, baclofen, MMP-9, and eNOS gene ablations. There was no effect of anti-alpha 3 integrin. However, Hcy-mediated brain MVEC collagen constriction was abrogated with anti-beta-1 integrin. The co-incubation of Hcy with L-arginine ameliorated the Hcy-mediated collagen gel constriction. The results of this study indicated amelioration of Hcy-induced MVEC collagen gel constriction by induction of nitric oxide through GABA-A and -B receptors.  相似文献   

9.
Remodeling by its very nature implied synthesis and degradation of extracellular matrix (ECM) proteins. Although oxidative stress, matrix metalloproteinase (MMP) and tissue inhibitor of metalloproteinase (TIMP) have been implicated in vascular remodeling, the differential role of MMPs versus TIMPs and oxidative stress in vascular remodeling was unclear. TIMP-3 induced vascular cell apoptosis, therefore, we hypothesized that during vascular injury TIMP-3, MMP-9 and -12 (elastin-degrading MMP) were increased, whereas MMP-2 (constitutive MMP) and TIMP-4 (cardioprotective TIMP) decreased. Because of the potent anti-oxidant, vasorelaxing, anti-hypertensive agent, hydrogen sulfide (H2S) was used to mitigate the vascular remodeling due to the differential expression of MMP and TIMP. Carotid artery injury was created by inserting a PE-10 catheter and rotating several times before pulling out. The insertion hole was sealed. Mice were grouped: wild type (WT), wild-type damaged artery (WTD), WT + NaHS (sodium hydrogen sulfide, precursor of H2S) treatment (30 μmol/L in drinking water/6 weeks) and WTD + NaHS treatment. Carotid arteries were analyzed for oxidative stress and remodeling, by measuring super oxide dismutase-1 (SOD1), p47 (NADPH oxidase subunit), nitrotyrosine, MMPs and TIMPs by in situ immunolabeling and by Western blot analyses. The results suggested robust increase in p47, nitrotyrosine, MMP-9, MMP-12, TIMP-3 and decrease in SOD1 and MMP-2 levels in the injured arteries. The treatment with H2S ameliorated these effects. We concluded that p47, TIMP-3, MMP-9 and -12 were increased where as SOD-1, MMP-2 and TIMP-4 were decreased in the injured arteries. The treatment with H2S mitigated the vascular remodeling by normalizing the levels of redox stress, MMPs and TIMPs.  相似文献   

10.
Differentiation and restricted invasion/migration of trophoblast cells are crucial for feto‐maternal communication in the synepitheliochorial placenta of cattle. EGF is expressed in the bovine placenta and likely regulates these cell properties. As cell migration and motility rely on the degradation of extracellular matrix we hypothesize that EGF is involved in the regulation of the MMP‐9/TIMP‐1 balance and thus could influence trophoblast migration, tissue remodeling, and the release of the fetal membranes after parturition. The aim of this in vitro study was to examine EGF‐mediated effects on cell motility, proliferation, and MMP‐9 and TIMP‐1 expression in cultured bovine trophoblast cells. We used a trophoblast cell line (F3) derived from bovine placentomes to examine the influence of EGF on MMP‐9 and TIMP‐1 expression by semiquantitative RT‐PCR and MMP activity by zymography. Migration assays were performed using a Boyden chamber and cell motility was measured by time‐lapse analyses. To identify the involved signaling cascades, phosphorylation of mitogen‐activated protein kinase (MAPK) 42/44 and Akt was detected by Western blot. EGF treatment increased both the abundance of MMP‐9 and TIMP‐1 mRNAs and the proteolytic activity of MMP‐9. Furthermore, EGF stimulated proliferation and migration of F3 cells. Addition of specific inhibitors of MAPK (PD98059) and/or PI3K (LY294002) activation abolished or reduced EGF‐induced effects in all experiments. In conclusion, EGF‐mediated effects stimulate migration and proliferation of bovine trophoblast cells and may be involved in bovine placental tissue remodeling and postpartum release of fetal membranes. Mol. Reprod. Dev. 77: 622–629, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
High levels of homocysteine (Hcy), known as hyperhomocysteinemia (HHcy), are associated with cerebrovascular diseases, such as vascular dementia, stroke, and Alzheimer’s disease. The γ-amino butyric acid (GABA) is an inhibitory neurotransmitter and a ligand of GABA-A receptor. By inhibiting excitatory response, it may decrease complications associated with vascular dementia and stroke. Hcy specifically competes with the GABA-A receptors and acts as an excitotoxic neurotransmitter. Previously, we have shown that Hcy increases levels of NADPH oxidase and reactive oxygen species (ROS), and decreases levels of thioredoxin and peroxiredoxin by antagonizing the GABA-A receptor. Hcy treatment leads to activation of matrix metalloproteinases (MMPs) in cerebral circulation by inducing redox stress and ROS. The hypothesis is that Hcy induces MMPs and suppresses tissue inhibitors of metalloproteinase (TIMPs), in part, by inhibiting the GABA-A receptor. This leads to degradation of the matrix and disruption of the blood brain barrier. The brain cortex of transgenic mouse model of HHcy (cystathionine β-synthase, CBS?/+) and GABA-A receptor null mice treated with and without muscimol (GABA-A receptor agonist) was analysed. The mRNA levels were measured by Q-RT-PCR. Levels of MMP-2, -9, -13, and TIMP-1, -2, -3, and -4 were evaluated by in situ labeling and PCR-gene arrays. Pial venular permeability to fluorescence-labeled albumin was assessed with intravital fluorescence microscopy. We found that Hcy increases metalloproteinase activity and decreases TIMP-4 by antagonizing the GABA-A receptor. The results demonstrate a novel mechanism in which brain microvascular permeability changes during HHcy and vascular dementias, and have therapeutic ramifications for microvascular disease in Alzheimer’s patients.  相似文献   

