首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The flavonoid, luteolin, has been shown to have anticancer activity in various cancer cells; however, the precise molecular mechanism of its action is not completely understood, and studies were conducted to find out how it induces apoptosis in breast cancer cells. Luteolin induced a reduction of viability in a dose- and time-dependent manner. The pro-apoptotic effect of luteolin was demonstrated by cell cycle measurement and Hoechst 3325 staining. Western blot analysis showed that luteolin activates ERK (extracellular-signal-regulated kinase) and p38. Pharmacological inhibition or knockdown of ERK and p38 protected against luteolin-induced cell death; however, the caspase-3-specific inhibitor had no effect. Immunocytochemical examination indicated that luteolin induced nuclear translocation of AIF (apoptosis-inducing factor), which was mediated by activation of ERK and p38. Transfection of a vector expressing the miRNA (microRNA) of AIF prevented luteolin-induced apoptosis. The data suggest that luteolin induces a caspase-dependent and -independent apoptosis involving AIF nuclear translocation mediated by activation of ERK and p38 in breast cancer cells.  相似文献   

2.
Cepharanthine (CEP) is a known membrane stabilizer that has been widely used in Japan for the treatment of several disorders such as anticancer therapy-provoked leukopenia. We here report that apoptosis was induced by low concentrations (1-5 microM) of CEP in a human leukemia T cell line, Jurkat, and by slightly higher concentrations (5-10 microM) in a human chronic myelogenous leukemia (CML) cell line K562, which expresses a p210 antiapoptotic Bcr-Abl fusion protein. Induction of apoptosis was confirmed in both Jurkat and K562 cells by DNA fragmentation and typical apoptotic nuclear change, which were preceded by disruption of mitochondrial membrane potential and were induced through a Fas-independent pathway. CEP treatment induced activation of caspase-9 and -3 accompanied by cleavage of PARP, Bid, lamin B1, and DFF45/ICAD in both Jurkat and K562 cells, whereas caspase-8 activation and Akt cleavage were observed only in Jurkat cells. The CEP-induced apoptosis was completely blocked by zVAD-fmk, a broad caspase inhibitor. Interestingly, CEP treatment induced remarkable degradation of the Bcr-Abl protein in K562 cells, and this degradation was prevented partially by zVAD-fmk. When used in combination with a nontoxic concentration of herbimycin A, lower concentrations (2-5 microM) of CEP induced obvious apoptosis in K562 cells with rapid degradation or decrease in the amount of Bcr-Abl and Akt proteins. Our results suggest that CEP, which does not have bone marrow toxicity, may possess therapeutic potential against human leukemias, including CML, which is resistant to anticancer drugs and radiotherapy.  相似文献   

3.
4.
Vascular smooth-muscle cell (VSMC) proliferation plays a vital role in hypertension, atherosclerosis and restenosis. It has been reported that emodin, an active component extracted from rhubarb, can stop the growth of cancer cells; however, it is not known if emodin exerts similar anti-atherogenic effects in TNF-alpha treated human aortic smooth-muscle cells (HASMC). In this study, emodin treatment showed potent inhibitory effects in TNF-alpha-induced HASMC proliferation that were associated with induced apoptosis, including the cleavage of poly ADP-ribose polymerase (PARP). Moreover, inhibitors of caspase-3, -8 and -9 (Ac-DEVD-CHO, Z-IETD-FMK and Z-LEHD-FMK) efficiently blocked emodin-induced apoptosis in TNF-alpha treated HASMC. Therefore, emodin-induced cell death occurred via caspase-dependent apoptosis. Emodin treatment resulted in the release of cytochrome c into cytosol and a loss of mitochondrial membrane potential (DeltaPsi(m)), as well as a decrease in the expression of an anti-apoptotic protein (Bcl-2) and an increase in the expression of an a pro-apoptotic protein (Bax). Emodin-mediated apoptosis was also blocked by a mitochondrial membrane depolarization inhibitor, which indicates that emodin-induced apoptosis occurred via a mitochondrial pathway. Taken together, the results of this study showed that emodin inhibits TNF-alpha-induced HASMC proliferation via caspase- and a mitochondrial-dependent apoptotic pathway. In addition, these results indicate that emodin has potential as an anti-atherosclerosis agent.  相似文献   

