首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cancer research has previously focused on the identification of specific genes and pathways responsible for cancer initiation and progression based on the prevailing viewpoint that cancer is caused by a stepwise accumulation of genetic aberrations. This viewpoint, however, is not consistent with the clinical finding that tumors display high levels of genetic heterogeneity and distinctive karyotypes. We show that chromosomal instability primarily generates stochastic karyotypic changes leading to the random progression of cancer. This was accomplished by tracing karyotypic patterns of individual cells that contained either defective genes responsible for genome integrity or were challenged by onco-proteins or carcinogens that destabilized the genome. Analysis included the tracing of patterns of karyotypic evolution during different stages of cellular immortalization. This study revealed that non-clonal chromosomal aberrations (NCCAs) (both aneuploidy and structural aberrations) and not recurrent clonal chromosomal aberrations (CCAs) are directly linked to genomic instability and karyotypic evolution. Discovery of "transitional CCAs" during in vitro immortalization clearly demonstrates that karyotypic evolution in solid tumors is not a continuous process. NCCAs and their dynamic interplay with CCAs create infinite genomic combinations leading to clonal diversity necessary for cancer cell evolution. The karyotypic chaos observed within the cell crisis stage prior to establishment of the immortalization further supports the ultimate importance of genetic aberrations at the karyotypic or genome level. Therefore, genomic instability generated NCCAs are a key driving force in cancer progression. The dynamic relationship between NCCAs and CCAs provides a mechanism underlying chromosomal based cancer evolution and could have broad clinical applications.  相似文献   

2.
The establishment of the correct conceptual framework is vital to any scientific discipline including cancer research. Influenced by hematologic cancer studies, the current cancer concept focuses on the stepwise patterns of progression as defined by specific recurrent genetic aberrations. This concept has faced a tough challenge as the majority of cancer cases follow non-linear patterns and display stochastic progression. In light of the recent discovery that genomic instability is directly linked to stochastic non-clonal chromosome aberrations (NCCAs), and that cancer progression can be characterized as a dynamic relationship between NCCAs and recurrent clonal chromosome aberrations (CCAs), we propose that the dynamics of NCCAs is a key element for karyotypic evolution in solid tumors. To support this viewpoint, we briefly discuss various basic elements responsible for cancer initiation and progression within an evolutionary context. We argue that even though stochastic changes can be detected at various levels of genetic organization, such as at the gene level and epigenetic level, it is primarily detected at the chromosomal or genome level. Thus, NCCA-mediated genomic variation plays a dominant role in cancer progression. To further illustrate the involvement of NCCA/CCA cycles in the pattern of cancer evolution, four cancer evolutionary models have been proposed based on the comparative analysis of karyotype patterns of various types of cancer.  相似文献   

3.
The theoretical view that genome aberrations rather than gene mutations cause a majority of cancers has gained increasing support from recent experimental data. Genetic aberration at the chromosome level is a key aspect of genome aberration and the systematic definition of chromosomal aberrations with their impact on genome variation and cancer genome evolution is of great importance. However, traditionally, efforts have focused on recurrent clonal chromosome aberrations (CCAs). The significance of stochastic non-clonal chromosome aberrations (NCCAs) is discussed in this paper with emphasis on the simple types of NCCAs that have until recently been considered "non-significant background". Comparison of various subtypes of transitional and late-stage CCAs with simple and complex types of NCCAs has uncovered a dynamic relationship among NCCAs, CCAs, overall genomic instability, and karyotypic evolution, as well as the stochastic nature of cancer evolution. Here, we review concepts and methodologies to measure NCCAs and discuss the possible causative mechanism and consequences of NCCAs. This study raises challenging questions regarding the concept of cancer evolution driven by stochastic chromosomal aberration mediated genome irregularities that could have repercussions reaching far beyond cancer and organismal genomes.  相似文献   

