首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的:研究大鼠肢体缺血/再灌注后急性肺损伤时,内皮型一氧化氮合酶(eNOS)和诱导型一氧化氮合酶(i-NOS)的表达及其在急性肺损伤发生中的作用。方法:雄性Wistar大鼠于后肢根部阻断血流后松解(4h/4h),分别给予L-Arg和氨基胍(AG)预先干预,分为control、IR、L-Arg和AG组,免疫组织化学方法检测肺组织中iNOS和eNOS的表达,同时检测肺组织中MDA、MPO、W/D和NO2^-/NO3^-值,肺组织形态学观察以评价肺损伤的程度。结果:与control组比较,I/R组eNOS表达降低,iNOS表达增强,MDA、MPO、W/D和NO2^-/NO3^-值增加。肺组织充血、炎细胞浸润,肺泡腔渗液;与I/R组比较,L-Arg组eNOS、iNOS表达无明显变化,NO2^-/NO3^-增加。MDA、MPO、W/D降低,肺组织损伤有减轻趋势,AG组eNOS表达无明显变化,iNOS活性降低,NO2^-/NO3^-减少,MDA、MPO、W/D增加,肺组织损伤有加重趋势。结论:肢体缺血/再灌注急性肺损伤过程中,iNOS表达增加,NO生成增多,在肺损伤发生中有一定的保护作用。  相似文献   

2.
3.
Renal ischemia/reperfusion (I/R) injury is the main reason for acute kidney injury (AKI) and is closely related to high morbidity and mortality. In this study, we found that exosomes from human-bone-marrow-derived mesenchymal stem cells (hBMSC-Exos) play a protective role in hypoxia/reoxygenation (H/R) injury. hBMSC-Exos were enriched in miR-199a-3p, and hBMSC-Exo treatment increased the expression level of miR-199a-3p in renal cells. We further explored the function of miR-199a-3p on H/R injury. miR-199a-3p was knocked down in hBMSCs with a miR-199a-3p inhibitor. HK-2 cells cocultured with miR-199a-3p-knockdown hBMSCs were more susceptible to H/R injury and showed more apoptosis than those cocultured with hBMSCs or miR-199a-3p-overexpressing hBMSCs. Meanwhile, we found that HK-2 cells exposed to H/R treatment incubated with hBMSC-Exos decreased semaphorin 3A (Sema3A) and activated the protein kinase B (AKT) and extracellular-signal-regulated kinase (ERK) pathways. However, HK-2 cells cocultured with miR-199a-3p-knockdown hBMSCs restored Sema3A expression and blocked the activation of the AKT and ERK pathways. Moreover, knocking down Sema3A could reactivate the AKT and ERK pathways suppressed by a miR-199a-3p inhibitor. In vivo, we injected hBMSC-Exos into mice suffering from I/R injury; this treatment induced functional recovery and histologic protection and reduced cleaved caspase-3 and Sema3A expression levels, as shown by immunohistochemistry. On the whole, this study demonstrated an antiapoptotic effect of hBMSC-Exos, which protected against I/R injury, via delivering miR-199a-3p to renal cells, downregulating Sema3A expression and thereby activating the AKT and ERK pathways. These findings reveal a novel mechanism of AKI treated with hBMSC-Exos and provide a therapeutic method for kidney diseases.  相似文献   

4.
Uncoupling protein 2 (UCP2), located in the mitochondrial inner membrane, is a predominant isoform of UCP that expressed in the heart and other tissues of human and rodent tissues. Nevertheless, its functional role during myocardial ischemia/reperfusion (I/R) is not entirely understood. Ischemic preconditioning (IPC) remarkably improved postischemic functional recovery followed by reduced lactate dehydrogenase (LDH) release with simultaneous upregulation of UCP2 in perfused myocardium. We then investigated the role of UCP2 in IPC-afforded cardioprotective effects on myocardial I/R injury with adenovirus-mediated in vivo UCP2 overexpression (AdUCP2) and knockdown (AdshUCP2). IPC-induced protective effects were mimicked by UCP2 overexpression, while which were abolished with silencing UCP2. Mechanistically, UCP2 overexpression significantly reinforced I/R-induced mitochondrial autophagy (mitophagy), as measured by biochemical hallmarks of mitochondrial autophagy. Moreover, primary cardiomyocytes infected with AdUCP2 increased simulated ischemia/reperfusion (sI/R)-induced mitophagy and therefore reversed impaired mitochondrial function. Finally, suppression of mitophagy with mdivi-1 in cultured cardiomyocytes abolished UCP2-afforded protective effect on sI/R-induced mitochondrial dysfunction and cell death. Our data identify a critical role for UCP2 against myocardial I/R injury through preventing the mitochondrial dysfunction through reinforcing mitophagy. Our findings reveal novel mechanisms of UCP2 in the cardioprotective effects during myocardial I/R.  相似文献   

