Optoacoustic imaging enables the measurement of tissue oxygen saturation (sO2) and blood perfusion while being utilized for detecting tumor microenvironments. Our aim was to employ multispectral optoacoustic tomography (MSOT) to assess immediate-early changes of hemoglobin level and sO2 within breast tumors during diverse treatments. Mouse breast cancer models were allocated into four groups: control, everolimus (EVE), paclitaxel (PTX), and photodynamic therapy (PDT). Hemoglobin was quantified daily, as well as sO2 and blood perfusion were verified by immunohistochemical (IHC) staining. MSOT showed a temporal window of enhanced oxygenation and improved perfusion in EVE and PTX groups, while sO2 consistently remained below baseline in PDT. The same results were obtained for the IHC. Therefore, MSOT can monitor tumor hypoxia and indirectly reflect blood perfusion in a non-invasive and non-labeled way, which has the potential to monitor breast cancer progression early and enable individualized treatment in clinical practice. 相似文献
Existing mammographic screening solutions are generally associated with several major drawbacks, such as exposure to ionizing radiation or insufficient sensitivity in younger populations with radiographically‐dense breast. Even when combined with ultrasound or magnetic resonance imaging, X‐Ray mammography may still attain unspecific or false positive results. Thus, development of new breast imaging tools represents a timely medical challenge. We report on a new approach to high‐resolution functional and anatomical breast angiography using volumetric hand‐held optoacoustic tomography, which employs light intensities safe for human use. Experiments in young healthy volunteers with fibroglandular‐dominated dense breasts revealed the feasibility of rendering three‐dimensional images representing vascular anatomy and functional blood oxygenation parameters at video rate. Sufficient contrast was achieved at depths beyond 2 cm within dense breasts without compromising the real‐time imaging performance. The suggested solution may thus find applicability as a standalone or supplemental screening tool for early detection and follow‐up of carcinomas in radiographically‐dense breasts.
Volumetric handheld optoacoustic tomography scanner uses safe pulses of near‐infrared light to render three‐dimensional images of deep vascular anatomy, blood oxygenation and breast parenchyma at video rate. 相似文献
Optoacoustic (photoacoustic) imaging assumes that the detected signal varies linearly with laser energy. However, nonlinear intensity responses as a function of light fluence have been suggested in optoacoustic microscopy, that is, within the first millimeter of tissue. In this study, we explore the presence of nonlinearity deeper in tissue (~4 mm), as it relates to optoacoustic mesoscopy, and investigate the fluence required to delineate a switch from linear to nonlinear behavior. Optoacoustic signal nonlinearity is studied for different materials, different wavelengths and as a function of changes in the scattering and absorption coefficient of the medium imaged. We observe fluence thresholds in the mJ/cm2 range and preliminary find that different materials may exhibit different nonlinearity patterns. We discuss the implications of nonlinearity in relation to image accuracy and quantification in optoacoustic tomography. 相似文献
Optical imaging plays a major role in disease detection in dermatology. However, current optical methods are limited by lack of three‐dimensional detection of pathophysiological parameters within skin. It was recently shown that single‐wavelength optoacoustic (photoacoustic) mesoscopy resolves skin morphology, i.e. melanin and blood vessels within epidermis and dermis. In this work we employed illumination at multiple wavelengths for enabling three‐dimensional multispectral optoacoustic mesoscopy (MSOM) of natural chromophores in human skin in vivo operating at 15–125 MHz. We employ a per‐pulse tunable laser to inherently co‐register spectral datasets, and reveal previously undisclosed insights of melanin, and blood oxygenation in human skin. We further reveal broadband absorption spectra of specific skin compartments. We discuss the potential of MSOM for label‐free visualization of physiological biomarkers in skin in vivo.
