首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
Differences in feeding behavior and performance among the five native Hawaiian gobioid stream fishes (Sicyopterus stimpsoni, Lentipes concolor, Awaous guamensis, Stenogobius hawaiiensis, and Eleotris sandwicensis) have been proposed based on the skeletal anatomy of their jaws and dietary specialization. However, performance of the feeding apparatus likely depends on the proportions and configurations of the jaw muscles and the arrangement of the jaw skeleton. We used a published mathematical model of muscle function to evaluate potential differences in jaw closing performance and their correlations with morphology among these species. For example, high output force calculated for the adductor mandibulae muscles (A2 and A3) of both A. guamensis and E. sandwicensis matched expectations based on the morphology of these species because these muscles are larger than in the other species. In contrast, Stenogobius hawaiiensis exhibited an alternative morphological strategy for achieving high relative output forces of both A2 and A3, in which the placement and configuration of the muscles conveyed high mechanical advantage despite only moderate cross‐sectional areas. These differing anatomical pathways to similar functional performance suggest a pattern of many‐to‐one mapping of morphology to performance. In addition, a functional differentiation between A2 and A3 was evident for all species, in which A2 was better suited for producing forceful jaw closing and A3 for rapid jaw closing. Thus, the diversity of feeding performance of Hawaiian stream gobies seems to reflect a maintenance of functional breadth through the retention of some primitive traits in combination with novel functional capacities in several species. J. Morphol. 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
The eleotrid fish Eleotris sandwicensis inhabits lower reaches of streams in the Hawaiian Archipelago, where it feeds on juveniles of native amphidromous gobiid fishes migrating upstream from the ocean. Using high‐speed video and geometric modelling, we evaluated the feeding kinematics and performance of E. sandwicensis on free swimming prey, including two species with juveniles of different characteristic sizes, and compared successful and unsuccessful strikes. With fast jaw movements and a highly expansive buccal cavity, E. sandwicensis achieves high suction performance that enables the capture of elusive prey. Our analyses indicated that the species with larger juveniles (Sicyopterus stimpsoni) could be captured from a distance of up to 18.6% of the predator's body length (BL), but capture of the smaller species (Awaous guamensis) required a closer distance (12.2% BL). Predator–prey distance appears to be the predominant factor determining strike outcome during feeding on juvenile A. guamensis. However, during feeding on juvenile S. stimpsoni, E. sandwicensis shows modulations of strike behaviour that correlate with capture success. Moreover, the ability of E. sandwicensis to capture larger prey fish from longer distances suggests a potential biomechanical basis underlying observations that predation by eleotrids imposes significant selection against large body size in juvenile gobies. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 359–374.  相似文献   

3.
Cleaner fishes are well known for removing and consuming ectoparasites off other taxa. Observers have noted that cleaners continuously “pick” ectoparasites from the bodies of their respective client organisms, but little is known about the kinematics of cleaning. While a recent study described the jaw morphology of cleaners as having small jaw‐closing muscles and weak bite forces, it is unknown how these traits translate into jaw movements during feeding to capture and remove ectoparasites embedded in their clients. Here, we describe cranial morphology and kinematic patterns of feeding for three species of cleaner wrasses. Through high‐speed videography of cleaner fishes feeding in two experimental treatments, we document prey capture kinematic profiles for Labroides dimidiatus, Larabicus quadrilineatus, and Thalassoma lutescens. Our results indicate that cleaning in labrids may be associated with the ability to perform low‐displacement, fast jaw movements that allow for rapid and multiple gape cycles on individually targeted items. Finally, while the feeding kinematics of cleaners show notable similarities to those of “picker” cyprinodontiforms, we find key differences in the timing of events. In fact, cleaners generally seem to be able to capture prey twice as fast as cyprinodontiforms. We thus suggest that the kinematic patterns exhibited by cleaners are indicative of picking behavior, but that “pickers” may be more kinematically diverse than previously thought. J. Morphol. 276:1377–1391, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

4.
The feeding behavior and functional morphology associated with feeding in Ephemerella needhamiMcDunnough larvae were studied using videomacroscopic techniques, gut content analysis, and scanning electron microscopy. Two stereotypic feeding cycles were employed by the larvae. In the maxillary brushing cycle, the maxillae are the primary food-gathering organs, with the main food being detritus deposited on the filamentous alga Cladophora.In the mandibular biting cycle, the mandibles are the primary food-gathering organs used to bite Cladophora filaments.Epiphytic diatoms on Cladophorawere another important part of the diet. Behavioral similarities are apparent in the choreography and synchronization of mouthpart movements among mayflies from several families. Functional morphological comparisons are drawn with hypognathous E. needhami, Cloeon dipterum, Baetis rhodani,and Siphlonurus aestivalis, aswell as the prognathous Heptageniidae. Differences in mouthpart usage and structure are related to the relative development of setal fields and combs and the feeding microhabitat.  相似文献   

