首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The homology of pharynges within the mostly pharynx-less Acoela has been a matter of discussion for decades. Here, we analyze the pharynges of three members of the Solenofilomorphidae, Myopea sp. and two species of the genus Solenofilomorpha, by means of light and transmission electron microscopy. Special focus is placed on the ultrastructure of the pharyngeal musculature, epidermis surrounding the mouth, pharyngeal epithelium, and junction with the digestive parenchyma. The main goal of this study was to evaluate the usefulness of certain characters for broader comparisons within the Acoela. Among the three species, characters relating to position of the mouth, presence and elaboration of sphincter muscles, presence of pharyngeal glands, and ultrastructure of epitheliosomes proved to be variously species- and genus-specific. The arrangement of pharyngeal muscles and their connection with body wall musculature, ultrastructure of receptor cells, and morphology of a nonciliated glandular region in the posterior pharynx, in contrast, appear to be characteristic of the family Solenofilomorphidae and thus of predominant interest for comparisons with other acoel families.  相似文献   

2.
The phylogenetic position of the phylum Platyhelminthes has been re-evaluated in the past decade by analysis of diverse molecular datasets. The consensus is that the Rhabditophora + Catenulida, which includes most of the flatworm taxa, are not primitively simple basal bilaterians but are related to coelomate phyla such as molluscs. The status of two other groups of acoelomate worms, Acoela and Nemertodermatida, is less clear. Although many characteristics unite these two groups, initial molecular phylogenetic studies placed the Nemertodermatida within the Rhabditophora, but placed the Acoela at the base of the Bilateria, distant from other flatworms. This contradiction resulted in scepticism about the basal position of acoels and led to calls for further data. We have sequenced large subunit ribosomal RNA genes from 13 rhabditophorans + catenulids, three acoels and one nemertodermatid, tripling the available data. Our analyses strongly support a basal position of both acoels and nemertodermatids. Alternative hypotheses are significantly less well supported by the data. We conclude that the Nemertodermatida and Acoela are basal bilaterians and, owing to their unique body plan and embryogenesis, should be recognized as a separate phylum, the Acoelomorpha.  相似文献   

3.
Acoela are marine microscopic worms currently thought to be the sister taxon of all other bilaterians. Acoels have long been used as models in evolutionary scenarios, and generalized conclusions about acoel and bilaterian ancestral features are frequently drawn from studies of single acoel species. There is no extensive phylogenetic study of Acoela and the taxonomy of the 380 species is chaotic. Here we use two nuclear ribosomal genes and one mitochondrial gene in combination with 37 morphological characters in an analysis of 126 acoel terminals (about one-third of the described species) to estimate the phylogeny and character evolution of Acoela. We present an estimate of posterior probabilities for ancestral character states at 31 control nodes in the phylogeny. The overall reconstruction signal based on the shape of the posterior distribution of character states was computed for all morphological characters and control nodes to assess how well these were reconstructed. The body-wall musculature appears more clearly reconstructed than the reproductive organs. Posterior similarity to the root was calculated by averaging the divergence between the posterior distributions at the nodes and the root over all morphological characters. Diopisthoporidae is the sister group to all other acoels and has the highest posterior similarity to the root. Convolutidae, including several "model" acoels, is most divergent. Finally, we present a phylogenetic classification of Acoela down to the family level where six previous family level taxa are synonymized.  相似文献   

4.
The phylogenetic relationships of the lower worm group Acoela were investigated using newly obtained nuclear 18S rDNA sequences from 16 acoels in combination with 16 acoel sequences available on GenBank from other laboratories. Parsimony and maximum likelihood analyses of the molecular data supported the concept that the Acoela is monophyletic; however, the gene tree produced by these analyses conflicts with the current taxonomic system for the Acoela in several family-level groupings. Most notable is the apparent polyphyly of the largest family of acoels, the Convolutidae. DNA analysis grouped together species of small-bodied convolutids in one clade, while large-bodied convolutids grouped in a separate clade with other large-bodied acoels. Despite such conflicts, the branching pattern in the gene tree is well supported by morphological characters of sperm and body-wall musculature.  相似文献   

