首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 157 毫秒
1.
In mammary epithelial cells (MECs), prolactin-induced signaling and gene expression requires integrin-mediated cell adhesion to basement membrane (BM). In the absence of proper cell-BM interactions, for example, culturing cells on collagen-coated plastic dishes, signal propagation is substantially impaired. Here we demonstrate that the RhoA-Rok-myosin II pathway accounts for the ineffectiveness of prolactin signaling in MECs cultured on collagen I. Under these culture conditions, the RhoA pathway is activated, leading to downregulation of prolactin receptor expression and reduced prolactin signaling. Enforced activation of RhoA in MECs cultured on BM suppresses prolactin receptor levels, and prevents prolactin-induced Stat5 tyrosine phosphorylation and β-casein expression. Overexpression of dominant negative RhoA in MECs cultured on collagen I, or inhibiting Rok activity, increases prolactin receptor expression, and enhances prolactin signaling. In addition, inhibition of myosin II ATPase activity by blebbistatin also exerts a beneficial effect on prolactin receptor expression and prolactin signaling, suggesting that tension exerted by the collagen substratum, in collaboration with the RhoA-Rok-myosin II pathway, contributes to the failure of prolactin signaling. Furthermore, MECs cultured on laminin-coated plastic have similar morphology and response to prolactin as those cultured on collagen I. They display high levels of RhoA activity and are inefficient in prolactin signaling, stressing the importance of matrix stiffness in signal transduction. Our results reveal that RhoA has a central role in determining the fate decisions of MECs in response to cell-matrix interactions.  相似文献   

2.
Adherent epithelial cells require interactions with the extracellular matrix for their survival, though the mechanism is ill-defined. In long term cultures of primary mammary epithelial cells, a laminin-rich basement membrane (BM) but not collagen I suppresses apoptosis, indicating that adhesion survival signals are specific in their response (. J. Cell Sci. 109:631-642). We now demonstrate that the signal from BM is mediated by integrins and requires both the alpha6 and beta1 subunits. In addition, a hormonal signal from insulin or insulin-like growth factors, but not hydrocortisone or prolactin, is necessary to suppress mammary cell apoptosis, indicating that BM and soluble factors cooperate in survival signaling. Insulin induced autophosphorylation of its receptor whether mammary cells were cultured on collagen I or BM substrata. However, both the tyrosine phosphorylation of insulin receptor substrate-1 and its association with phosphatidylinositol 3-kinase were enhanced in cells cultured on BM, as was the phosphorylation of the phosphatidylinositol 3-kinase effector, protein kinase B. These results suggest a novel extracellular matrix-dependent restriction point in insulin signaling in mammary epithelial cells. The proximal signal transduction event of insulin receptor phosphorylation is not dependent on extracellular matrix, but the activation of downstream effectors requires adhesion to BM. Since phosphatidylinositol 3-kinase was required for mammary epithelial cell survival, we propose that a possible mechanism for BM-mediated suppression of apoptosis is through its facilitative effects on insulin signaling.  相似文献   

3.