4.
Genetic and epigenetic heterogeneity (the main form of non‐genetic heterogeneity) are key elements in cancer progression and drug resistance, as they provide needed population diversity, complexity, and robustness. Despite drastically increased evidence of multiple levels of heterogeneity in cancer, the general approach has been to eliminate the “noise” of heterogeneity to establish genetic and epigenetic patterns. In particular, the appreciation of new types of epigenetic regulation like non‐coding RNA, have led to the hope of solving the mystery of cancer that the current genetic theories seem to be unable to achieve. In this mini‐review, we have briefly analyzed a number of mis‐conceptions regarding cancer heterogeneity, followed by the re‐evaluation of cancer heterogeneity within a framework of the genome‐centric concept of evolution. The analysis of the relationship between gene, epigenetic and genome level heterogeneity, and the challenges of measuring heterogeneity among multiple levels have been discussed. Further, we propose that measuring genome level heterogeneity represents an effective strategy in the study of cancer and other types of complex diseases, as emphasis on the pattern of system evolution rather than specific pathways provides a global and synthetic approach. Compared to the degree of heterogeneity, individual molecular pathways will have limited predictability during stochastic cancer evolution where genome dynamics (reflected by karyotypic heterogeneity) will dominate. J. Cell. Physiol. 220: 538–547, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
A key feature of cancer chromosomes and genomes is their high level of dynamics and the ability to constantly evolve. This unique characteristic forms the basis of genetic heterogeneity necessary for cancer formation, which presents major obstacles to current cancer diagnosis and treatment. It has been difficult to integrate such dynamics into traditional models of cancer progression. In this conceptual piece, we briefly discuss some of the recent exciting progress in the field of cancer genomics and genome research. In particular, a re-evaluation of the previously disregarded non-clonal chromosome aberrations (NCCAs) is reviewed, coupled with the progress of the detection of sub-chromosomal aberrations with array technologies. Clearly, the high level of genetic heterogeneity is directly caused by genome instability that is mediated by stochastic genomic changes, and genome variations defined by chromosome aberrations are the driving force of cancer progression. In addition to listing various types of non-recurrent chromosomal aberrations, we discuss the likely mechanism underlying cancer chromosome dynamics. Finally, we call for further examination of the features of dynamic genome diseases including cancer in the context of systems biology and the need to integrate this new knowledge into basic research and clinical applications. This genome centric concept will have a profound impact on the future of biological and medical research.  相似文献   

6.
Chromosomal heterogeneity is a hallmark of most tumors and it can drive critical events as growth advantages, survival advantages, progression and karyotypic evolution. Medulloblastoma (MB) is the most common malignant central nervous system tumor in children. This work attempted to investigate chromosomal heterogeneity and instability profiles of two MB pediatric cell lines and their relationship with cell phenotype. We performed GTG-banding and cytokinesis-block micronucleus cytome assays, as well as morphological characterization, cell population doubling time, colony-forming efficiency, and chemo-sensitivity assays in two pediatric MB cell lines (UW402 and UW473). Both MB cells showed a high chromosomal heterogeneity. UW473 cells showed ~2 fold higher both clonal- and non-clonal chromosomal alterations than UW402 cells. Besides, UW473 showed two clonal-groups well-differentiated by ploidy level (<2n> and <4n>) and also presented a significantly higher number of chromosomal instability biomarkers. These results were associated with high morphological heterogeneity and survival advantages for UW473 and proliferation advantages for UW402 cells. Moreover, UW473 was significantly more sensitive to methotrexate, temozolomide and cisplatin while UW402 cells were more sensitive to doxorubicin. These data suggest that distinct different degrees of karyotypic heterogeneity and instability may affect neoplasic phenotype of MB cells. These findings bring new insights into cell and tumor biology.  相似文献   

7.
Cancer genome sequencing: the challenges ahead   总被引:3,自引:0,他引:3  
A major challenge for The Cancer Genome Atlas (TCGA) Project is solving the high level of genetic and epigenetic heterogeneity of cancer. For the majority of solid tumors, evolution patterns are stochastic and the end products are unpredictable, in contrast to the relatively predictable stepwise patterns classically described in many hematological cancers. Further, it is genome aberrations, rather than gene mutations, that are the dominant factor in generating abnormal levels of system heterogeneity in cancers. These features of cancer could significantly reduce the impact of the sequencing approach, as it is only when mutated genes are the main cause of cancer that directly sequencing them is justified. Many biological factors (genetic and epigenetic variations, metabolic processes) and environmental influences can increase the probability of cancer formation, depending on the given circumstances. The common link between these factors is the stochastic genome variations that provide the driving force behind the cancer evolutionary process within multiple levels of a biological system. This analysis suggests that cancer is a disease of probability and the most-challenging issue to the TCGA project, as well as the development of general strategies for fighting cancer, lie at the conceptual level.  相似文献   

