首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Nonviral vector–based gene therapy is a promising strategy for treating a myriad of diseases. Cell‐penetrating peptides are gaining increasing attention as vectors for nucleic acid delivery. However, most studies have focused more on the transfection efficiency of these vectors than on their specificity and toxicity. To obtain ideal vectors with high efficiency and safety, we constructed the vector stearyl‐TH by attaching a stearyl moiety to the N‐terminus of the acid‐activated cell penetrating peptide TH in this study. Under acidic conditions, stearyl‐TH could bind to and condense plasmids into nanoparticle complexes, which displayed significantly enhanced cellular uptake and transfection efficiencies. In contrast, stearyl‐TH lost the capacities of DNA binding and transfection at physiological pH. More importantly, stearyl‐TH and the complexes formed by stearyl‐TH and plasmids displayed no obvious toxicity at physiological pH. Consequently, the high transfection efficiency under acidic conditions and low toxicity make stearyl‐TH a potential nucleic acid delivery vector for gene therapy.  相似文献   

3.
4.

Background

We have previously shown that a novel synthetic peptide for ocular delivery (POD) can efficiently compact DNA and deliver it to cells in vitro. This observation prompted us to develop use of POD as a nonviral vector in vivo.

Methods

POD peptide was modified using poly(ethylene) glycol (PEG‐POD) and used to compact DNA into nanoparticles that were then analysed using electron microscopy, dynamic light scattering, and fluorescent labeling. Transfection efficiency and localization were determined 48 h post‐injection into the subretinal space of the mouse eye using luciferase and LacZ, respectively. Efficiency of ocular transfection was compared to two other PEGylated peptides: PEG‐TAT and PEG‐CK30.

Results

PEG‐POD can compact DNA and form discrete nanoparticles of approximately 136 nm that can penetrate and transduce the retinal pigment epithelium (RPE) in vivo. PEG‐POD significantly increased expression of plasmid DNA by 215‐fold, PEG‐TAT by 56.52‐fold, and PEG‐CK30 by 24.73‐fold relative to DNA injected alone. In all cases β‐galactosidase was observed primarily in the RPE layer after subretinal injection. Electrophysiological analyses of PEG‐POD transduced retina indicates an absence of PEG‐POD‐mediated toxicity. PEG‐POD can protect plasmid DNA from DNaseI digestion, resulting in significant transfection of the lung after intravenous injection in mice.

Conclusions

PEG‐POD was found to significantly increase gene delivery relative to both DNA alone and other pegylated peptides. These findings highlight the use of pegylated peptides, and specifically PEG‐POD, as novel gene delivery vectors. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
BACKGROUND: Gene delivery vectors that restrict the expression of a therapeutic gene to a particular type of cells are critical to gene therapy in a complex structure, such as the central nervous system. We constructed a nonviral vector for targeted gene transfer to cells expressing nerve growth factor (NGF) receptor TrkA. METHODS AND RESULTS: The vector was a synthetic chimeric peptide composed of a targeting moiety derived from NGF loop 4 and a DNA-binding moiety of 10 lysine residues. The peptide activated signal transduction pathways of the NGF receptor TrkA in PC12 cells and supported the survival of the cells after serum deprivation. After forming complexes with plasmid DNA, the peptide dose-dependently increased reporter gene expression in PC12 cells, which could be inhibited by excess NGF. The peptide-mediated gene expression was not affected in PC12 cells by co-incubation with a blocking antibody against the low-affinity NGF receptor p75 and was significantly enhanced in NIH3T3 cells stably transfected with TrkA cDNA, suggesting the involvement of the high-affinity NGF receptor TrkA without the participation of p75. Moreover, the peptide did not assist gene transfer in TrkA-poor, but TrkB- and/or TrkC-positive primary cerebellar granule neurons and primary cortical glial cells. CONCLUSIONS: The chimeric peptide reported will be useful in gene delivery to and gene therapy of the nervous system and other tissues/organs with cells expressing TrkA.  相似文献   