Obesity‐induced hyperleptinemia is frequently associated with insulin resistance suggesting a crosstalk between leptin and insulin signaling pathways. Our aim was to determine whether insulin and leptin together interfere on NOS activation in adipocytes. We examined insulin and leptin‐induced nitric oxide synthase (NOS) activity, protein amount and NOS III phosphorylation at Ser1179 in isolated epididymal adipocytes from rat, in the presence or not of inhibitors of kinases implicated in insulin or leptin signaling pathways. Insulin or leptin induced NOS III phosphorylation at Ser1179 leading to increased NO production in rat adipocytes, in agreement with our previous observations. When insulin and leptin at a concentration found in obese rats (10 ng/ml) were combined, NOS activity was not increased, suggesting a negative crosstalk between insulin and leptin signaling mechanisms. Chemical inhibitors of kinases implicated in signaling pathways of insulin, such as PI‐3 kinase, or of leptin, such as JAK‐2, did not prevent this negative interaction. When leptin signaling was blocked by PKA inhibitors, insulin‐induced NOS activity and NOS III phosphorylation at Ser1179 was observed. In the presence of leptin and insulin, (i) IRS‐1 was phosphorylated on Ser307 and this effect was prevented by PKA inhibitors, (ii) JAK‐2 was dephosphorylated, an effect prevented by SHP‐1 inhibitor. A mutual resistance occurs with leptin and insulin. Leptin phosphorylates IRS‐1 to induce insulin resistance while insulin dephosphorylates JAK‐2 to favor leptin resistance. This interference between insulin and leptin signaling could play a crucial role in insulin‐ and leptin‐resistance correlated with obesity. J. Cell. Biochem. 108: 982–988, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
It is well known that variation in the concentration of estrogens affects insulin action. In this study we examine the impact of estradiol (E2) on insulin signaling in the rat heart. Ovariectomized female rats were treated with E2 6 h prior to analysis of basal protein and mRNA content of insulin signaling molecules, and additionally with insulin 30 min before the experiment to delineate E2 effects on phosphorylations and molecular associations relevant for insulin signaling. The results show that E2 decreased insulin receptor (IR) tyrosine phosphorylation, while it did not alter IR protein and mRNA content. E2 administration did not change IR substrate 1 (IRS‐1) protein content and tyrosine phosphorylation, while decreased mRNA content and increased its association with the p85 subunit of phosphatidylinositol 3‐kinase (PI3K). E2 decreased protein and mRNA content of IR substrate 2 (IRS‐2), while did not change IRS‐2 tyrosine phosphorylation and IRS‐2 association with p85. The increase of IRS‐1/p85 is accompanied by increase of p85 protein and mRNA levels, and by stimulation of protein kinase B (Akt) Ser473 phosphorylation. In contrast, Akt protein and mRNA content were not changed. In summary, although in some aspects cardiac insulin signaling is obviously improved by E2 treatment (increase of p85 mRNA and protein levels, enhancement of IRS‐1/p85 association and Ser473Akt phosphorylation), the observed decrease of IR tyrosine phosphorylation, IRS‐2 protein content, and IRSs mRNA contents, suggest very complex interplay of beneficial and suppressive effects of E2, both genomic and non‐genomic, in regulation of heart insulin signaling. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
In adherent cells, cell-substratum interactions are essential for the propagation of some growth factor signaling events. However, it has not been resolved to what extent different types of extracellular matrix regulate the signals elicited by different soluble ligands. Our previous work has shown that prolactin signaling in mammary epithelium requires a specific cell interaction with the basement membrane and does not occur in cells plated on collagen I. We have now investigated whether the proximal signaling pathways triggered by insulin, epidermal growth factor (EGF), and interferon-gamma are differentially regulated in primary mammary epithelial cell cultures established on basement membrane and collagen I. Two distinct signaling pathways triggered by insulin exhibited a differential requirement for cell-matrix interactions. Activation of insulin receptor substrate (IRS) and phosphatidylinositol 3-kinase was restricted to cells contacting basement membrane, whereas the phosphorylation of Erk occurred equally in cells on both substrata. The amplitude and duration of insulin-triggered IRS-1 phosphorylation and its association with phosphatidylinositol 3-kinase were strongly enhanced by cell-basement membrane interactions. The mechanism for inhibition of IRS-1 phosphorylation in cells cultured on collagen I may in part be mediated by protein-tyrosine phosphatase activity since vanadate treatment somewhat alleviated this effect. In contrast to the results with insulin, cell adhesion to collagen I conferred greater response to EGF, leading to higher levels of tyrosine phosphorylation of the EGF receptor and Erk. The mechanism for increased EGF signaling in cells adhering to collagen I was partly through an increase in EGF receptor expression. The interferon-gamma-activated tyrosine phosphorylation of Jak2 and Stat3 was independent of the extracellular matrix. It is well recognized that the cellular environment determines cell phenotype. We now suggest that this may occur through a selective modulation of growth factor signal transduction resulting from different cell-matrix interactions.  相似文献   

6.