Cross‐sectional optoacoustic image of human skin in vivo. The epidermal layer is characterized by melanin absorption. A vascular network runs through the dermal layer, exhibiting blood oxygenation values of 50–90%. All scale bars: 250 µm 相似文献
Optical‐resolution photoacoustic microscopy (OR‐PAM) has been shown to be an excellent imaging modality for monitoring and study of tumor microvasculature. However, previous studies focused mainly on the normal tissues and did not quantify the tumor microvasculature. In this study, we present an in vivo OR‐PAM imaging of the melanomas and hepatoma implanted in the mouse ear. We quantify the vessel growth by extracting the skeletons of both dense and thin branches of the tumor microvasculature obtained by Hessian matrix enhancement followed by improved two‐step multistencils fast marching method. Compared with the previous methods of using OR‐PAM for normal tissues, our method was more effective in extracting the binary vascular network in the tumor images and in obtaining the complete and continuous microvascular skeleton maps. Our demonstration of using OR‐PAM in improving microvasculature of tumors and quantification of tumor growth would push deep this technology for the early diagnosis and treatment of cancers. 相似文献
Photoacoustic methods offer unique capabilities for photosynthesis research. Phenomena that are readily observed by photoacoustics
include the storage of energy by electron transport, oxygen evolution by leaf tissue at microsecond time resolution, and the
conformational changes of photosystems caused by charge separation. Despite these capabilities, photoacoustic methods have
not been widely exploited in photosynthesis research. One factor that has contributed to their slow adoption is uncertainty
in the interpretation of photoacoustic signals. Careful experimentation is resolving this uncertainty, however, and technical
refinements of photoacoustic methods continue to be made. This review provides an overview of the application of photoacoustics
to the study of photosynthesis with an emphasis on the resolution of uncertainties in the interpretation of photoacoustic
signals. Recent developments in photoacoustic technology are also presented, including a microphotoacoustic spectrometer,
gas permeable photoacoustic cells, the use of photoacoustics to monitor phytoplankton populations, and the use of photoacoustics
to study protein dynamics.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
The concentrations of contrast agents for optoacoustic imaging of small animals must usually be optimized through extensive pilot experiments on a case‐by‐case basis. The present work describes a streamlined approach for determining the minimum detectable concentration (MDC) of a contrast agent given experimental conditions and imaging system parameters. The developed Synthetic Data Framework (SDF) allows estimation of MDCs of various contrast agents under different tissue conditions without extensive animal experiments. The SDF combines simulated optoacoustic signals from exogenously administered contrast agents with in vivo experimental signals from background tissue to generate realistic synthetic multispectral optoacoustic images. In this paper, the SDF is validated with in vivo measurements and demonstrates close agreement between SDF synthetic data and experimental data in terms of both image intensity and MDCs. Use of the SDF to estimate MDCs for fluorescent dyes and nanoparticles at different tissue depths and for imaging lesions of different sizes is illustrated. 相似文献
Optoacoustic (photoacoustic) imaging is often performed with one‐dimensional transducer arrays, in analogy to ultrasound imaging. Optoacoustic imaging using linear arrays offers ease of implementation but comes with several performance drawbacks, in particular poor elevation resolution, i.e. the resolution along the axis perpendicular to the focal plane. Herein, we introduce and investigate a bi‐directional scanning approach using linear arrays that can improve the imaging performance to quasi‐isotropic transverse resolution. We study the approach theoretically and perform numerical simulations and phantom measurements to evaluate its performance under defined conditions. Finally, we discuss the features and the limitations of the proposed method.
The poor elevation resolution in a linear scan (left image) is overcome by the proposed bi‐directional scanning approach that yields isotropic transverse resolution (right). 相似文献
Breast conserving surgery (BCS) offering similar surgical outcomes as mastectomy while retaining breast cosmesis is becoming increasingly popular for the management of early stage breast cancers. However, its association with reoperation rates of 20% to 40% following incomplete tumor removal warrants the need for a fast and accurate intraoperative surgical margin assessment tool that offers cellular, structural and molecular information of the whole specimen surface to a clinically relevant depth. Biophotonic technologies are evolving to qualify as such an intraoperative tool for clinical assessment of breast cancer surgical margins at the microscopic and macroscopic scale. Herein, we review the current research in the application of biophotonic technologies such as photoacoustic imaging, Raman spectroscopy, multimodal multiphoton imaging, diffuse optical imaging and fluorescence imaging using medically approved dyes for breast cancer detection and/or tumor subtype differentiation toward intraoperative assessment of surgical margins in BCS specimens, and possible challenges in their route to clinical translation. 相似文献
Endovenous laser therapy (ELT) was introduced in clinical practice for treating incompetent veins about fifteen years ago. Despite the considerable clinical evidence collected so far, no rigorous guidelines are yet available regarding the optimal energy deposition protocols while incidence of recanalization, lack of vessel occlusion and collateral damage remains variable among patients. Online monitoring and feedback‐based control over the lesion progression may improve clinical outcomes. Yet the currently employed monitoring tools, such as Doppler ultrasound, often do not provide sufficient contrast as well as three‐dimensional imaging capacity for accurate lesion assessment during thermal treatments. Here we investigate on the utility of volumetric optoacoustic tomography for real‐time monitoring of the ELT procedures. Experiments performed in subcutaneous veins of an ox foot model revealed the accurate spatio‐temporal maps of the lesion progression and characteristics of the vessel wall. Optoacoustic images further correlated with the temperature elevation measured in the area adjacent to the coagulation spot and made it possible to track the position of the fiber tip during its pull back in real time and in all three dimensions. Overall, we showcase that volumetric optoacoustic tomography is a promising tool for providing online feedback during endovenous laser therapy.