6.
The development of a lentiviral system to deliver genes to specific cell types could improve the safety and the efficacy of gene delivery. Previously, we have developed an efficient method to target lentivectors to specific cells via an antibody–antigen interaction in vitro and in vivo. We report herein a targeted lentivector that harnesses the natural ligand–receptor recognition mechanism for targeted modification of c‐KIT receptor‐expressing cells. For targeting, we incorporate membrane‐bound human stem cell factor (hSCF), and for fusion, a Sindbis virus‐derived fusogenic molecule (FM) onto the lentiviral surface. These engineered vectors can recognize cells expressing surface CD117, resulting in efficient targeted transduction of cells in an SCF‐receptor dependent manner in vitro, and in vivo in xenografted mouse models. This study expands the ability of targeting lentivectors beyond antibody targets to include cell‐specific surface receptors. Development of a high titer lentivector to receptor‐specific cells is an attractive approach to restrict gene expression and could potentially ensure therapeutic effects in the desired cells while limiting side effects caused by gene expression in non‐target cells. Biotechnol. Bioeng. 2009; 104: 206–215 © 2009 Wiley Periodicals, Inc.  相似文献   

7.
Stem cell transplantation is a candidate method for the treatment of Leydig cell dysfunction‐related diseases. However, there are still many problems that limit its clinical application. Here, we report the establishment of CXCR4‐SF1 bifunctional adipose‐derived stem cells (CXCR4‐SF1‐ADSCs) and their reparative effect on Leydig cell dysfunction. CD29+ CD44+ CD34? CD45? ADSCs were isolated from adipose tissue and purified by fluorescence‐activated cell sorting (FACS). Infection with lentiviruses carrying the CXCR4 and SF1 genes was applied to construct CXCR4‐SF1‐ADSCs. The CXCR4‐SF1‐ADSCs exhibited enhanced migration and had the ability to differentiate into Leydig‐like cells in vitro. Furthermore, the bifunctional ADSCs were injected into BPA‐mediated Leydig cell damage model mice via the tail vein. We found that the CXCR4‐SF1‐ADSCs were capable of homing to the injured testes, differentiating into Leydig‐like cells and repairing the deficiency in reproductive function caused by Leydig cell dysfunction. Moreover, we investigated the mechanism underlying SF1‐mediated differentiation and testosterone synthesis in Leydig cells, and the B‐box and SPRY Domain Containing Protein (BSPRY) gene was proposed to be involved in this process. This study provides insight into the treatment of Leydig cell dysfunction‐related diseases.  相似文献   

8.
9.
A novel gene delivery system targeting cells expressing VEGF receptors   总被引:20,自引:0,他引:20  
Two ligand oligopeptides GV1 and GV2 were designed according to the putative binding region of VEGF to its receptors.GV1,GV2 and endosome releasing oligopeptide HA20 were conjugated with poly-L-lysine or protamine and the resulting conjugates could interact with DNA in a noncovalent bond to form a complex.Using pSV2-β-galactosidase as a reporter gene,it has been demonstrated that exogenous gene was transferred into bovine aortic arch-derived endothelial cells (ABAE) and human malignant melanoma cell lines (A375) in vitro.In vivo experiments,exogenous gene was transferred into tumor vascular endothelial cells and tumor cells of subcutaneously transplanted human colon cancer LOVO,human malignant melanoma A375 and human hepatoma graft in nude mice.This system could also target gene to intrahepatically transplanted human hepatoma injected via portal vein in nude mice.These results are correlated with the relevant receptors(flt-1,flk-1/KDR) expression on the targeted cells and tissues.  相似文献   