12.
An increase in MMP‐9 gene expression and enzyme activity with stimulating the migration of GBM8401 glioma cells via wound healing assay by 12‐O‐tetradecanoylphorbol‐13‐acetate (TPA) was detected in glioblastoma cells GBM8401. TPA‐induced translocation of protein kinase C (PKC)α from the cytosol to membranes, and migration of GBM8401 elicited by TPA was suppressed by adding the PKCα inhibitors, GF109203X and H7. Activation of extracellular signal‐regulated kinase (ERK) and c‐Jun‐N‐terminal kinase (JNK) by TPA was identified, and TPA‐induced migration and MMP‐9 activity was significantly blocked by ERK inhibitor PD98059 and U0126, but not JNK inhibitor SP600125. Activation of NF‐κB protein p65 nuclear translocation and IκBα protein phosphorylation with increased NF‐κB‐directed luciferase activity by TPA were observed, and these were blocked by the PD98059 and IkB inhibitor BAY117082 accompanied by reducing migration and MMP‐9 activity induced by TPA in GBM8401 cells. Transfection of GBM8401 cells with PKCα siRNA specifically reduced PKCα protein expression with blocking TPA‐induced MMP‐9 activation and migration. Additionally, suppression of TPA‐induced PKCα/ERK/NK‐κB activation, migration, and MMP‐9 activation by flavonoids including kaempferol (Kae; 3,5,7,4′‐tetrahydroxyflavone), luteolin (Lut; 5,7,3′4′‐tetrahydroxyflavone), and wogonin (Wog; 5,7‐dihydroxy‐8‐methoxyflavone) was demonstrated, and structure–activity relationship (SAR) studies showed that hydroxyl (OH) groups at C4′ and C8 are critical for flavonoids' action against MMP‐9 enzyme activation and migration/invasion of glioblastoma cells elicited by TPA. Application of flavonoids to prevent the migration/invasion of glioblastoma cells through blocking PKCα/ERK/NF‐κB activation is first demonstrated herein. J. Cell. Physiol. 225: 472–481, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

13.
The present study assessed protein and gene expression levels of tissue inhibitor of metalloproteinase‐2 (TIMP‐2), matrix metalloproteinase‐2 (MMP‐2), and MMP‐9 in urine and blood samples of 50 patients with bladder carcinoma. The expression of TIMP‐2, MMP‐2, and MMP‐9 levels with tumor stage and grade was also assessed. Results showed that the expression levels of MMP‐2 and MMP‐9 in both blood and urine were significantly elevated in group 1 when compared with groups 2 and 3 healthy subjects. The discriminatory ability in the diagnosis of bladder carcinoma of MMP‐2 and MMP‐9 expression was confirmed by receiver operating characteristic curve analysis that revealed a sensitivity and specificity of 100%. MMP‐2 and MMP‐9 levels were not correlated with grade or stage of the tumor. With respect to TIMP‐2 blood and urine levels, results showed a significant decrease in gene expression levels in bladder carcinoma group, whereas, TIMP‐2 protein showed a significant increase in bladder carcinoma.  相似文献   