5.
大鼠肢体缺血/再灌注后的心肌损伤和NO的保护效应   总被引:1,自引:0,他引:1  
目的:探讨大鼠肢体缺血/再灌注(LI/R)后心肌的损伤性变化及NO的保护效应。方法:制备LI/R动物模型,将Wistar大鼠随机分为4组(n=10):C(control)组、I/R组、L-Arg组和L-NAME组。用生物化学方法测定大鼠血浆CK、CK-MB及NO水平,测定心肌组织XOD、SOD、MDA含量。用BL-420生物机能实验系统监测大鼠MAP、LVSP、±dp/dtmax等。结果:LI/R后,血浆CK、CK-MB水平均明显升高(P<0.01);心肌组织SOD活性降低而MDA、XOD含量增加(P<0.01或P<0.05);MAP、LVSP、dp/dtmax、-dp/dtmax均降低(P<0.01或P<0.05);血浆NO水平在L-Arg组明显升高(P<0.01),在L-NAME组显著降低(P<0.05)。结论:大鼠LI/R可引起心肌损伤,机体的氧化应激状态可能是其发生机制之一;提高体内NO水平可在一定程度上减轻LI/R后心肌损伤的程度。  相似文献   

6.
GSE (grape seed extract) has been shown to exhibit protective effects against cardiovascular events and atherosclerosis, although the underlying molecular mechanisms of action are unknown. Herein, we assessed the ability of GSE to enhance eNOS (endothelial nitric oxide synthase) expression and NO (nitric oxide) production in H2O2 (hydrogen peroxide)‐treated HUVECs (human umbilical vein endothelial cells). GSE enhanced eNOS expression and NO release in H2O2‐treated cells in a dose‐dependent manner. GSE inhibited intracellular ROS (reactive oxygen species) and reduced intracellular calcium in a dose‐dependent manner in H2O2‐treated cells, as shown by confocal microscopy. ROS was inhibited in cells pretreated with 5.0 μM GSE, 2.0 μM TG (thapsigargin) and 20.0 μM 2‐APB (2‐aminoethoxydiphenyl borate) instead of 0.25 μM extracellular calcium. In addition, GSE enhanced eNOS expression and reduced ROS production via increasing p‐AKT (AKT phosphorylation) with high extracellular calcium (13 mM). In conclusion, GSE protected against endothelial injury by up‐regulation of eNOS and NO expression via inhibiting InsP3Rs (inositol 1,4,5‐trisphosphate receptors)‐mediated intracellular excessive calcium release and by activating p‐AKT in endothelial cells.  相似文献   

7.
晚期糖化终末产物受体(receptor for advanced glycation end product,RAGE)是一种单穿膜受体,同时也是一种多配体受体,属于免疫球蛋白超家族的成员。其配体包括高速泳动族框1蛋白质(high mobility group box 1,HMGB1)、晚期糖化终末产物(advanced glycation end product,AGE)、S100/钙粒蛋白(calgranulin)及β淀粉样肽等。在肝脏中,RAGE主要表达于巨噬细胞与树突状细胞上。RAGE一旦被激活,就会通过一系列的信号传导,诱导这些细胞释放出多种促炎症的物质,并引起中性粒细胞沉积,产生瀑布式的炎症反应链。肝脏的缺血再灌注(ischemia/reperfusion,I/R)损伤作用机制繁多。其中RAGE作为一个关键的调节点,各种外来和内在的因素都可以通过作用于RAGE从而影响炎症反应。现就肝脏I/R损伤与RAGE之间关系做一综述。  相似文献   

8.
Liu HT  Zhang HF  Si R  Zhang QJ  Zhang KR  Guo WY  Wang HC  Gao F 《生理学报》2007,59(5):651-659
我们前期研究表明胰岛素可激活细胞内信号转导机制如磷脂酰肌醇3.激酶.蛋白激酶B.内皮型一氧化氮合酶.一氧化氮(P13-K-Akt-eNOS-NO)信号通路,减轻心肌缺血/再灌注(ischemia/reperfusion,I/R)损伤,改善缺血后心肌功能恢复。然而c-Jun氨基末端激酶(c-JunNH2-terminal kinase,JNK)信号通路在胰岛素保护I/R心肌中的作用尚不清楚,本研究旨在探讨JNK信号通路在胰岛素保护I/R心肌中的作用及其与P13.K/Akt信号通路间的相互关系。离体Sprague-Dawley大鼠心脏缺血30min后施行2h或4h的再灌注,缺血前用LY294002(15mmol/L)和SP600125(10mmol/L)灌注15min,分别阻断P13.K/Akt和磷酸化JNK(phosphorylated.JNK,p-JNK)活化,观测心脏功能、心肌梗死、细胞凋亡和蛋白磷酸化水平。与对照组相比,胰岛素再灌注2h后,心率、左心室发展压和左心室收缩/舒张最大速率均明显增加,梗死面积减少约16.1%[(28.9±2.0)%vs(45.0±4.0)%,n=6,P〈O.01],细胞凋亡指数从(27.6±113)%减少到(16.0±0.7)%(n=6,P〈O.01),Akt的活性增加1.7倍(n=6,P〈0.05),同时JNK活性增加1.5倍铆=6,P〈O.05)。用LY294002处理后,胰岛素对I/R心肌的保护作用消失;而用SP600125处理可增强胰岛素的保护作用,且可部分逆转LY294002的抑制作用。进一步观察发现SP600125减弱了Akt的磷酸化m=6,P〈0.05)。上述结果表明,在I/R心肌中,胰岛素可同时激活P13.K/Akt及JNK信号通路,且通过后者进一步增加Akt活化,从而减轻I/R损伤,改善心肌功能。这种P13.K/Akt与JNK信号通路交互机制对胰岛素保护I/R心肌有重要意义。  相似文献   

