首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phytoestrogens (PEs) are non‐steroidal ligands, which regulate the expression of number of estrogen receptor‐dependent genes responsible for a variety of biological processes. Deciphering the molecular mechanism of action of these compounds is of great importance because it would increase our understanding of the role(s) these bioactive chemicals play in prevention and treatment of estrogen‐based diseases. In this study, we applied suppression subtractive hybridization (SSH) to identify genes that are regulated by PEs through either the classic nuclear‐based estrogen receptor or membrane‐based estrogen receptor pathways. SSH, using mRNA from genistein (GE) treated MCF‐7 cells as testers, resulted in a significant increase in GNB1 mRNA expression levels as compared with 10 nM 17β estradiol or the no treatment control. GNB1 mRNA expression was up regulated two‐ to fivefold following exposure to 100.0 nM GE. Similarly, GNB1 protein expression was up regulated 12‐ to 14‐fold. GE regulation of GNB1 was estrogen receptor‐dependent, in the presence of the anti‐estrogen ICI‐182,780, both GNB1 mRNA and protein expression were inhibited. Analysis of the GNB1 promoter using ChIP assay showed a PE‐dependent association of estrogen receptor α (ERα) and β (ERβ) to the GNB1 promoter. This association was specific for ERα since association was not observed when the cells were co‐incubated with GE and the ERα antagonist, ICI. Our data demonstrate that the levels of G‐protein, beta‐1 subunit are regulated by PEs through an estrogen receptor pathway and further suggest that PEs may control the ratio of α‐subunit to β/γ‐subunits of the G‐protein complex in cells. J. Cell. Physiol. 219: 584–594, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
3.
4.
5.
An essential protein for bacterial growth, GTPase‐Obg (Obg), is known to play an unknown but crucial role in stress response as its expression increases in Mycobacterium under stress conditions. It is well reported that Obg interacts with anti‐sigma‐F factor Usfx; however, a detailed analysis and structural characterization of their physical interaction remain undone. In view of above‐mentioned points, this study was conceptualized for performing binding analysis and structural characterization of Obg‐Usfx interaction. The binding studies were performed by surface plasmon resonance, while in silico docking analysis was done to identify crucial residues responsible for Obg‐Usfx interaction. Surface plasmon resonance results clearly suggest that N‐terminal and G domains of Obg mainly contribute to Usfx binding. Also, binding constants display strong affinity that was further evident by intermolecular hydrogen bonds and hydrophobic interactions in the predicted complex. Strong interaction between Obg and Usfx supports the view that Obg plays an important role in stress response, essentially required for Mycobacterium survival. As concluded by various studies that Obg is crucial for Mycobacterium survival under stress, this structural information may help us in designing novel and potential inhibitors against resistant Mycobacterium strains.  相似文献   

6.
7.
8.
Delay‐and‐sum (DAS) is one of the most common algorithms used to construct the photoacoustic images due to its low complexity. However, it results in images with high sidelobes and low resolution. Delay‐and‐standard‐deviation (DASD) weighting factor can improve the contrast of the images compared to DAS. However, it still suffers from high sidelobes. In this work, a new weighting factor, named delay‐multiply‐and‐standard‐deviation (DMASD) is introduced to enhance the contrast of the reconstructed images compared to other mentioned methods. In the proposed method, the SD of the mutual multiplied delayed signals are calculated, normalized and multiplied to DAS beamformed data. The results show that DMASD improves the signal‐to‐noise‐ratio about 19.29 and 7.3 dB compared to DAS and DASD, respectively, for in vivo imaging of the sentinel lymph node. Moreover, the contrast ratio is improved by the DMASD about 23.61 and 10.81 dB compared to DAS and DASD, respectively.   相似文献   

9.
10.
Factor VIII (FVIII) is the blood coagulation protein which when defective or deficient causes for hemophilia A, a severe hereditary bleeding disorder. Activated FVIII (FVIIIa) is the cofactor to the serine protease factor IXa (FIXa) within the membrane‐bound Tenase complex, responsible for amplifying its proteolytic activity more than 100,000 times, necessary for normal clot formation. FVIII is composed of two noncovalently linked peptide chains: a light chain (LC) holding the membrane interaction sites and a heavy chain (HC) holding the main FIXa interaction sites. The interplay between the light and heavy chains (HCs) in the membrane‐bound state is critical for the biological efficiency of FVIII. Here, we present our cryo‐electron microscopy (EM) and structure analysis studies of human FVIII‐LC, when helically assembled onto negatively charged single lipid bilayer nanotubes. The resolved FVIII‐LC membrane‐bound structure supports aspects of our previously proposed FVIII structure from membrane‐bound two‐dimensional (2D) crystals, such as only the C2 domain interacts directly with the membrane. The LC is oriented differently in the FVIII membrane‐bound helical and 2D crystal structures based on EM data, and the existing X‐ray structures. This flexibility of the FVIII‐LC domain organization in different states is discussed in the light of the FVIIIa–FIXa complex assembly and function. © 2013 Wiley Periodicals, Inc. Biopolymers 99: 448–459, 2013.  相似文献   