5.
Since first described, acoels were considered members of the flatworms (Platyhelminthes). However, no clear synapomorphies among the three large flatworm taxa - the Catenulida, the Acoelomorpha and the Rhabditophora - have been characterized to date. Molecular phylogenies, on the other hand, commonly positioned acoels separate from other flatworms. Accordingly, our own multi-locus phylogenetic analysis using 43 genes and 23 animal species places the acoel flatworm Isodiametra pulchra at the base of all Bilateria, distant from other flatworms. By contrast, novel data on the distribution and proliferation of stem cells and the specific mode of epidermal replacement constitute a strong synapomorphy for the Acoela plus the major group of flatworms, the Rhabditophora. The expression of a piwi-like gene not only in gonadal, but also in adult somatic stem cells is another unique feature among bilaterians. These two independent stem-cell-related characters put the Acoela into the Platyhelminthes-Lophotrochozoa clade and account for the most parsimonious evolutionary explanation of epidermal cell renewal in the Bilateria. Most available multigene analyses produce conflicting results regarding the position of the acoels in the tree of life. Given these phylogenomic conflicts and the contradiction of developmental and morphological data with phylogenomic results, the monophyly of the phylum Platyhelminthes and the position of the Acoela remain unresolved. By these data, both the inclusion of Acoela within Platyhelminthes, and their separation from flatworms as basal bilaterians are well-supported alternatives.  相似文献   

6.
Comparative ultrastructure of the pharynx simplex in turbellaria   总被引:9,自引:1,他引:9  
David A. Doe 《Zoomorphology》1981,97(1-2):133-193
Summary The simple pharynges in thirteen species of Turbellaria in the orders Macrostomida, Haplopharyngida, Catenulida, and Acoela have been studied by electron microscopy. After consideration of the functional aspects of the pharynx simplex, the relationship of the pharynx simplex ultrastructure to the phylogeny of the above mentioned groups is analyzed.The Haplopharyngida and Macrostomida are united as a group by the following characters: a pharynx transition zone of 1–5 circles of insunk cells with modified ciliary rootlets or no cilia, pharynx sensory cells without stereocilia collars and with a variable number of cilia, a prominent nerve ring with more than 30 axons circling the pharynx at the level of the beginning of the pharynx proper distal to the gland ring, 2 or more gland cell types in the pharynx, with at least two layers of muscle present and the longitudinal muscles derived from regular and special body wall circular muscles and a prominent post-oral nerve commissure. This specific arrangement can be distinguished from the other pharynx simplex types and is called the pharynx simplex coronatus.The catenulid pharynx simplex is characterized by the lack of a prominent nerve ring, no prominent post-oral commissure, a transition zone with epidermal type ciliary rootlets, recessed monociliated sensory cells, and one or no type of pharynx gland cell. The Acoela are specialized because of the epidermal type rootlets in the pharynx proper. They also lack a transition zone and a prominent nerve ring and have monociliated sensory cells different from the catenulid type.Ultrastructural characters of the pharynx simplex support the view that the Haplopharyngida-Macrostomida are monophyletic. The more primitive catenulid pharynx probably arose from a common ancestral pool with the Haplopharyngida and Macrostomida, although it does not appear possible presently to establish a clear monophyletic line for these forms. The various pharynx types within the Acoela appear to indicate independent origins with no clear link to the basic pharynx simplex type in the three other orders.Abbreviations Used in Figures a nerve axon - ar accessory rootlet - bb basal body - bn brain-nerve ring commissure - c caudal rootlet - ce centriole - ci cilium - cm circular muscle - cp ciliary pit - cu cuticle - cw cell web - d dictyosome - dp proximal pharynx proper cell - e epidermis - er rough endoplasmic reticulum - f fibrous rod - g gastrodermis - gc gastrodermal gland cell - he heterochromatin - i intercellular matrix - lc lateral nerve cord - lm longitudinal muscle - m mitochondria - mo mouth - mt microtubules - mv microvilli - n nucleus - nr nerve ring - ns neurosecretory granules - p pharynx proper - ph pharynx - po post-oral commissure - r rostral rootlet - rm radial muscle - s sphincter - sc sensory cell - sj septate junction - sr sensory rootlet - t transition zone - u ultrarhabdite - v vertical rootlet - va food vacuole - za zonula adhaerens - 1 type I gland cell - 2 type II gland cell - 3 type III gland cell - 4 type IV gland cell - 5 type V gland cell - 6 type VI gland cell - 7 type VII gland cell  相似文献   