10.
11.
12.
The endocytosis‐mediating performances of two types of peptide ligands, cell receptor binding peptide (CRBP) and cell membrane penetrating peptide (CMPP), were analyzed and compared using a common carrier of peptide ligands‐human ferritin heavy chain (hFTH) nanoparticle. Twenty‐four copies of a CMPP(human immunodeficiency virus‐derived TAT peptide) and/or a CRBP (peptide ligand with strong and specific affinity for either human integrin(αvβ3) or epidermal growth factor receptor I (EGFR) that is overexpressed on various cancer cells) were genetically presented on the surface of each hFTH nanopariticle. The quantitative level of endocytosis and intracellular localization of fluorescence dye‐labeled CRBP‐ and CMPP‐presenting nanoparticles were estimated in the in vitro cultures of integrin‐ and EGFR‐overexpressing cancer and human dermal fibroblast cells(control). From the cancer cell cultures treated with the CMPP‐ and CRBP‐presenting nanoparticles, it was notable that CRBPs resulted in quantitatively higher level of endocytosis than CMPP (TAT) and successfully transported the nanoparticles to the cytosol of cancer cells depending on concentration and treatment period of time, whereas TAT‐mediated endocytosis localized most of the nanoparticles within endosomal vesicles under the same conditions. These novel findings provide highly useful informations to many researchers both in academia and in industry who are interested in developing anticancer drug delivery systems/carriers.  相似文献   

13.
14.
It has been reported that CXCR4‐overexpressing mesenchymal stem cells (MSCCX4) can repair heart tissue post myocardial infarction. This study aims to investigate the MSCCX4‐derived paracrine cardio‐protective signaling in the presence of myocardial infarction. Mesenchymal stem cells (MSCs) were divided into 3 groups: MSC only, MSCCX4, and CXCR4 gene‐specific siRNA‐transduced MSC. Mesenchymal stem cells were exposed to hypoxia, and then MSCs‐conditioned culture medium was incubated with neonatal and adult cardiomyocytes, respectively. Cell proliferation–regulating genes were assessed by real‐time polymerase chain reaction (RT‐PCR). In vitro: The number of cardiomyocytes undergoing DNA synthesis, cytokinesis, and mitosis was increased to a greater extent in MSCCX4 medium‐treated group than control group, while this proproliferative effect was reduced in CXCR4 gene‐specific siRNA‐transduced MSC–treated cells. Accordingly, the maximal enhancement of vascular endothelial growth factor, cyclin 2, and transforming growth factor‐β2 was observed in hypoxia‐exposed MSCCX4. In vivo: MSCs were labeled with enhanced green fluorescent protein (EGFP) and engrafted into injured myocardium in rats. The number of EGFP and CD31 positive cells in the MSCCX4 group was significantly increased than other 2 groups, associated with the reduced left ventricular (LV) fibrosis, the increased LV free wall thickness, the enhanced angiogenesis, and the improved contractile function. CXCR4 overexpression can mobilize MSCs into ischemic area, whereby these cells can promoted angiogenesis and alleviate LV remodeling via paracrine signaling mechanism.  相似文献   

15.
Gallbladder carcinoma (GBC) is a vicious and invasive disease. The major challenge in the clinical treatment of GBC is the lack of a suitable prognosis method. Chemokine receptors such as CXCR3, CXCR4 and CXCR7 play vital roles in the process of tumour progression and metastasis. Their expression levels and distribution are proven to be indicative of the progression of GBC, but are hard to be decoded by conventional pathological methods, and therefore, not commonly used in the prognosis of GBC. In this study, we developed a computer‐aided image analysis method, which we used to quantitatively measure the expression levels of CXCR3, CXCR4 and CXCR7 in the nuclei and cytoplasm of glandular and interstitial cells from a cohort of 55 GBC patients. We found that CXCR3, CXCR4 and CXCR7 expressions are associated with the clinicopathological variables of GBC. Cytoplasmic CXCR3, nuclear CXCR7 and cytoplasmic CXCR7 were significant predictive factors of histology invasion, whereas cytoplasmic CXCR4 and nuclear CXCR4 were significantly correlated with T and N stage and were associated with the overall survival and disease‐free survival. These results suggest that the quantification and localisation of CXCR3, CXCR4 and CXCR7 expressions in different cell types should be considered using computer‐aided assessment to improve the accuracy of prognosis in GBC.  相似文献   