5.
This study investigated the role of the caspase activation cascade in extrinsic and intrinsic apoptosis induced by equol in human breast cancer MDA-MB cells. First, the antiproliferative effect of equol was determined in cells treated with 1-100 μM equol for 24, 48, and 72 h. Equol significantly inhibited cell proliferation in a dose-dependent manner (p < 0.05). Exposure to 50 or 100 μM equol for 72 h strongly promoted apoptosis. Under the same conditions, remarkable cytochrome c release was observed. Subsequently, caspase-9, which acts in mitochondria-mediated apoptosis, was cleaved by equol at high concentrations, but caspase-8 activation of receptor-mediated apoptosis was not observed. At both equol concentrations, the caspase-8 and -9 activity assays showed similar patterns. In addition, equol treatment activated caspase-3, which is downstream from caspase-9, and this was accompanied by the cleavage of capase-6 and -7. Activation of these caspases leads to increased activation of PARP, lamin, and ICAD. This study suggests that equol induces the intrinsic pathway of apoptosis via caspase-9 and cytochrome c, independent of caspase-8, in human breast cancer MDA-MB-453 cells.  相似文献   

6.
The pathogenetic mechanisms of retinoblastoma are still not yet fully elucidated, putting limits to efficacious treatment. Crocin is the main component of saffron, which exhibits significant antitumorigenic properties. The aim of this paper is to investigate the effect of crocin on retinoblastoma. The effects of crocin on the proliferation of human retinoblastoma cells were determined by the 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay, cell number assay, and colony formation assay. Cell apoptosis induced by crocin was measured by flow cytometry analysis. Cleaved poly(ADP‐ribose) polymerase and cleaved caspase‐3 were tested by western blot analysis. The expression levels of MYCN were assessed by western blot and quantitative polymerase chain reaction and the stability of MYCN messenger RNA was determined by in vitro RNA degradation assays. We found that crocin significantly inhibited the cell proliferation and clonogenicity and induced cell apoptosis in Y79 and WERI‐RB‐1 cells. In addition, crocin treatment significantly reduced the expression and the stability of MYCN. Besides, overexpression of MYCN rescued the inhibitory effect of crocin in Y79 cells. Our findings suggest that crocin exhibits antitumorigenic effects in human retinoblastoma cell lines through a MYCN‐dependent manner, which may provide guidance to logical therapeutic designs in prevention and treatment of retinoblastoma.  相似文献   

7.
Phosphatase and tensin homolog (PTEN) is a tumor suppressor gene located at human chromosome 10q23, might play an important role in cell proliferation, cell cycle and apoptosis of cancer cells. In this study, the eukaryotic expression vectors pBP-wt-PTEN (containing a wild-type PTEN gene) and pBP-G129R-PTEN (containing a mutant PTEN gene) were used to transfect breast cancer ZR-75-1 cells. After transfection, ZR-75-1 cells expressing PTEN were obtained and tested. The blue exclusion assay showed the growth rate of the cells transfected with pBP-wt-PTEN was significantly lower than that of the control cells transfected with pBP-G129R-PTEN. Analysis of the cell cycle by flow cytometry showed that the progression from the G1 to the S phase was arrested in cells expressing wild-type PTEN. Some typical morphological changes of apoptosis were also observed in cells transfected with pBP-wt-PTEN, but not in those transfected with pBP-G 129R-PTEN. This study shows that overexpression of PTEN in ZR-75-1 cells leads to cell growth arrest and apoptosis.  相似文献   

8.
Seleno-short-chain chitosan (SSCC) was a synthesized chitosan derivative with the molecular weight of 4826.986 Da. The study is aimed to investigate cytotoxicity of SSCC on human breast cancer MCF-7 and BT-20 cells and explore apoptosis-related mechanism in vitro. The MTT (3- [4,5-Dimethylthiazol-2-yl]-2, 5-diphenylterazolium bromide) assay showed that SSCC exhibited significantly cytotoxic effects on MCF-7 and BT-20 cells in a dose- and time-dependent manner, and the effective inhibitory concentration was 100 μg/ml and 200 μg/ml, respectively. Apoptosis assay of these two kinds of cells was determined by Hoechst 33,342/PI and Annexin V-FITC/PI double staining. The cell cycle assay showed that SSCC triggered S and G2/M phase cell cycle arrest in MCF-7 cells and S phase cell cycle arrest in BT-20 cells in a time-dependent manner. Further studies demonstrated that SSCC led to the generation of reactive oxygen species (ROS) and the disruption of mitochondrial membrane potential (MMP) in these two kinds of cells. N- acetyl-L cysteine (NAC), as a radical scavenger, significantly inhibited the generation of ROS and decreased the apoptosis of MCF-7 and BT-20 cells. Moreover, the expression of mitochondrial apoptosis-related proteins was detected by western blot assay. SSCC up-regulated the expression of Bax, down-regulated the expression of Bcl-2, subsequently increased the release of cytochrome c from mitochondria to cytoplasm, and activated the cleavage of caspase-9 and ?3, which finally induced apoptosis in MCF-7 and BT-20 cells in vitro. Consequently, these data indicated that SSCC could induce apoptosis of MCF-7and BT-20 cells in vitro by mitochondrial pathway.  相似文献   