7.
We have characterized the homologs of an actin, a troponin I, and a tropomyosin gene in the acoel Symsagittifera roscoffensis. These genes are expressed in muscles and most likely coexpressed in at least a subset of them. In addition, and for the first time for Acoela, we have produced a species-specific muscular marker, an antibody against the tropomyosin protein. We have followed tropomyosin gene and protein expression during postembryonic development and during the posterior regeneration of amputated adults, showing that preexisting muscle fibers contribute to the wound closure. The three genes characterized in this study interact in the striated muscles of vertebrates and invertebrates, where troponin I and tropomyosin are key regulators of the contraction of the sarcomere. S. roscoffensis and all other acoels so far described have only smooth muscles, but the molecular architecture of these is the same as that of striated fibers of other bilaterians. Given the proposed basal position of acoels within the Bilateria, we suggest that sarcomeric muscles arose from a smooth muscle type, which had the molecular repertoire of striated musculature already in place. We discuss this model in a broad comparative perspective.  相似文献   

8.
In an effort to understand the phylogeny of the Platyhelminthes, the patterns of body-wall musculature of flatworms were studied using fluorescence microscopy and Alexa-488-labeled phalloidin. Species of the Catenulida have a simple orthogonal gridwork of longitudinal and circular muscles. Members of the Rhabditophora have the same gridwork of musculature, but also have diagonal muscles over their entire body. Although a few species of Acoelomorpha possessed a simple orthogonal grid of musculature, most species typically have distinctly different patterns of dorsal and ventral body-wall musculature that include sets of longitudinal, circular, U-shaped, and several kinds of diagonal muscles. Several distinct patterns of musculature were identified, including 8 patterns in 11 families of acoels. These patterns have proven to be useful in clarifying the phylogeny of the Acoelomorpha, particularly with regard to the higher acoels. Patterns of musculature as well as other morphological characters are used here for revisions of acoel systematics, including the return of Eumecynostomum sanguineum (Mecynostomidae) to the genus Aphanostoma (Convolutidae), the revision of the family Childiidae, and the formation of a new family, Actinoposthiidae.  相似文献   

9.
Recent phylogenetic analyses of ribosomal and protein coding nuclear genes place the marine worms within the Nemertodermatida as one of the oldest lineages among the bilaterian animals. We studied the early embryonic cleavage in Nemertoderma westbladi to provide the first account of nemertodermatid early development. Live embryos were studied with interference microscopy and fixed embryos were either sectioned or studied with confocal laser scanning microscopy. Initially the divisions in the embryo are radial, but then micromeres are shifted clockwise generating a spiral pattern. The four-cell stage is characterized by duets of macromeres and micromeres and thus resembles the duet cleavage reported from members of the Acoela. However, subsequent stages differ from the acoel duet pattern and also from quartet spiral cleavage. The optimization of the cleavage pattern on current phylogenetic hypotheses with Nemertodermatida and Acoela as early bilaterian branches is discussed.  相似文献   