14.
The hepatocyte growth factor (HGF)/c‐Met signalling pathway is deregulated in most cancers and associated with a poor prognosis in breast cancer. Cardiotoxin III (CTX III), a basic polypeptide isolated from Naja naja atra venom, has been shown to exhibit anticancer activity. In this study, we use HGF as an invasive inducer to investigate the effect of CTX III on MDA‐MB‐231 cells. When cells were treated with non‐toxic doses of CTX III, CTX III inhibited the HGF‐promoted cell migration and invasion. CTX III significantly suppressed the HGF‐induced c‐Met phosphorylation and downstream activation of phosphatidylinositol 3‐kinase (PI3k)/Akt and extracellular signal‐regulated kinase (ERK) 1/2. Additionally, CTX III similar to wortmannin (a PI3K inhibitor) and U0126 (an upstream kinase regulating ERK1/2 inhibitor) attenuated cell migration and invasion induced by HGF. This effect was paralleled by a significant reduction in phosphorylation of IκBα kinase and IκBα and nuclear translocation of nuclear factor κB (NF‐κB) as well as a reduction of matrix metalloproteinase‐9 (MMP‐9) activity. Furthermore, the c‐Met inhibitor PHA665752 inhibited HGF‐induced MMP‐9 expression, cell migration and invasion, as well as the activation of ERK1/2 and PI3K/Akt, suggesting that ERK1/2 and PI3K/Akt activation occurs downstream of c‐Met activation. Taken together, these findings suggest that CTX III inhibits the HGF‐induced invasion and migration of MDA‐MB‐231 cells via HGF/c‐Met‐dependent PI3K/Akt, ERK1/2 and NF‐κB signalling pathways, leading to the downregulation of MMP‐9 expression. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
16.
The lifetime exposure of organisms to oxidative stress influences many aging processes which involve the turnover of the extracellular matrix. In this study, we identify the redox‐responsive molecular signals that drive senescence‐associated (SA) matrix metalloproteinase‐1 (MMP‐1) expression. Precise biochemical monitoring revealed that senescent fibroblasts increase steady‐state (H2O2) 3.5‐fold (13.7–48.6 pM) relative to young cells. Restricting H2O2 production through low O2 exposure or by antioxidant treatments prevented SA increases in MMP‐1 expression. The H2O2‐dependent control of SA MMP‐1 is attributed to sustained JNK activation and c‐jun recruitment to the MMP‐1 promoter. SA JNK activation corresponds to increases and decreases in the levels of its activating kinase (MKK‐4) and inhibitory phosphatase (MKP‐1), respectively. Enforced MKP‐1 expression negates SA increases in JNK phosphorylation and MMP‐1 production. Overall, these studies define redox‐sensitive signaling networks regulating SA MMP‐1 expression and link the free radical theory of aging to initiation of aberrant matrix turnover. J. Cell. Physiol. 225: 52–62, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
High‐mobility group box 1 (HMGB1) has been reported to attenuate ventricular remodeling, but its mechanism remains mostly unresolved. Transforming growth factor‐beta (TGF‐β) is a crucial mediator in the pathogenesis of post‐infarction remodeling. Our study focused on the effects of HMGB1 on ventricular remodeling, and explored whether or not these effects were depended upon the TGF‐β signaling pathway. Rats underwent coronary artery ligation. An intramyocardium injection of phosphate buffered saline (PBS) with or without HMGB1 was administered 3 weeks after myocardial infarction (MI). At 4 weeks after the treatment, HMGB1 significantly increased the left ventricular ejection fraction (LVEF) (P < 0.05), decreased the left ventricular end diastolic dimension (LVEDD; P < 0.05), left ventricular end systolic dimension (LVESD) (P < 0.05) and the infarct size (P < 0.05) compared with control group. The expressions of collagen I, collagen III, and tissue inhibitor of metalloproteinase 2 (TIMP2) were also decreased, while the matrix metalloproteinases 2 (MMP2) and MMP9 expressions were upregulated by HMGB1 injection (P < 0.05) compared with control group. No effect on TIMP3 was observed. Furthermore, TGF‐β1 and phosphor‐Smad2 (p‐Smad2) were significantly suppressed and Smad7 was increased in HMGB1‐treated group (P < 0.05) compared with control group, no effects on p‐Smad3 and p‐p38 were observed. HMGB1 also upregulated Smad 7 expression and decreased the level of collagen I on cardiac fibroblasts (P < 0.05). Silencing of Smad7 gene by small interfering RNA abolished the fibrogenic effects of HMGB1 on cardiac fibroblasts (P < 0.05). These finding suggested that HMGB1 injection modulated ventricular remodeling may function through the possible inhibition of TGF‐β/Smad signaling pathway. J. Cell. Biochem. 114: 1634–1641, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