9.
10.
11.
12.
Caspase activation and dependence on caspases has been observed in different paradigms of apoptotic cell death in vivo and in vitro. The present study examines the role of caspases in ionizing radiation‐induced apoptosis in the developing cerebellum of rats subjected to a single dose (2‐Gy γ rays) of whole‐body irradiation at postnatal day 3. Radiation‐induced apoptosis in the external granule cell layer, as defined by the presence of cells by extremely condensed, often fragmented nucleus, which were stained with the method of in situ end‐labeling of nuclear DNA fragmentation, first appeared at 3 h and peaked at 6 h following irradiation. Increased expression of the precursors of caspase 1 (ICE), 2 (Nedd2), 3 (CPP32), 6 (Mch2), and 8 (Mch5 and FLICE), and increased expression of active caspase 3, as revealed by immunohistochemistry, were observed in the external granule cell layer of the cerebellum. Radiation‐induced apoptosis was accompanied by an increase in the expression of the poly(ADP‐ribose) polymerase (PARP) fragment of about 89 kD, as revealed by Western blots of cerebellar homogenates. This was not associated with modifications of protein kinase Cδ and Lamin B. Concomitant injection in the culmen of the cerebellum in irradiated rats of high doses of Y‐VAD‐cmk, DEV‐fmk, or IETD‐fmk resulted in decreased expression of the PARP fragment in cerebellar homogenates. This was accompanied by a decrease in the expression of active caspase 3, as shown by immunohistochemistry. These observations suggest caspase activation following ionizing radiation. However, no differences in the number and morphological and biochemical characteristics of apoptotic cells, including strong nuclear and cytoplasmic c‐Jun/AP‐1 (N) expression, were observed between irradiated and both irradiated and caspase inhibitor–treated rats. Taken together, these observations suggest that the caspases examined are not essential for radiation‐induced apoptosis in the developing cerebellum. © 1999 John Wiley & Sons, Inc. J Neurobiol 41: 549–558, 1999  相似文献   

13.
14.
This report describes that protein kinase C delta (PKCδ) overexpression prevents TRAIL‐induced apoptosis in breast tumor cells; however, the regulatory mechanism(s) involved in this phenomenon is(are) incompletely understood. In this study, we have shown that TRAIL‐induced apoptosis was significantly inhibited in PKCδ overexpressing MCF‐7 (MCF7/PKCδ) cells. Our data reveal that PKCδ inhibits caspase‐8 activation, a first step in TRAIL‐induced apoptosis, thus preventing TRAIL‐induced apoptosis. Inhibition of PKCδ using rottlerin or PKCδ siRNA reverses the inhibitory effect of PKCδ on caspase‐8 activation leading to TRAIL‐induced apoptosis. To determine if caspase‐3‐induced PKCδ cleavage reverses its inhibition on caspase‐8, we developed stable cell lines that either expresses wild‐type PKCδ (MCF‐7/cas‐3/PKCδ) or caspase‐3 cleavage‐resistant PKCδ mutant (MCF‐7/cas‐3/PKCδ mut) utilizing MCF‐7 cells expressing caspase‐3. Cells that overexpress caspase‐3 cleavage‐resistant PKCδ mutant (MCF‐7/cas‐3/PKCδmut) significantly inhibited TRAIL‐induced apoptosis when compared to wild‐type PKCδ (MCF‐7/cas‐3/PKCδ) expressing cells. In MCF‐7/cas‐3/PKCδmut cells, TRAIL‐induced caspase‐8 activation was blocked leading to inhibition of apoptosis when compared to wild‐type PKCδ (MCF‐7/cas‐3/PKCδ) expressing cells. Together, these results strongly suggest that overexpression of PKCδ inhibits caspase‐8 activation leading to inhibition of TRAIL‐induced apoptosis and its inhibition by rottlerin, siRNA, or cleavage by caspase‐3 sensitizes cells to TRAIL‐induced apoptosis. Clinically, PKCδ overexpressing tumors can be treated with a combination of PKCδ inhibitor(s) and TRAIL as a new treatment strategy. J. Cell. Biochem. 111: 979–987, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
Rapid induction of apoptosis in human gastric cancer cell lines by sorbitol   总被引:2,自引:0,他引:2  
Most solid tumors, including gastric cancers, respond poorly to non-surgical treatments which are expected to induce an apoptosis-dependent involution. We hypothesize that the apoptotic machinery in solid tumors is either defective or in a suppressed condition. Overcoming the ineffective induction of apoptosis may improve the responsiveness of solid tumors to non-surgical treatments. Recently, sorbitol, a kind of hexose, has been found to be an effective inducer of apoptosis in HEp-2 cells. Therefore, it is of particular interest to examine the effect of sorbitol-treatment on gastric cancer cells. In the present study, we selected 4 gastric cancer cell lines which have been reported to exhibit different abilities in regard to apoptosis induction, and examined the effect of sorbitol-treatment on apoptosis induction. Within 3 hr after sorbitol-treatment, apoptosis was induced comparably in all cell lines examined. Cell death in MKN-1, MKN-28 or MKN-74 proceeded in a biphasic manner, while cell death in KATO-III was monophasic. The cell death partially depended on caspase activity. Treatments with sorbitol in combination with 12-O-tetradecanoylphorbol-13-acetate (TPA) markedly suppressed the apoptotic cell death, suggesting a role of protein kinase-C-dependent process. To our knowledge, this is the most rapid induction of apoptosis in human gastric cancer cells reported to date.  相似文献   