11.
Fibroblast growth factor‐2 (FGF2) plays a major role in angiogenesis. The pattern recognition receptor long‐pentraxin 3 (PTX3) inhibits the angiogenic activity of FGF2. To identify novel FGF2‐antagonistic peptide(s), four acetylated (Ac) synthetic peptides overlapping the FGF2‐binding region PTX3‐(97–110) were assessed for their FGF2‐binding capacity. Among them, the shortest pentapeptide Ac‐ARPCA‐NH2 (PTX3‐[100–104]) inhibits the interaction of FGF2 with PTX3 immobilized to a BIAcore sensorchip and suppresses FGF2‐dependent proliferation in endothelial cells, without affecting the activity of unrelated mitogens. Also, Ac‐ARPCA‐NH2 inhibits angiogenesis triggered by FGF2 or by tumorigenic FGF2‐overexpressing murine endothelial cells in chick and zebrafish embryos, respectively. Accordingly, the peptide hampers the binding of FGF2 to Chinese Hamster ovary cells overexpressing the tyrosine‐kinase FGF receptor‐1 (FGFR1) and to recombinant FGFR1 immobilized to a BIAcore sensorchip without affecting heparin interaction. In all the assays the mutated Ac‐ARPS A‐NH2 peptide was ineffective. In keeping with the observation that hydrophobic interactions dominate the interface between FGF2 and the FGF‐binding domain of the Ig‐like loop D2 of FGFR1, amino acid substitutions in Ac‐ARPCA‐NH2 and saturation transfer difference‐nuclear magnetic resonance analysis of its mode of interaction with FGF2 implicate the hydrophobic methyl groups of the pentapeptide in FGF2 binding. These results will provide the basis for the design of novel PTX3‐derived anti‐angiogenic FGF2 antagonists.  相似文献   

12.
13.
14.
Structure comparison is widely used to quantify protein relationships. Although there are several approaches to calculate structural similarity, specifying significance thresholds for similarity metrics is difficult due to the inherent likeness of common secondary structure elements. In this study, metal co‐factor location is used to assess the biological relevance of structural alignments. The distance between the centroids of bound co‐factors adds a chemical and function‐relevant constraint to the structural superimposition of two proteins. This additional dimension can be used to define cut‐off values for discriminating valid and spurious alignments in large alignment sets. The hypothesis underlying our approach is that metal coordination sites constrain structural evolution, thus revealing functional relationships between distantly related proteins. A comparison of three related nitrogenases shows the sequence and fold constraints imposed on the protein structures up to 18 Å away from the centers of their bound metal clusters. Proteins 2014; 82:648–656. © 2013 Wiley Periodicals, Inc.  相似文献   

15.
16.
17.
18.
19.
Krüppel‐like factor 2 (KLF2) critically regulates activation and function of monocyte, which plays important pathogenic role in progressive joint destruction in rheumatoid arthritis (RA). It is yet to be established the molecular basis of KLF2‐mediated regulation of monocytes in RA pathogenesis. Herein, we show that a class of compound, HDAC inhibitors (HDACi) induced KLF2 expression in monocytes both in vitro and in vivo. KLF2 level was also elevated in tissues, such as bone marrow, spleen and thymus in mice after infusion of HDACi. Importantly, HDACi significantly reduced osteoclastic differentiation of monocytes with the up‐regulation of KLF2 and concomitant down‐regulation of matrixmetalloproteinases both in the expression level as well as in the protein level. In addition, HDACi reduced K/BxN serum‐induced arthritic inflammation and joint destruction in mice in a dose‐dependent manner. Finally, co‐immunoprecipitation and overexpression studies confirmed that KLF2 directly interacts with HDAC4 molecule in cells. These findings provide mechanistic evidence of KLF2‐mediated regulation of K/BxN serum‐induced arthritic inflammation.  相似文献   

20.
Brain‐derived neurotrophic factor (BDNF), corticotropin‐releasing factor (CRF), and hypothalamic neuronal histamine are anorexigenic substances within the hypothalamus. This study examined the interactions among BDNF, CRF, and histamine during the regulation of feeding behavior in rodents. Food intake was measured after treatment with BDNF, α‐fluoromethyl histidine (FMH; a specific suicide inhibitor of histidine decarboxylase that depletes hypothalamic neuronal histamine), or CRF antagonist. We measured food intake in wild‐type mice and mice with targeted disruption of the histamine H1 receptor (H1KO mice) after central BDNF infusion. Furthermore, we investigated CRF content and histamine turnover in the hypothalamus after BDNF treatment, and conversely, BDNF content in the hypothalamus after histamine treatment. We used immunohistochemical staining for histamine H1 receptors (H1‐R) in BDNF neurons. BDNF‐induced feeding suppression was partially attenuated in rats pre‐treated with FMH or a CRF antagonist, and in H1KO mice. BDNF treatment increased CRF content and histamine turnover in the hypothalamus. Histamine increased BDNF content in the hypothalamus. Immunohistochemical analysis revealed that H1‐Rs were expressed on BDNF neurons in the ventromedial nucleus of the hypothalamus. These results indicate that CRF and hypothalamic neuronal histamine mediate the suppressive effects of BDNF on feeding behavior and body weight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号