The molecular basis of insulin resistance induced by HIV protease inhibitors (HPIs) remains unclear. In this study, Chinese hamster ovary cells transfected with high levels of human insulin receptor (CHO‐IR) and 3T3‐L1 adipocytes were used to elucidate the mechanism of this side effect. Indinavir and nelfinavir induced a significant decrease in tyrosine phosphorylation of the insulin receptor β‐subunit. Indinavir caused a significant increase in the phosphorylation of insulin receptor substrate‐1 (IRS‐1) on serine 307 (S307) in both CHO‐IR cells and 3T3‐L1 adipocytes. Nelfinavir also inhibited phosphorylation of Map/ERK kinase without affecting insulin‐stimulated Akt phosphorylation. Concomitantly, levels of protein tyrosine phosphatase 1B (PTP1B), suppressor of cytokines signaling‐1 and ‐3 (SOCS‐1 and ‐3), Src homology 2B (SH2B) and adapter protein with a pleckstrin homology domain and an SH2 domain (APS) were not altered significantly. When CHO‐IR cells were pre‐treated with sodium salicylate (NaSal), the effects of indinavir on tyrosine phosphorylation of the IR β‐subunit and phosphorylation of IRS‐1 at S307 were abrogated. These data suggest a potential role for the NFκB pathway in insulin resistance induced by HPIs. J. Cell. Biochem. 114: 1729–1737, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
Hyperglycemia and impaired insulin signaling are considered as major factors in the retinal pathology in diabetic retinopathy (DR). Numerous reports support that these two factors damage retinal glial as well as neuronal cells early in diabetes. However, it is not known whether diabetic induced hyperglycemia causes a depression to the insulin signaling. In this study we utilized a well characterized cultured Muller cells (TR-MUL) where we found a high expression of insulin receptor molecules. TR-MUL Cells were treated with high glucose, glutamate and hydrogen peroxide, and activated with insulin. Following treatments, cell lysates were analyzed by immunoblotting experiments for insulin receptor (IRβ) and insulin receptor substrate (IRS1). In addition, cell lysates were immunoprecipitated using antibodies against insulin receptor proteins to analyze tyrosine phosphorylation and serine phosphorylation of insulin receptor proteins. Results indicate that hyperglycemia did not affect the expression of insulin receptor proteins in cultured TR-MUL cells. Although, hyperglycemia seems to inhibit the interaction between IRS1 and IRβ. Hydrogen peroxide increased the tyrosine phosphorylation of insulin receptor proteins but excess glutamate could not affect the insulin receptor proteins indicating that glutamate may not cause oxidative stress in TR-MUL cells. Hyperglycemia lowered serine phosphorylation of IRSser632 and IRSser1101 however, IRSser307 was not affected. Thus, hyperglycemia may not affect insulin signaling through tyrosine phosphorylation of insulin receptor proteins but may inhibit the interactions between insulin receptor proteins. Hyperglycemia induced phosphorylation of various serine residues of IRS1 and their influence on insulin signaling needs further investigation in TR-MUL cells.  相似文献   

8.
9.
Apoptosis is an important mechanism for maintaining tissue homeostasis. The efficient induction and execution of apoptosis are essential for cell clearance in specific developmental situations. Insulin-like growth factor (IGF)-I is a survival factor for epithelial cells in the mammary gland, and its withdrawal or inhibition leads to apoptosis. In this paper we describe a novel mechanism that may lead to suppression of an IGF-I-mediated signaling pathway through cleavage of insulin receptor substrate (IRS). During the process of forced weaning, when mammary epithelial cells rapidly enter apoptosis in vivo, IRS-1 and IRS-2 disappear. We have used cultured mammary epithelial cells to demonstrate that IRS removal can be mediated through the action of caspase 10. Caspase 10 activation and IRS-1 cleavage are regulated by a MKK1-signaling pathway but not by a phosphatidylinositol-3 kinase pathway nor by the extracellular proapoptotic ligands FasL, tumor necrosis factor-alpha-related apoptosis-inducing ligand (TRAIL), or transforming growth factor-beta3. In addition we show that the loss of IRS-1 after MKK1 inhibition prevents IGF-mediated phosphorylation of FKHRL1.  相似文献   

10.