10.
The taxa Nemertodermatida and Acoela have traditionally been considered closely related and classified as sister groups within the Acoelomorpha Ehlers 1984 (Platyhelminthes). Recent molecular investigations have questioned their respective position. In this study, the 5-HT and FMRFamide immunoreactivity (IR) in the nervous system of two nemertodermatids, Nemertoderma westbladi and Meara stichopi, is described. The 5-HT immunoreactive pattern differs in the two nemertodermatids studied. In M. stichopi, two loose longitudinal bundles of 5-HT-immunoreactive fibres and an basi-epidermal nerve net were observed. In N. westbladi the 5-HT-IR shows a ring-shaped commissural structure, different from the commissural brain of acoels. In both nemertodermatids, FMRFamide immunoreactive nerve fibres followed the 5-HT-immunoreactive fibres. It is demonstrated that the Nemertodermatida have neither a 'commissural brain' structure similar to that of the Acoela, nor a 'true', ganglionic brain and orthogon, typical for other Platyhelminthes. The question of the plesiomorphic or apomorphic nature of the nervous system in Nemertodermatida cannot yet be answered. The neuroanatomy of the studied worms provides no synapomorphy supporting the taxon Acoelomorpha.  相似文献   

11.
The significance of muscle cells for the origin of mesoderm in bilateria   总被引:2,自引:0,他引:2  
Muscle tissue may have played a central role in the early evolutionof mesoderm. The first function of myocytes could have beento control swimming and gliding motion in ciliated vermiformorganisms, as it still is in such present-day basal Bilateriaas the Nemertodermatida. The only mesodermal cells between epidermisand gastrodermis in Nemertodermatida are myocytes, and conceivablythe myocyte was, in fact, the original mesodermal cell type.In Nemertodermatida as well as the Acoela, myocytes are subepithelialfiber-type muscle cells and appear to originate from the gastrodermalepithelium by emigration of single cells. Other mesodermal cellsin the acoels are the peripheral parenchyma (connective tissue)and tunica cells of the gonads, and these also arise from thegastrodermis. Musculature in many of the coelomate protostomesand deuterostomes, on the other hand, is in the form of epitheliomuscular(myoepithelial) cells, and this cell type may also have beenan early form of the mesodermal myocyte. The mesodermal bandsin the small annelid Polygordius and in juvenile enteropneustshave cells intermediate between mesenchymal and epithelial intheir histological organization as they develop into myoepithelia.If acoelomates were derived from coelomates by progenesis, thenthe fiber-type muscles of acoelomates could be products of foreshorteneddifferentiation of such tissue. The precise serial patterningof circular muscle cells along the anterior-posterior axis duringembryonic development in the acoel Convoluta pulchra providesa model for early steps in the gradual evolution of segmentationfrom iterated organ systems.  相似文献   

12.
Ulrich Ehlers 《Hydrobiologia》1991,227(1):263-271
The general fine-structural organization of statocysts in Catenulida, Nemertodermatida, Acoela, Proseriata, Lurus (Dalyellioida), and Xenoturbella are summarized. In lithophorous (statocyst-bearing) members of the Catenulida, the statocysts exhibit a few parietal cells and one or several movable statoliths within a spacious intracapsular cavity. Statocysts in the Nemertodermatida have several parietal cells and two lithocytes, each equipped with one statolith, whereas those of the other acoelomorphan taxon, the Acoela, always have two parietal cells and one movable lithocyte. The statocysts of lithophorous members of the Proseriata represent more sophisticated systems: each has two clusters of accessory cells in addition to several parietal cells and a voluminous lithocyte in which the statolith is movable. In catenulids and proseriates, processes of outer neurons penetrate the capsule of the statocyst, whereas such innervations have not been found in the Nemertodermatida and Acoela. I conclude that the different types of statocysts have evolved independently within the Plathelminthes. Xenoturbella displays an intraepidermal statocyst with many monociliary parietal cells and several mobile cells (lithocytes) within the central cavity of the statocyst. Each of these mobile cells carries a statolith-like structure and one prominent cilium. The statocyst of Xenoturbella does not correspond to any type of plathelminth statocyst.  相似文献   