8.
Henry H Q Heng 《Génome》2007,50(5):517-524
Resolving the persistence of sexual reproduction despite its overwhelming costs (known as the paradox of sex) is one of the most persistent challenges of evolutionary biology. In thinking about this paradox, the focus has traditionally been on the evolutionary benefits of genetic recombination in generating offspring diversity and purging deleterious mutations. The similarity of pattern between evolution of organisms and evolution among cancer cells suggests that the asexual process generates more diverse genomes owing to less controlled reproduction systems, while sexual reproduction generates more stable genomes because the sexual process can serve as a mechanism to "filter out" aberrations at the chromosome level. Our reinterpretation of data from the literature strongly supports this hypothesis. Thus, the principal consequence of sexual reproduction is the reduction of drastic genetic diversity at the genome or chromosome level, resulting in the preservation of species identity rather than the provision of evolutionary diversity for future environmental challenges. Genetic recombination does contribute to genetic diversity, but it does so secondarily and within the framework of the chromosomally defined genome.  相似文献   

9.
Experimental results of diversity estimates in a set of populations often exhibit contradictory patterns when different marker systems are used. Using simulations we identified potential causes for these discrepancies. These investigations aimed also to detect whether different sampling strategies of markers within the genome resulted in different estimates of the diversity at the whole genome level. The simulations consisted in generating a set of populations undergoing various evolutionary scenarios which differed by population size, migration rate and heterogeneity of gene flow. Population diversity was then computed for the whole genome and for subsets of loci corresponding to different marker techniques. Rank correlation between the two measures of diversity were investigated under different scenarios. We showed that the heterogeneity of genetic diversity either between loci (genomic heterogeneity, GH) or among populations (population heterogeneity, PH) varied greatly according to the evolutionary scenario considered. Furthermore, GH and PH were major determinants of the level of rank correlation between estimates of genetic diversities obtained using different kinds of markers. We found a strong positive relationship between the level of the correlation and PH, whatever the marker system. It was also shown that, when GH values were constantly low during generations, a reduced number of microsatellites was enough to predict the diversity of the whole genome, whereas when GH increased, more loci were needed to predict the diversity and amplified fragment length polymorphism markers would be more recommended in this case. Finally the results are discussed to recommend strategies for gene diversity surveys.  相似文献   

10.
Identification of the general molecular mechanism of cancer is the Holy Grail of cancer research. Since cancer is believed to be caused by a sequential accumulation of cancer gene mutations, the identification, characterization, and targeting of common genetic alterations and their defined pathways have dominated the field for decades. Despite the impressive data accumulated from studies of gene mutations, epigenetic dysregulation, and pathway alterations, an overwhelming amount of diverse molecular information has offered limited understanding of the general mechanisms of cancer. To solve this paradox, the newly established genome theory is introduced here describing how somatic cells evolve within individual patients. The evolutionary mechanism of cancer is characterized using only three key components of somatic cell evolution that include increased system dynamics induced by stress, elevated genetic and epigenetic heterogeneity, and genome alteration mediated natural selection. Cancer progression represents a macro‐evolutionary process where karyotype change or genome replacement plays the key dominant role. Furthermore, the recently identified relationship between the evolutionary mechanism and a large number of diverse individual molecular mechanisms is discussed. The total sum of all the individual molecular mechanisms is equal to the evolutionary mechanism of cancer. Individual molecular mechanisms including all the molecular mechanisms described to date are stochastically selected and unpredictable and are therefore clinically impractical. Recognizing the fundamental importance of the underlying basis of the evolutionary mechanism of cancer mandates the development of new strategies in cancer research. J. Cell. Biochem. 109: 1072–1084, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
12.
Chromosome instability in neoplasia: chaotic roots to continuous growth   总被引:2,自引:0,他引:2  
Multiple rearrangements of chromosome number and structure are common manifestations of genomic instability encountered in mammalian tumors. In neoplasia, in continuous immortalized growth in vitro, and in animal models, the accumulation of various defects on DNA repair and telomere maintenance machineries, mitotic spindle abnormalities, and breakage-fusion-bridge cycles, deteriorate the precise mitotic distribution of the genomic content, thus producing various types of chromosomal anomalies. These lesions generate tremendous genomic imbalances, which are evolutionary selected, since they force the function of the whole genome towards continuous growth. For more than a century chromosomal rearrangements and aneuploidy in neoplasia have been discussed and a vast number of genes and pathways, directly or indirectly implicated, have been described. In this review, we focus on the biological mechanisms that generate numerical or structural deviations of the normal diploid chromosomal constitution in epithelial neoplasia. There is growing evidence that chromosomal instability is both an epiphenomenon and a leading cause of cancer. We will discuss the roles of genes, chromosome structure, and telomere dysfunction in the initiation of chromosomal instability. We will explore research strategies that can be applied to identify rates of chromosomal instability in a specimen, and the putative biological consequences of karyotypic heterogeneity. Finally, we will re-examine the longstanding hypothesis of the generation of aneuploidy in the context of telomere dysfunction and restoration.  相似文献   