Wnt‐signaling pathway is implicated in pancreatic development and functional regulation of mature beta‐cells. Wnt3a/Wnt pathway activation expands islet cell mass in vitro by increasing proliferation and decreasing apoptosis of beta‐cells, thereby enhancing its function. However, the signaling pathways that mediate these effects remain unknown. By using a clonal beta‐cell line (NIT‐1), we examined the role of IRS2/PI3K in the mediation of Wnt3a‐stimulated beta‐cell growth. Real‐time PCR and Western blot were employed to investigate the activity of Wnt/β‐catenin and IRS2/PI3K signaling. Proliferation of NIT‐1 cells was assessed by BrdU incorporation, and apoptosis was quantitatively determined by TUNEL and flow cytometry (FCM). Dkk1, an inhibitor of Wnt signaling, and wortmannin, an inhibitor of PI3K, were also used. Results showed that Wnt3a rapidly activated Wnt/β‐catenin signaling, promoted IRS2 expression and Akt phosphorylation in NIT‐1 cells. These effects were completely abrogated by Dkk1 or partially eliminated by wortmannin. Wnt3a also promoted NIT‐1 cell proliferation, inhibited cytokine‐induced beta‐cell apoptosis, and increased insulin secretion. Both of these effects were also eliminated by Dkk1 or wortmannin. Our results demonstrated that Wnt3a regulates proliferation, apoptosis and enhances function of pancreatic NIT‐1 beta cells via activation of Wnt/β‐catenin signaling, involving crosstalk with IRS2/PI3K signaling, with the effect of Wnt signaling on beta‐cells also being IRS2/PI3K/AKT dependent. J. Cell. Biochem. 114: 1488–1497, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

11.
In cultured bovine adrenal chromaffin cells treated with nicotine (10 µm for 24 h), phosphorylation of Akt, glycogen synthase kinase‐3β (GSK‐3β) and extracellular signal‐regulated kinase (ERK)1/2 induced by insulin (100 nm for 10 min) was enhanced by ~ 62%, without altering levels of these protein kinases. Nicotine produced time (> 12 h)‐ and concentration (EC50 3.6 and 13 µm )‐dependent increases in insulin receptor substrate (IRS)‐1 and IRS‐2 levels by ~ 125 and 105%, without altering cell surface density of insulin receptors. In these cells, insulin‐induced tyrosine phosphorylation of IRS‐1/IRS‐2 and recruitment of phosphoinositide 3‐kinase (PI3K) to IRS‐1/IRS‐2 were augmented by ~ 63%. The increase in IRS‐1/IRS‐2 levels induced by nicotine was prevented by nicotinic acetylcholine receptor (nAChR) antagonists, the Ca2+ chelator 1,2‐bis(2‐aminophenoxy)‐ethane‐N,N,N′,N′‐tetra‐acetic acid tetrakis‐acetoxymethyl ester, cycloheximide or actinomycin D. Nicotine increased IRS‐1 and IRS‐2 mRNA levels by ~ 57 and ~ 50%, and this was prevented by conventional protein kinase C (cPKC) inhibitor Gö6976, or ERK kinase inhibitors PD98059 and U0126. Nicotine phosphorylated cPKC‐α, thereby increasing phosphorylation of ERK1/ERK2, as demonstrated by using Gö6976, PD98059 or U0126. Selective activation of cPKC‐α by thymeleatoxin mimicked these effects of nicotine. Thus, stimulation of nAChRs up‐regulated expression of IRS‐1/IRS‐2 via Ca2+‐dependent sequential activation of cPKC‐α and ERK, and enhanced insulin‐induced PI3K/Akt/GSK‐3β and ERK signaling pathways.  相似文献   

12.
Although the RhoA/Rho kinase (RhoA/ROK) pathway has been extensively investigated, its roles and downstream signaling pathways are still not well understood in myogenic processes. Therefore, we examined the effects of RhoA/ROK on myogenic processes and their signaling molecules using H9c2 and C2C12 cells. Increases in RhoA/ROK activities and serine phosphorylation levels of insulin receptor substrate (IRS)-1 (Ser307 and Ser636/639) and IRS-2 were found in proliferating myoblasts, whereas IRS-1/2 tyrosine phosphorylation and phosphatidylinositol (PI) 3-kinase activity increased during the differentiation process. ROK strongly bound to IRS-1/2 in proliferation medium but dissociated from them in differentiation medium (DM). ROK inactivation by a ROK inhibitor, Y27632, or a dominant-negative ROK, decreased IRS-1/2 serine phosphorylation with increases in IRS-1/2 tyrosine phosphorylation and PI 3-kinase activity, which led to muscle differentiation even in proliferation medium. Inhibition of ROK also enhanced differentiation in DM. ROK activation by a constitutive active ROK blocked muscle differentiation with the increased IRS-1/2 serine phosphorylation, followed by decreases in IRS-1/2 tyrosine phosphorylation and PI 3-kinase activity in DM. Interestingly, fibroblast growth factor-2 added to DM also blocked muscle differentiation through RhoA/ROK activation. Fibroblast growth factor-2 blockage of muscle differentiation was reversed by Y27632. Collectively, these results suggest that the RhoA/ROK pathway blocks muscle differentiation by phosphorylating IRS proteins at serine residues, resulting in the decreased IRS-1/2 tyrosine phosphorylation and PI 3-kinase activity. The absence of the inhibitory effects of RhoA/ROK in DM due to low concentrations of myogenic inhibitory growth factors seems to allow IRS-1/2 tyrosine phosphorylation, which stimulates muscle differentiation via transducing normal myogenic signaling.  相似文献   

13.