13.
Acoel flatworms are small marine worms traditionally considered to belong to the phylum Platyhelminthes. However, molecular phylogenetic analyses suggest that acoels are not members of Platyhelminthes, but are rather extant members of the earliest diverging Bilateria. This result has been called into question, under suspicions of a long branch attraction (LBA) artefact. Here we re-examine this problem through a phylogenomic approach using 68 different protein-coding genes from the acoel Convoluta pulchra and 51 metazoan species belonging to 15 different phyla. We employ a mixture model, named CAT, previously found to overcome LBA artefacts where classical models fail. Our results unequivocally show that acoels are not part of the classically defined Platyhelminthes, making the latter polyphyletic. Moreover, they indicate a deuterostome affinity for acoels, potentially as a sister group to all deuterostomes, to Xenoturbellida, to Ambulacraria, or even to chordates. However, the weak support found for most deuterostome nodes, together with the very fast evolutionary rate of the acoel Convoluta pulchra, call for more data from slowly evolving acoels (or from its sister-group, the Nemertodermatida) to solve this challenging phylogenetic problem.  相似文献   

14.
The ultrastructure and distribution of receptor cells near the mouth and (where present) the pharynx of Hofstenia miamia, Proporus bermudensis, Conaperta thela, and Convoluta convoluta (Acoela) were investigated by transmission electron microscopy and confocal laser scanning microscopy of specimens stained with a fluorescence marker for actin. Five types of monociliary receptors were identified: (1) non‐collared receptors with a single long and narrow ciliary rootlet; (2) non‐collared receptors with a wide main ciliary rootlet and a smaller posterior rootlet; (3) non‐collared receptors with a single wide and hollow ciliary rootlet with a granulated core; (4) Collar (?) receptors with obliquely radial filament bundles in the cell apex and with a single hollow ciliary rootlet composed of numerous strand‐like elements; and (5) Collar receptors lacking a striated rootlet but with a granular body (swallow's nest rootlet). While H. miamia bears the first two receptor types, P. bermudensis has receptors of type 1, 3 and 5, and Cona. thela and Conv. convoluta have receptors of type 3, 4 and 5. The density of receptors is generally highest at the anterior body tip, regardless of where the mouth is located. Most receptor types occur scattered over the whole body but type 2 receptors of H. miamia are restricted to the pharynx and mouth region. The lack of a common receptor type specific for the mouth and pharynx of the investigated species points to an independent origin of the pharynges in Hofsteniidae and in Proporidae and of the mouth tube in Convolutidae. Moreover, the homology of the so‐called collar receptors in Acoela with typical collar receptors in other invertebrates is questioned.  相似文献   

15.
The Nemertodermatida is a small group of worms, regarded as an order of the Platyhelminthes. The group is of special systematic interest because of its putative basal phylogenetic position in the Platyhelminthes. The phylogeny of the Nemertodermatida was estimated using paup 4.0 software for parsimony analysis. The analysis was based on 72 structural parsimony-informative characters totalling 184 different character states. All eight well described species of nemertodermatids were included in the ingroup. As outgroup were chosen species of the Acoela, Catenulida, Macrostomida and Xenoturbellida. A single most parsimonious tree was obtained with 140 steps and a consistency index (CI) of 0.80. The Nemertodermatida, Ascoparidae and Nemertodermatidae are shown as monophyletic taxa in the tree. The species Nemertoderma psammicola does not group with the other members of the genus Nemertoderma , hence criteria of phylogenetic taxonomy imply that N. psammicola should be renamed. A suggested new name is Sterreria psammicola gen. n .  相似文献   