13.
Multi-level heterogeneity is a fundamental but underappreciated feature of cancer. Most technical and analytical methods either completely ignore heterogeneity or do not fully account for it, as heterogeneity has been considered noise that needs to be eliminated. We have used single-cell and population-based assays to describe an instability-mediated mechanism where genome heterogeneity drastically affects cell growth and cannot be accurately measured using conventional averages. First, we show that most unstable cancer cell populations exhibit high levels of karyotype heterogeneity, where it is difficult, if not impossible, to karyotypically clone cells. Second, by comparing stable and unstable cell populations, we show that instability-mediated karyotype heterogeneity leads to growth heterogeneity, where outliers dominantly contribute to population growth and exhibit shorter cell cycles. Predictability of population growth is more difficult for heterogeneous cell populations than for homogenous cell populations. Since “outliers” play an important role in cancer evolution, where genome instability is the key feature, averaging methods used to characterize cell populations are misleading. Variances quantify heterogeneity; means (averages) smooth heterogeneity, invariably hiding it. Cell populations of pathological conditions with high genome instability, like cancer, behave differently than karyotypically homogeneous cell populations. Single-cell analysis is thus needed when cells are not genomically identical. Despite increased attention given to single-cell variation mediated heterogeneity of cancer cells, continued use of average-based methods is not only inaccurate but deceptive, as the “average” cancer cell clearly does not exist. Genome-level heterogeneity also may explain population heterogeneity, drug resistance, and cancer evolution.  相似文献   

14.
We review data on the chromosomal variation in the common shrewSorex araneus Linnaeus, 1758 in the context of recent molecular findings. The article considers all aspects of chromosomal variation in this species: within-population polymorphism, karyotypic races, hybrid zones between karyotypic races, chromosomal evolution, and speciation. The recent molecular data provide vital information on different evolutionary processes such as inbreeding, genetic drift, population expansion, and selective forces. In particular, the molecular data challenge traditional models for the fixation of chromosomal variants, provide new insights into the manner of spread of such variants once they are formed and allow in-depth analysis of gene exchange between karyotypic races.  相似文献   

15.
《遗传学报》2021,48(7):560-570
Cancer is an evolutionary process fueled by genetic or epigenetic alterations in the genome. Understanding the evolutionary dynamics that are operative at different stages of tumor progression might inform effective strategies in early detection, diagnosis, and treatment of cancer. However, our understanding on the dynamics of tumor evolution through time is very limited since it is usually impossible to sample patient tumors repeatedly. The recent advances in in vitro 3D organoid culture technologies have opened new avenues for the development of more realistic human cancer models that mimic many in vivo biological characteristics in human tumors. Here, we review recent progresses and challenges in cancer genomic evolution studies and advantages of using tumor organoids to study cancer evolution. We propose to establish an experimental evolution model based on continuous passages of patient-derived organoids and longitudinal sampling to study clonal dynamics and evolutionary patterns over time. Development and integration of population genetic theories and computational models into time-course genomic data in tumor organoids will help to pinpoint the key cellular mechanisms underlying cancer evolutionary dynamics, thus providing novel insights on therapeutic strategies for highly dynamic and heterogeneous tumors.  相似文献   

16.
Osteosarcoma (OS) is characterized by chromosomal instability and high copy number gene amplification. The breakage–fusion–bridge (BFB) cycle is a well-established mechanism of genome instability in tumors and in vitro models used to study the origins of complex chromosomal rearrangements and cancer genome amplification. To determine whether the BFB cycle could be increasing the de novo rate of formation of cytogenetic aberrations in OS, the frequency of anaphase bridge configurations and dicentric chromosomes in four OS cell lines was quantified. An increased level of anaphase bridges and dicentrics was observed in all the OS cell lines. There was also a strong association between the frequencies of anaphase bridges, dicentrics, centrosomal anomalies, and multipolar mitotic figures in all the OS cell lines, indicating a possible link in the mechanisms that led to the structural and numerical instabilities observed in OS. In summary, this study has provided strong support for the role of the BFB cycle in generating the extensive structural chromosome aberrations, as well as cell-to-cell cytogenetic variation observed in OS, thus conferring the genetic diversity for OS tumor progression.  相似文献   