16.
BACKGROUND: Neuron-specific, nonviral gene delivery vehicles are useful tools for the potential treatment of neurological disease and spinal cord injury. For minimally invasive, peripheral administration, gene carriers must efficiently mediate uptake at axon terminals, retrograde axonal transport, vesicular escape, and nuclear entry. The design of improved vehicles will benefit from an understanding of the barriers that limit nonviral delivery to neurons. Here, we demonstrate a detailed analysis of intracellular trafficking of both a lipid-based and a polymer-based delivery vehicle following site-specific exposure to neuron-like cells. METHODS: Site-specific exposure of gene carriers to soma or neurites of neuron-like PC-12 cells was accomplished using a microfluidic, compartmented culture chamber. Binding and internalization of vehicles at neurites and soma were quantified using an environmentally sensitive fluorescent marker. The intracellular transport of gene carriers was analyzed by time-lapse particle tracking in live cells, and transfection efficiencies were measured using green fluorescent protein (GFP) as a reporter gene. RESULTS: While the lipid-based carrier mediated measurable transfection when delivered to neuronal soma, neuritic delivery of this formulation failed to produce reporter gene expression due to limited internalization and transport. In contrast, the polymeric nanoparticles displayed active retrograde transport toward neuronal soma, but failed to produce measurable reporter gene expression. CONCLUSIONS: These results highlight distinct intracellular barriers preventing efficient neuronal transfection by the nonviral carriers examined, and provide a basis for the rational improvement of existing nonviral systems.  相似文献   

17.

Background

Nuclear membrane is one of the main barriers in polymer mediated intracellular gene delivery. To improve the transgenic activity and safety of nonviral vector, triamcinolone acetonide (TA) as a nuclear localization signal was conjugated with different molecular weight polyethylenimine (PEI).

Methods

Different molecular weight PEI [600, 1800, 25 000 (25k)] was conjugated with TA to synthesize PEI‐TA by two‐step reaction. Their physicochemical characteristics, in vitro cytotoxicity and transfection efficiency were evaluated. To investigate the difference of transfection efficiency of various molecular weight PEI‐TA, their transfection mechanism was further investigated by confocal microscopy and competition assay. Transgenic expression in vivo was evaluated by injection into hepatic portal vein of mice.

Results

All PEI‐TA could form nanosize polyplexes with DNA and their physicochemical properties resemble each other. Their cytotoxicities were negligible compared to PEI 25k. The order of transfection efficiency was PEI 1800‐TA > PEI 600‐TA > PEI 25k‐TA. A transfection mechanism study displayed that TA could inhibit considerably the transgenic activity of PEI 1800‐TA and PEI 600‐TA, but that of PEI 25k‐TA was not inhibited. It was suggested that PEI 1800‐TA and PEI 600‐TA might translocate into the nucleus. Confocal microscopy investigation verified this suggestion. The data strongly suggested that the transfection efficiency of PEI 1800‐TA in vivo was much higher than that of PEI 25k, which was consistent with the results obtained in vitro.

Conclusions

Low molecular weight PEI‐TA could translocate into the nucleus efficiently. PEI 1800‐TA presented higher transgenic activity and it has a great potential for gene therapy as a nonviral carrier. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Since phosphatidylserine (PS) is known to translocate to the external face of the plasma membrane when the cell membrane becomes disordered, we decided to focus our attention on PS as a target molecule for gene delivery. In this paper, the novel peptide Td3701 was designed, synthesized, and characterized for its physico-chemico-biological properties. Td3701 simultaneously exhibited both characters as a DNA carrier and a sensor probe for active targeting, which seemed to be triggered by structural changes in the presence of PS. This is a very unique character among nonviral vectors, and it is believed that Td3701 could be used for selective gene delivery.  相似文献   

19.
Virus‐inspired mimics for nucleic acid transportation have attracted much attention in the past decade, especially the derivative microenvironment stimuli‐responsive designs. In the present mini‐review, the smart designs of gene carriers that overcome biological barriers and realize an efficient delivery are categorized with respect to the different “triggers” provided by tumor cells, including pH, redox potentials, ATP, enzymes and reactive oxygen species. Some dual/multi‐responsive gene vectors have also been introduced that show a more precise and efficient delivery in the complicated environment of human body. In addition, inspired by the special recognition mechanisms and components of viruses, improvements in the design of carriers relating to targeting/penetration properties, as well as chemical component evolution, are also addressed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号