16.
In most zoological textbooks, Platyhelminthes are depicted as an early- emerging clade forming the likely sister group of all the other Bilateria. Other phylogenetic proposals see them either as the sister group of most of the Protostomia or as a group derived from protostome coelomate ancestors by progenesis. The main difficulty in their correct phylogenetic placing is the lack of convincing synapomorphies for all Platyhelminthes, which may indicate that they are polyphyletic. Moreover, their internal phylogenetic relationships are still uncertain. To test these hypotheses, new complete 18S rDNA sequences from 13 species of "Turbellaria" have been obtained and compared to published sequences of 2 other "Turbellaria," 3 species of parasitic Platyhelminthes, and several diploblastic and deuterostome and protostome triploblastics. Maximum-parsimony, maximum-likelihood, and neighbor-joining methods were used to infer their phylogeny. The results show the order Catenulida to form an independent early- branching clade and emerge as a potential sister group of the rest of the Bilateria, while the rest of Platyhelminthes (Rhabditophora), which includes the parasites, form a clear monophyletic group closely related to the protostomes. The order Acoela, morphologically considered as candidates to be ancestral, are shown to be fast-clock organisms for the 18S rDNA gene. Hence, long-branching of acoels and insufficient sampling of catenulids and acoels leave their position still unresolved and call for further studies. Within the Rhabditophora, our analyses suggest (1) a close relationship between orders Macrostomida and Polycladida, forming a clear sister group to the rest of orders; (2) that parasitic platyhelminthes appeared early in the evolution of the group and form a sister group to a still-unresolved clade made by Nemertodermatida, Lecithoepitheliata, Prolecithophora, Proseriata, Tricladida, and Rhabdocoela; and (3) that Seriata is paraphyletic.   相似文献   

17.

Background

In order to increase the weak database concerning the organogenesis of Acoela – a clade regarded by many as the earliest extant offshoot of Bilateria and thus of particular interest for studies concerning the evolution of animal bodyplans – we analyzed the development of the musculature of Symsagittifera roscoffensis using F-actin labelling, confocal laserscanning microscopy, and 3D reconstruction software.

Results

At 40% of development between egg deposition and hatching short subepidermal fibres form. Muscle fibre development in the anterior body half precedes myogenesis in the posterior half. At 42% of development a grid of outer circular and inner longitudinal muscles is present in the bodywall. New circular muscles either branch off from present fibres or form adjacent to existing ones. The number of circular muscles is higher than that of the longitudinal muscles throughout all life cycle stages. Diagonal, circular and longitudinal muscles are initially rare but their number increases with time. The ventral side bears U-shaped muscles around the mouth, which in addition is surrounded by a sphincter muscle. With the exception of the region of the statocyst, dorsoventral muscles are present along the entire body of juveniles and adults, while adults additionally exhibit radially oriented internal muscles in the anterior tip. Outer diagonal muscles are present at the dorsal anterior tip of the adult. In adult animals, the male gonopore with its associated sexual organs expresses distinct muscles. No specific statocyst muscles were found. The muscle mantles of the needle-shaped sagittocysts are situated along the lateral edges of the animal and in the posterior end close to the male gonopore. In both juveniles and adults, non-muscular filaments, which stain positively for F-actin, are associated with certain sensory cells outside the bodywall musculature.

Conclusion

Compared to the myoanatomy of other acoel taxa, Symsagittifera roscoffensis shows a very complex musculature. Although data on presumably basal acoel clades are still scarce, the information currently available suggests an elaborated musculature with longitudinal, circular and U-shaped muscles as being part of the ancestral acoel bodyplan, thus increasing the possibility that Urbilateria likewise had a relatively complicated muscular ground pattern.  相似文献   