5.
The morphology and mechanical strength of the upper canines in all eight extant species of ursids is analyzed, and the findings are discussed in relation to feeding ecology. Ursids have proportionally smaller canines than other large carnivores with a specialized feeding ecology, such as large felids, and the upper canine morphology is both canid‐like and felid‐like. The giant panda is the most divergent species, and its short, blunt, and cone‐like canines appear well adapted for tearing into bamboo. The almost equally herbivorous spectacled bear has a less derived canine morphology. The large canines of the sun bear are divergent from other ursine ursids, and may be an adaptation for tearing open tree trunks in search of insects. Discriminant Analysis is successful in separating ursid species on the basis of canine morphology, but the canines of ursine ursids, and also of the spectacled bear, show greater resemblance among the species than the marked differences in feeding ecology would suggest. This could be in part due to a short evolutionary history, and in part due to canines not having been subjected to much evolutionary selection as has been the case among other large carnivores, such as large felids. Ursids are probably evolutionarily and ecologically successful due to physical size and strength rather than a derived craniodental anatomy. J. Morphol., 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

6.
Terrestrial locomotion occurs via the hierarchical links between morphology, kinematics, force, and center-of-mass mechanics. In a phylogenetically broad sample of seven lizard species, we show that morphological variation drives kinematic variation, which, in turn, drives force variation. Species with short limbs use a short stride–high frequency strategy when running at steady-speed and to change speeds. This link between morphology and kinematics results in relatively small vertical forces during the support phase of the stride cycle. Conversely, species with long limbs use a long stride–low frequency strategy, resulting in large vertical forces during the support phase. In view of these findings, we suggest that limb length may predict locomotor energetics in lizards because energetics are largely determined by vertical forces and stride frequency. Additionally, we propose an energetic trade-off with both long- and short-limbed species paying the most energy to move, whereas intermediate-limbed species move using less energy. Finally, when these traits are mapped onto a lizard phylogeny, we show that locomotor functional morphology exhibits both deep phylogenetic effects and contemporary patterns of evolutionary convergence. Overall, the present study provides a foundation for testing hypotheses regarding the integration and evolution of functional traits in lizards and animals in general.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 634–651.  相似文献   

7.
8.
Many evolutionary ecological studies have documented sexual dimorphism in morphology or behaviour. However, to what extent a sex-specific morphology is used differently to realize a certain level of behavioural performance is only rarely tested. We experimentally quantified flight performance and wing kinematics (wing beat frequency and wing stroke amplitude) and flight morphology (thorax mass, body mass, forewing aspect ratio, and distance to centre of forewing area) in the butterfly Pararge aegeria (L.) using a tethered tarsal reflex induced flight set-up under laboratory conditions. On average, females showed higher flight performance than males, but frequency and amplitude did not differ. In both sexes, higher flight performance was partly determined by wing beat frequency but not by wing stroke amplitude. Dry body mass, thorax mass, and distance to centre of forewing area were negatively related to wing beat frequency. The relationship between aspect ratio and wing stroke amplitude was sex-specific: females with narrower wings produced higher amplitude whereas males show the opposite pattern. The results are discussed in relation to sexual differences in flight behaviour.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 89 , 675–687.  相似文献   

9.
Resolving the infrageneric classification of species-rich genera has been challenging in plant taxonomy. Ilex L. is a subcosmopolitan genus with over 600 species of dioecious trees and shrubs. Many classification systems based on morphological data have been proposed during the past 250 years. However, these systems (such as Loesener's and Galle's systems) may not truly reflect Ilex's evolutionary trajectories because most of those system's infrageneric hierarchies are not monophyletic. In this study, we reconstructed a phylogeny of Ilex L. comprising 15 moderately to highly supported clades using rigorously identified samples (202 species) and closely authenticated gene sequences of three nuclear genes [internal transcribed spacer (ITS), external transcribed spacer (ETS), and nepGS]. The newly generated phylogenetic tree resembles essentially that of the nuclear tree of Manen et al., but shows conspicuous topological differences with the phylogeny of Yao et al. Closely scrutinizing morphological variation and distributional patterns of 202 species, this study found that most lineages of Ilex identified herein are well defined by a particular trait or a combination of morphological and distributional traits, displaying phylogeny–morphology–distribution conformity that has seldom been uncovered in previous studies. Given the general phylogeny–morphology–distribution conformity revealed in this genus, we put forward an updated sectional classification system for Ilex that temporarily contains 14 sections. The new classification will provide a robust framework for studying the evolution and diversification of this ecologically and economically important genus.  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号