Expression of the heparin-binding growth factor, pleiotrophin (PTN) in the mammary gland has been reported but its function during mammary gland development is not known. We examined the expression of PTN and its receptor ALK (Anaplastic Lymphoma Kinase) at various stages of mouse mammary gland development and found that their expression in epithelial cells is regulated in parallel during pregnancy. A 30-fold downregulation of PTN mRNA expression was observed during mid-pregnancy when the mammary gland undergoes lobular-alveolar differentiation. After weaning of pups, PTN expression was restored although baseline expression of PTN was reduced significantly in mammary glands of mice that had undergone multiple pregnancies. We found PTN expressed in epithelial cells of the mammary gland and thus used a monoclonal anti-PTN blocking antibody to elucidate its function in cultured mammary epithelial cells (MECs) as well as during gland development. Real-time impedance monitoring of MECs growth, migration and invasion during anti-PTN blocking antibody treatment showed that MECs motility and invasion but not proliferation depend on the activity of endogenous PTN. Increased number of mammospheres with laminin deposition after anti-PTN blocking antibody treatment of MECs in 3D culture and expression of progenitor markers suggest that the endogenously expressed PTN inhibits the expansion and differentiation of epithelial progenitor cells by disrupting cell-matrix adhesion. In vivo, PTN activity was found to inhibit ductal outgrowth and branching via the inhibition of phospho ERK1/2 signaling in the mammary epithelial cells. We conclude that PTN delays the maturation of the mammary gland by maintaining mammary epithelial cells in a progenitor phenotype and by inhibiting their differentiation during mammary gland development.  相似文献   

14.
Insulin is important for brain function and neuronal survival. Insulin signaling is initiated by the phosphorylation of insulin receptor substrate‐1 (IRS‐1) at tyrosine (pTyr) residue. However, IRS‐1 is inhibited by phosphorylation at serine (pSer). In Alzheimer's disease (AD), oxidative stress and accumulation of amyloid beta (Aβ) induce neuroinflammation, which augments pSer‐IRS‐1 and reduces pTyr‐IRS‐1 disturbing insulin signaling pathway. Coenzyme Q10 (CoQ10) and biotin possess antioxidant and anti‐inflammatory properties, and, in this study, their impact on insulin signaling is investigated in an aluminium chloride (AlCl3) model of AD. AD was induced by oral administration of AlCl3 (75 mg/kg) for 60 days. Biotin (2 mg/kg), CoQ10 (10 mg/kg), and their combination were supplemented concomitantly with AlCl3 for 60 days. Memory test and histological examination were performed. Brain levels of lipid peroxides, antioxidants (reduced glutathione and superoxide dismutase), inflammatory markers (tumor necrosis factor‐α, interleukin‐6 [IL‐6], IL‐1, and nuclear factor κB), and phosphorylated Akt (survival kinase) as well as protein levels of Aβ, IRS‐1 (pTyr and pSer), and caspase‐3 (apoptotic marker) were determined. AlCl3 resulted in impaired memory, significant increase in Aβ, lipid peroxides, inflammatory markers, caspase‐3, and pSer‐IRS‐1, with significant reduction of the antioxidants, pTyr‐IRS‐1, and p‐Akt reflecting Aβ‐induced inflammation and defective insulin signaling. Histological examination revealed focal aggregations of inflammatory cells and neuronal degeneration. The biochemical deviations and histological changes were attenuated by the concomitant treatment with biotin and, to greater extent, with CoQ10 and the combination. In conclusion, biotin and CoQ10 could protect against AD via attenuating inflammatory response and enhancing insulin signaling.  相似文献   

15.