18.
Patterns of musculature as taxonomic characters for the Turbellaria Acoela   总被引:3,自引:1,他引:2  
Tyler  Seth  Hyra  Gregory S. 《Hydrobiologia》1998,383(1-3):51-59
While turbellarians are generally assumed to have body-wall musculature consisting routinely of longitudinal, circular, and diagonal fibers, members of the Acoela examined by a fluorescence-microscopy technique specific for actin showed more complicated and distinctive arrangements of muscles, giving promise for better delimiting taxa within this taxonomically difficult order. Certain globose or tear-drop-shaped worms such as Convoluta pulchra and species of Pseudaphanostoma, Mecynostomum, and Otocelis, showed a complex pattern in which muscles longitudinal in the anterior half of the body arc diagonally across the posterior half; complex brushes of parenchymal muscles that cross at the level of the statocyst and arc postero-laterally also characterize these groups. The more elongate acoel Paratomella sp. was found to have musculature dominated by strictly longitudinal fibers and with relatively weak circular fibers and few fibers running diagonally to the body axis, yet the elongate mecynostomid Paedomecynostomum bruneum showed a crossing of antero-longitudinal fibers similar to that seen in the more globose Mecynostomum sp. A distinctive looping of muscles around the mouth is seen in P. bruneum and the Anaperidae. Such similarities and differences in pattern of musculature promise to provide easily recognizable characters for taxonomy of the Acoela at levels ranging from species to family. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Morphological studies of eleven new species in the family permitted reconstruction of progressive evolutionary lines, and this strongly implies progressive evolutionary lines for other acoela. Solenofilomorpha funilis n. sp., Myopea crassula n. g. n. sp., M. latafaucium n. sp., Fusantrum rhammiphorum n. g. n. sp. and Endocincta punctata n. g. n. sp. are described from the coast of South Carolina, U.S.A., and S. guaymensis n. sp. is described from the Gulf of California. Five additional unnamed species from the U. S. Pacific Coast, Sweden and Tunisia are briefly described. Two species groupings were based on correlation between two different arrangements of pharynx muscles and trio arrangements of antrum muscles and further correlations with lesser characters. The membership of the two groupings in a single family make it clear that evolution proceeded by addition of structures to a less complex common ancestor. Functional and behavioral considerations support the evolutionary path drawn from morphology. Distinctive statocyst structure, ciliary interconnections and sperm morphology shared by acoels show them to have a common ancestry, but clearly different pharynges and male structures cannot be consistent with evolution by reductions. A common ancestor of low complexity has probably given rise to several partly parallel evolutionary lines which together form the structurally diverse Acoela. The history of acoel systematics is also briefly summarized.  相似文献   

20.
Recent hypotheses on metazoan phylogeny have recognized three main clades of bilaterian animals: Deuterostomia, Ecdysozoa and Lophotrochozoa. The acoelomate and 'pseudocoelomate' metazoans, including the Platyhelminthes, long considered basal bilaterians, have been referred to positions within these clades by many authors. However, a recent study based on ribosomal DNA placed the flatworm group Acoela as the sister group of all other extant bilaterian lineages. Unexpectedly, the nemertodermatid flatworms, usually considered the sister group of the Acoela together forming the Acoelomorpha, were grouped separately from the Acoela with the rest of the Platyhelminthes (the Rhabditophora) within the Lophotrochozoa. To re-evaluate and clarify the phylogenetic position of the Nemertodermatida, new sequence data from 18S ribosomal DNA and mitochondrial genes of nemertodermatid and other bilaterian species were analysed with parsimony and maximum likelihood methods. The analyses strongly support a basal position within the Bilateria for the Nemertodermatida as a sister group to all other bilaterian taxa except the Acoela. Despite the basal position of both Nemertodermatida and Acoela, the clade Acoelomorpha was not retrieved. These results imply that the last common ancestor of bilaterian metazoans was a small, benthic, direct developer without segments, coelomic cavities, nephrida or a true brain. The name Nephrozoa is proposed for the ancestor of all bilaterians excluding the Nemertodermatida and the Acoela, and its descendants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号