17.
Heterochromatin is the gene-poor, satellite-rich eukaryotic genome compartment that supports many essential cellular processes. The functional diversity of proteins that bind and often epigenetically define heterochromatic DNA sequence reflects the diverse functions supported by this enigmatic genome compartment. Moreover, heterogeneous signatures of selection at chromosomal proteins often mirror the heterogeneity of evolutionary forces that act on heterochromatic DNA. To identify new such surrogates for dissecting heterochromatin function and evolution, we conducted a comprehensive phylogenomic analysis of the Heterochromatin Protein 1 gene family across 40 million years of Drosophila evolution. Our study expands this gene family from 5 genes to at least 26 genes, including several uncharacterized genes in Drosophila melanogaster. The 21 newly defined HP1s introduce unprecedented structural diversity, lineage-restriction, and germline-biased expression patterns into the HP1 family. We find little evidence of positive selection at these HP1 genes in both population genetic and molecular evolution analyses. Instead, we find that dynamic evolution occurs via prolific gene gains and losses. Despite this dynamic gene turnover, the number of HP1 genes is relatively constant across species. We propose that karyotype evolution drives at least some HP1 gene turnover. For example, the loss of the male germline-restricted HP1E in the obscura group coincides with one episode of dramatic karyotypic evolution, including the gain of a neo-Y in this lineage. This expanded compendium of ovary- and testis-restricted HP1 genes revealed by our study, together with correlated gain/loss dynamics and chromosome fission/fusion events, will guide functional analyses of novel roles supported by germline chromatin.  相似文献   

18.
Polyploidization is an important mechanism for introducing diversity into a population and promoting evolutionary change. It is believed that most, if not all, angiosperms have undergone whole genome duplication events in their evolutionary history, which has led to changes in genome structure, gene regulation, and chromosome maintenance. Previous studies have shown that polyploidy can coincide with meiotic abnormalities and somatic cytogenetic mosaics in Arabidopsis allotetraploids, but it is unclear whether this phenomenon can contribute to novel diversity or act as a mechanism for speciation. In this study we tested the hypothesis that mosaic aneuploidy contributes to the formation of incipient diversity in neoallopolyploids. We generated a population of synthesized Arabidopsis allohexaploids and monitored karyotypic and phenotypic variation in this population over the first seven generations. We found evidence of sibling line-specific chromosome number variations and rapidly diverging phenotypes between lines, including flowering time, leaf shape, and pollen viability. Karyotypes varied between sibling lines and between cells within the same tissues. Cytotypic variation correlates with phenotypic novelty, and, unlike in allotetraploids, remains a major genomic destabilizing factor for at least the first seven generations. While it is still unclear whether new stable aneuploid lines will arise from these populations, our data are consistent with the notion that somatic aneuploidy, especially in higher level allopolyploids, can act as an evolutionary relevant mechanism to induce rapid variation not only during the initial allopolyploidization process but also for several subsequent generations. This process may lay the genetic foundation for multiple, rather than just a single, new species.  相似文献   

19.
Iwasa Y  Michor F 《PloS one》2011,6(3):e17866
Intraneoplastic diversity in human tumors is a widespread phenomenon of critical importance for tumor progression and the response to therapeutic intervention. Insights into the evolutionary events that control tumor heterogeneity would be a major breakthrough in our comprehension of cancer development and could lead to more effective prevention methods and therapies. In this paper, we design an evolutionary mathematical framework to study the dynamics of heterogeneity over time. We consider specific situations arising during tumorigenesis, such as the emergence of positively selected mutations ("drivers") and the accumulation of neutral variation ("passengers"). We perform exact computer simulations of the emergence of diverse tumor cell clones over time, and derive analytical estimates for the extent of heterogeneity within a population of cancer cells. Our methods contribute to a quantitative understanding of tumor heterogeneity and the impact of heritable alterations on this tumor trait.  相似文献   

20.
In spite of the existence of multiple cellular mechanisms that ensure genome stability, thanks to the advent of quantitative genomic assays in the last decade, an unforeseen level of plasticity in cellular genomes has begun to emerge in many different fields of cell biology. Eukaryotic cells not only have a remarkable ability to change their karyotypes in response to various perturbations, but also these karyotypic changes impact cellular fitness and in some circumstances enable evolutionary adaptation. In this review, we focus on recent findings in non-pathogenic yeasts indicating that karyotypic changes generate selectable phenotypic variation and alter genomic instability. Based on these findings, we propose that in highly stressful and thus strongly selective environments karyotypic changes could act both as a driver and as a catalyzer of cellular adaptation, i.e. karyotypic changes drive large phenotypic leaps and at the same time catalyze the accumulation of even more genotypic and karyotypic changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号