Tumor angiogenesis is essential for tumor growth and progression. Therefore, targeting tumor blood vessels is a promising approach for cancer therapy. Angiogenesis, the formation of blood vessels, is a multistep process, and strongly influenced by the microenvironment. There are no in vitro assays that can resemble this dynamic process in vivo. For this reason, animal models and imaging technologies are critical for studying tumor angiogenesis, identifying therapeutic targets as well as validating the targets. Non-invasive molecular imaging in animal models presents an unprecedented opportunity and ability for us to perform repetitive observations and analysis of the biological processes underlying tumor angiogenesis and tumor progression in living animals in real time. As we gain a better understanding of the fundamental molecular nature of cancer, these techniques will be an important adjunct in translating the knowledge into clinical practice. This important information may elucidate how the tumor blood vessels behave and respond to certain treatments and therapies. 相似文献
Molecular optoacoustic (photoacoustic) imaging typically relies on the spectral identification of absorption signatures from molecules of interest. To achieve this, two or more excitation wavelengths are employed to sequentially illuminate tissue. Due to depth‐related spectral dependencies and detection related effects, the multispectral optoacoustic tomography (MSOT) spectral unmixing problem presents a complex non‐linear inversion operation. So far, different studies have showcased the spectral capacity of optoacoustic imaging, without however relating the performance achieved to the number of wavelengths employed. Overall, the dependence of the sensitivity and accuracy of optoacoustic imaging as a function of the number of illumination wavelengths has not been so far comprehensively studied. In this paper we study the impact of the number of excitation wavelengths employed on the sensitivity and accuracy achieved by molecular optoacoustic tomography. We present a quantitative analysis, based on synthetic MSOT datasets and observe a trend of sensitivity increase for up to 20 wavelengths. Importantly we quantify this relation and demonstrate an up to an order of magnitude sensitivity increase of multi‐wavelength illumination vs. single or dual wavelength optoacoustic imaging. Examples from experimental animal studies are finally utilized to support the findings.
In vivo MSOT imaging of a mouse brain bearing a tumor that is expressing a near‐infrared fluorescent protein. ( a ) Monochromatic optoacoustic imaging at the peak excitation wavelength of the fluorescent protein. ( b ) Overlay of the detected bio‐distribution of the protein (red pseudocolor) on the monochromatic optoacoustic image. ( c ) Ex vivo validation by means of cryoslicing fluorescence imaging. 相似文献
The main objective of this work was the development of a novel 2D dosimetry approach for small animal external radiotherapy using radioluminescence imaging (RLI) with a commercial complementary metal oxide semiconductor detector. Measurements of RLI were performed on the small animal image‐guided platform SmART, RLI data were corrected for perspective distortion using Matlab. Four irradiation fields were tested and the planar 2D dose distributions and dose profiles were compared against dose calculations performed with a Monte Carlo based treatment planning system and gafchromic film. System linearity and RLI image noise against dose were also measured. The maximum difference between beam size measured with RLI and nominal beam size was less than 8% for all the tested beams. The image correction procedure was able to reduce perspective distortion. A novel RLI approach for quality assurance of a small animal irradiator was presented and tested. Results are in agreement with MC dose calculations and gafchromic film measurements. 相似文献
A wearable scanning photoacoustic imaging (wPAI) system is presented for noninvasive brain study in behaving rats. This miniaturized wPAI system consists of four pico linear servos and a single transducer‐based PAI probe. It has a dimension of 50 mm × 35 mm × 40 mm, and a weight of 26 g excluding cablings. Phantom evaluation shows that wPAI achieves a lateral resolution of ~0.5 mm and an axial resolution of ~0.1 mm at a depth of up to 11 mm. Its imaging ability is also tested in a behaving rat, and the results indicate that wPAI is able to image blood vessels at a depth of up to 5 mm with intact scalp and skull. With its noninvasive, deep penetration, and functional imaging ability in behaving animals, wPAI can be used for behavior, cognition, and preclinical brain disease studies.
In vivo imaging of tissue/vasculature oxygen saturation levels is of prime interest in many clinical applications. To this end, the feasibility of combining two distinct and complementary imaging modalities is investigated: optoacoustics (OA) and near‐infrared optical tomography (NIROT), both operating noninvasively in reflection mode. Experiments were conducted on two optically heterogeneous phantoms mimicking tissue before and after the occurrence of a perturbation. OA imaging was used to resolve submillimetric vessel‐like optical absorbers at depths up to 25 mm, but with a spectral distortion in the OA signals. NIROT measurements were utilized to image perturbations in the background and to estimate the light fluence inside the phantoms at the wavelength pair (760 nm, 830 nm). This enabled the spectral correction of the vessel‐like absorbers' OA signals: the error in the ratio of the absorption coefficient at 830 nm to that at 760 nm was reduced from 60%‐150% to 10%‐20%. The results suggest that oxygen saturation (SO2) levels in arteries can be determined with <10% error and furthermore, that relative changes in vessels' SO2 can be monitored with even better accuracy. The outcome relies on a proper identification of the OA signals emanating from the studied vessels. 相似文献