18.
Tumor malignancy is associated with several features such as proliferation ability and frequency of metastasis. Osteopontin (OPN), which abundantly expressed in bone matrix, is involved in cell adhesion, migration, invasion and proliferation via interaction with its receptor, that is, αvβ3 integrin. However, the effect of OPN on migration activity in human chondrosarcoma cells is mostly unknown. Here we found that OPN increased the migration and expression of matrix metalloproteinase (MMP)‐9 in human chondrosarcoma cells (JJ012 cells). RGD peptide, αvβ3 monoclonal antibody and MAPK kinase (MEK) inhibitors (PD98059 and U0126) but not RAD peptide inhibited the OPN‐induced increase of the migration and MMP‐9 up‐regulation of chondrosarcoma cells. OPN stimulation increased the phosphorylation of focal adhesion kinase (FAK), MEK and extracellular signal‐regulated kinase (ERK). In addition, treatment of JJ012 cells with NF‐κB inhibitor (PDTC) or IκB protease inhibitor (TPCK) inhibited OPN‐induced cell migration and MMP‐9 up‐regulation. Stimulation of JJ012 cells with OPN also induced IκB kinase α/β (IKK α/β) phosphorylation, IκBα phosphorylation, p65 Ser536 phosphorylation, and κB‐luciferase activity. The OPN‐mediated increases in MMP‐9 and κB‐luciferase activities were inhibited by RGD peptide, PD98059 or FAK and ERK2 mutant. Taken together, our results indicated that OPN enhances the migration of chondrosarcoma cells by increasing MMP‐9 expression through the αvβ3 integrin, FAK, MEK, ERK and NF‐κB signal transduction pathway. J. Cell. Physiol. 221: 98–108, 2009. © 2009 Wiley‐Liss, Inc  相似文献   

19.
Macrophages under certain stimuli induce matrix metalloproteinase 9 (MMP‐9) expression and protein secretion through the activation of MAPK‐ERK and NF‐κB signaling pathways. Previously, we demonstrated that activated α2‐macroglulin (α2M*) through the interaction with its receptor low‐density lipoprotein receptor‐related protein 1 (LRP1) induces macrophage proliferation mediated by the activation of MAPK‐ERK1/2. In the present work, we examined whether α2M*/LRP1interaction could induce the MMP‐9 production in J774 and Raw264.7 macrophage‐derived cell lines. It was shown that α2M* promoted MMP‐9 expression and protein secretion by LRP1 in both macrophage‐derived cell lines, which was mediated by the activation of MAPK‐ERK1/2 and NF‐κB. Both intracellular signaling pathways activated by α2M* were effectively blocked by calphostin‐C, suggesting involvement of PKC. In addition, we demonstrate that α2M* produced extracellular calcium influx via LRP1. However, when the intracellular calcium mobilization was inhibited by BAPTA‐AM, the α2M*‐induced MAPK‐ER1/2 activation was fully blocked in both macrophage cell lines. Finally, using specific pharmacological inhibitors for PKC, Mek1, and NF‐κB, it was shown that the α2M*‐induced MMP‐9 protein secretion was inhibited, indicating that the MMP production promoted by the α2M*/LRP1 interaction required the activation of both signaling pathways. These findings may prove useful in the understanding of the macrophage LRP1 role in the vascular wall during atherogenic plaque progression. J. Cell. Biochem. 111: 607–617, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

20.
L Zheng  Y Huang  W Song  X Gong  M Liu  X Jia  G Zhou  L Chen  A Li  Y Fan 《Journal of biomechanics》2012,45(14):2368-2375
Matrix metalloproteinase (MMP)-1, 2, with their endogenous inhibitors, tissue inhibitor of metalloproteinase (TIMP)-1, 2 are critical for extracellular matrix remodeling in human periodontal ligament (PDL) and their expression are sensitive to mechanical stresses. Shear stress as the main type of mechanical stress in tooth movement is involved in matrix turnover. However, how shear stress regulates MMPs and TIMPs system is still unclear. In this study, we investigated the effect of fluid shear stress on expression of MMP-1, 2 and TIMP-1, 2 in human PDL cells and the possible roles of mitogen-activated protein kinases in this process. Three levels of fluid shear stresses (6, 9 and 12dyn/cm(2)) were loaded on PDL cells for 2, 4, 8 and 12h. The results indicated that fluid shear stress rearranged cytoskeleton in PDL cells. Fluid shear stress increased expression of MMP-1, 2, TIMP-1 and suppressed TIMP-2 expression. MAP kinases including extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 were activated rapidly by fluid shear stress. The ERK inhibitor blocked fluid shear stress induced MMP-1 expression and P38 inhibitor reduced fluid shear stress stimulated MMP-2 expression. Our study suggested that fluid shear stress involved in PDL remodeling via regulating MMP-1, 2 and TIMP-1, 2 expression. ERK regulated fluid shear stress induced MMP-1 expression and P38 play a role in fluid shear stress induced MMP-2 upregulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号