Most insulin responses correlate well with insulin receptor (IR) Tyr kinase activation; however, critical exceptions to this concept have been presented. Specific IR mutants and stimulatory IR antibodies demonstrate a lack of correlation between IR kinase activity and specific insulin responses in numerous independent studies. IR conformation changes in response to insulin observed with various IR antibodies define an IR kinase‐independent signal that alters the C‐terminus. IR‐related receptors in lower eukaryotes that lack a Tyr kinase point to an alternative mechanism of IR signaling earlier in evolution. However, the implied IR kinase‐independent signaling mechanism remained obscure at the molecular level. Here we begin to define the molecular basis of an IR‐dependent but IR kinase‐independent insulin signal that is equally transmitted by a kinase‐inactive mutant IR. This insulin signal results in Tyr phosphorylation and catalytic activation of phosphatase PHLPP1 via a PI 3‐kinase‐independent, wortmannin‐insensitive signaling pathway. Dimerized SH2B1/PSM is a critical activator of the IR kinase and the resulting established insulin signal. In contrast it is an inhibitor of the IR kinase‐independent insulin signal and disruption of SH2B1/PSM dimer binding to IR potentiates this signal. Dephosphorylation of Akt2 by PHLPP1 provides an alternative, SH2B1/PSM‐regulated insulin‐signaling pathway from IR to Akt2 of opposite polarity and distinct from the established PI 3‐kinase‐dependent signaling pathway via IRS proteins. In combination, both pathways should allow the opposing regulation of Akt2 activity at two phosphorylation sites to specifically define the insulin signal in the background of interfering Akt‐regulating signals, such as those controlling cell proliferation and survival. J. Cell. Biochem. 107: 65–75, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
MicroRNA 145 (miR145) has been proposed as a tumor suppressor. It was previously shown that miR145 targets the 3′ UTR of the insulin receptor substrate‐1 (IRS‐1) and dramatically inhibits the growth of colon cancer cells. miR145 also targets the type 1 insulin‐like growth factor receptor (IGF‐IR). We show here that an IRS‐1 lacking its 3′ UTR is no longer down‐regulated by miR145 and rescues colon cancer cells from miR145‐induced inhibition of growth. An IGF‐IR resistant to miR145 (again by elimination of its 3′ UTR) is not down‐regulated by miR145 but fails to rescue colon cancer cells from growth inhibition. These and other results, taken together, indicate that down‐regulation of IRS‐1 plays a significant role in the tumor suppressor activity of miR145. J. Cell. Physiol. 220: 485–491, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
18.
This study was conducted to examine the role of lectin‐like oxidized low‐density lipoprotein receptor‐1 (LOX‐1) in monocyte adhesion‐induced redox‐sensitive, Akt/eNOS and Ca2+ signaling pathways in endothelial cells (ECs). LOX‐1 was blocked by an antibody‐neutralizing LOX‐1 TS92 or small interfering RNA. In cultured human aortic ECs, monocyte adhesion activated Rac1 and p47phox, and increased NADPH oxidase activity and reactive oxygen species (ROS) generation within 30 min and NF‐κB phosphorylation within 1 h, resulting in redox‐sensitive gene expression. Akt and eNOS phosphorylation was induced 15 min after adding monocytes and returned to control level after 30 min, whereas NO production was not altered by monocyte adhesion. Blockade of LOX‐1 blunted the monocyte adhesion‐triggered redox‐sensitive signaling pathway and Akt/eNOS phosphorylation in ECs. Both endothelial intracellular Ca2+ mobilization and Ca2+ influx caused by monocyte attachment were markedly attenuated by pretreatment of ECs with TS92. This suggests that LOX‐1 is involved in redox‐sensitive, Akt/eNOS and Ca2+ signaling pathways in monocyte adhesion to ECs independent of oxidized low‐density lipoprotein (ox‐LDL). Furthermore, blockade of Ca2+ inhibited monocyte adhesion‐triggered Rac1 and p47phox activation and ROS generation in ECs, whereas Ca2+ signaling was suppressed by blockade of NADPH oxidase and ROS generation. Finally, TS92 blocked the monocyte adhesion to ECs stimulated with or without tumor necrosis factor‐α or ox‐LDL. We provide evidence that LOX‐1 plays a role in redox‐sensitive, Akt/eNOS and Ca2+ signaling pathways in monocyte adhesion to ECs independent of the ox‐LDL–LOX‐1 axis. J. Cell. Physiol. 220: 706–715, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