16.
17.
18.
2-Methoxyoestradiol (2-MeOE2) is an endogenous oestrogen metabolite which inhibits tubulin polymerisation and has anti-tumour and anti-angiogenic activity. 2-MeOE2 induces apoptosis in a wide range of cancer cell types and has recently been demonstrated to cooperate with TRAIL to induce apoptosis in breast cancer cells. 2-Methoxyoestradiol-3,17-bis-O,O-sulphamate (2-MeOE2bisMATE) is a sulfamoylated derivative of 2-MeOE2 with enhanced activity and improved pharmacokinetic properties, and 2-MeOE2bisMATE is a promising candidate for early clinical trials. It is important, therefore, to understand the mechanisms by which 2-MeOE2bisMATE acts, and whether it retains the ability to cooperate with TRAIL. We demonstrate that 2-MeOE2bisMATE-induced apoptosis of CAL51 breast cancer cells was associated with rapid activation of caspase 3 and 9, but not caspase 8 (as measured by BID cleavage) and was completely prevented by the caspase inhibitor zVADfmk. Interfering with Fas- or TRAIL-receptor function did not prevent 2-MeOE2bisMATE-induced apoptosis. Whereas CAL51 cells were resistant to TRAIL-induced apoptosis, 2-MeOE2bisMATE and TRAIL cooperated to induce cell death. This apoptosis was associated with enhanced activation of caspases, but not increased expression of the DR5 TRAIL receptor, previously demonstrated to be induced by 2-MeOE2. Therefore, 2-MeOE2bisMATE-induced apoptosis is dependent on caspases and like 2-MeOE2, 2-MeOE2bisMATE can overcome resistance to TRAIL by stimulating activation of downstream caspases. Our results suggest that 2-MeOE2bisMATE and TRAIL might be a particularly effective combination of anti-cancer agents.  相似文献   

19.
N‐(3‐Oxododecanoyl)‐l ‐homoserine lactone (C12) is produced by Pseudomonas aeruginosa to function as a quorum‐sensing molecule for bacteria–bacteria communication. C12 is also known to influence many aspects of human host cell physiology, including induction of cell death. However, the signalling pathway(s) leading to C12‐triggered cell death is (are) still not completely known. To clarify cell death signalling induced by C12, we examined mouse embryonic fibroblasts deficient in “initiator” caspases or “effector” caspases. Our data indicate that C12 selectively induces the mitochondria‐dependent intrinsic apoptotic pathway by quickly triggering mitochondrial outer membrane permeabilisation. Importantly, the activities of C12 to permeabilise mitochondria are independent of activation of both “initiator” and “effector” caspases. Furthermore, C12 directly induces mitochondrial outer membrane permeabilisation in vitro. Overall, our study suggests a mitochondrial apoptotic signalling pathway triggered by C12, in which C12 or its metabolite(s) acts on mitochondria to permeabilise mitochondria, leading to activation of apoptosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号