Fibronectin (FN) is the foremost proliferation‐associated extracellular matrix component promoting cell adhesion, migration, and survival. We examined the effect of FN on cell proliferation and the related signaling pathways in mouse embryonic stem (ES) cells. FN increased integrin β1, Src, focal adhesion kinase (FAK), and caveolin‐1 phosphorylation levels in a time‐dependent manner. Phosphorylation of Src, FAK, and caveolin‐1 was attenuated by integrin β1 neutralizing antibody. Integrin β1, Src, and FAK coimmunoprecipitated with caveolin‐1 in the presence of FN. In addition, FN increased RhoA and Rho kinase activation, which were completely blocked by PP2, FAK small interfering RNA (siRNA), caveolin‐1 siRNA, or the caveolar disruptor methyl‐β‐cyclodextrin (MβCD). FN also increased phosphorylation of Akt and ERK 1/2, which were significantly blocked by either FAK siRNA, caveolin‐1 siRNA, MβCD, GGTI‐286 (RhoA inhibitor), or Y‐27632 (Rho kinase inhibitor). FN‐induced increase of protooncogenes (c‐fos, c‐myc, and c‐Jun) and cell‐cycle regulatory proteins (cyclin D1/CDK4 and cyclin E/CDK2) expression levels were attenuated by FAK siRNA or caveolin‐1 siRNA. Furthermore, inhibition of each pathway such as integrin β1, Src, FAK, caveolin‐1, RhoA, Akt, and ERK 1/2 blocked FN‐induced [3H]‐thymidine incorporation. We conclude that FN stimulates mouse ES cell proliferation via RhoA‐PI3K/Akt‐ERK 1/2 pathway through caveolin‐1 phosphorylation. J. Cell. Physiol. 226: 267–275, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

20.
We have examined the requirement for intracellular calcium (Ca(2+)) in insulin signal transduction in 3T3-L1 adipocytes. Using the Ca(2+) chelator 1,2- bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, sodium (BAPTA-AM), we find both augmentation and inhibition of insulin signaling phenomena. Pretreatment of cells with 50 microM BAPTA-AM did not affect tyrosine phosphorylation of insulin receptor substrate (IRS)1/2 or insulin receptor (IR)beta. The decreased mobility of IRS1 normally observed after chronic stimulation with insulin, due to serine phosphorylation, was completely eliminated by Ca(2+) chelation. Correlating with decreased insulin-induced serine phosphorylation of IRS1, phosphotyrosine-mediated protein-protein interactions involving p85, IRS1, IRbeta, and phosphotyrosine-specific antibody were greatly enhanced by pretreatment of cells with BAPTA-AM. As a result, insulin-mediated, phosphotyrosine-associated PI3K activity was also enhanced. BAPTA-AM pretreatment inhibited other insulin-induced phosphorylation events including phosphorylation of Akt, MAPK (ERK1 and 2) and p70 S6K. Phosphorylation of Akt on threonine-308 was more sensitive to Ca(2+) depletion than phosphorylation of Akt on serine-473 at the same insulin dose (10 nM). In vitro 3'-phosphatidylinositol-dependent kinase 1 activity was unaffected by BAPTA-AM. Insulin-stimulated insulin-responsive glucose transporter isoform translocation and glucose uptake were both inhibited by calcium depletion. In summary, these data demonstrate a positive role for intracellular Ca(2+) in distal insulin signaling events, including initiation/maintenance of Akt phosphorylation, insulin-responsive glucose transporter isoform translocation, and glucose transport. A negative role for Ca(2+) is also indicated in proximal insulin signaling steps, in that, depletion of intracellular Ca(2+) blocks IRS1 serine/threonine phosphorylation and enhances insulin-stimulated protein-protein interaction and PI3K activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号