9.
一种用于研究骨骼肌缺血/再灌注损伤的细胞模型   总被引:3,自引:1,他引:3  
目的:复制L-6TG大鼠肌母细胞缺血/再灌注损伤的细胞模型.方法:将培养的L-6TG大鼠肌母细胞随机分为2组:①正常对照组(C组),②缺血/再灌注组(I/R组),观测了培养上清中乳酸脱氢酶(LDH)、细胞内超氧化物歧化酶(SOD)、黄嘌呤氧化酶(XOD)、Ca2 含量的变化;采用MTT法检测线粒体的功能;在光镜下观察细胞的形态学改变.结果:与对照组相比,L-6TG大鼠肌母细胞IR 4h后培养上清中LDH、细胞内XOD、Ca2 含量明显增加,细胞内SOD及线粒体呼吸功能明显降低,细胞严重受损,明显圆缩,并有脱落现象.结论:应用模拟缺血液和再灌液可成功复制L-6TG大鼠肌母细胞缺血/再灌注损伤的细胞模型.  相似文献   

10.
11.
Ischemic heart disease (IHD) is the most occurring cardiovascular-associated disease, which is a primary leading cause of cardiac disability and death worldwide. Myocardial ischemia/reperfusion injury (MI/RI) has been linked to IHD-induced cardiomyocytes apoptosis and tissue damage. The clinical studies have indicated that pathophysiologic mechanisms of MI/RI are associated with reactive oxygen species generation, calcium overload, energy metabolism disorder, neutrophil infiltration, and others. However, the genetic mechanism of MI/RI remains unclear. In this study, we successfully established the reproducing abnormal heart observed in rat, of IHD-induced MI/RI post operation. By using these rats, we illustrated that expression of miR-181b-5p was increased not only in both hypoxia/reoxygenation-cultured H9C2 but also heart of myocardial ischemia/reperfusion (MI/R) rat. Suppression of the miR-181b-5p cardiomyocytes apoptosis and rescued myocardial infarction. Additionally, our data indicated that miR-181b-5p negatively regulates the expression of AKT3 and PIK3R3 through directly binding with its 3′-untranslated region. More importantly, suppression of miR-181b-5p protects the cardiomyocytes apoptosis and tissue damage from MI/R via regulation of PIK3R3 and AKT3. Hence, our study indicates that miR-181b-5p is essential for MI/RI via regulation of PI3K/Akt signaling pathway and could be a potential therapeutic target in IHD.  相似文献   

12.
Objective Physical activity has been shown to improve cardiovascular function and to be beneficial to type 2 diabetic patients. However, the effects of aerobic exercise (AE) on myocardial ischemia/reperfusion (MI/R) are largely unclear. Therefore, the aims of the present study were to determine whether long-term AE can protect the heart against I/R injury, and if so, to investigate the underlying mechanism. Methods Adult male Sprague–Dawley rats were randomly subjected to 8 weeks of either sedentary or free-loading swimming exercise (3 h/day, 5 d/week). Then the animals were subjected to 30 min MI followed by 4 h R. Arterial blood pressure and left ventricular pressure (LVP) were monitored throughout the whole MI/R procedure. Plasma creatine kinase (CK) and lactate dehydrogenase (LDH) activities were measured spectrophotometrically. Myocardial infarction and myocardial apoptosis (TUNEL analysis) were determined in a blinded manner. Results MI/R caused significant cardiac dysfunction and myocardial apoptosis (strong TUNEL-positive staining). Compared with sedentary group, rats subjected to 8 weeks of AE showed protection against MI/R as evidenced by reduced myocardial infarction (26.8 ± 1.5% vs. 35.3 ± 2.4%, n = 8, P < 0.05), inhibited cardiomyocyte apoptosis (decreased apoptotic index (12.4 ± 1.1% vs. 21.0 ± 1.7%, n = 8, P < 0.01) and decreased myocardial caspase-3 activity), decreased plasma CK and LDH activities and improved recovery of cardiac systolic/diastolic function (including LVSP and ±LVdP/dt) at the end of R. Moreover, exercise resulted in 1.7-fold, 2.5-fold and 2.5-fold increases in Akt expression, Akt phosphorylation and glycogen synthase kinase-3β phosphorylation in I/R myocardium, respectively (n = 3, all P < 0.05). More importantly, treatment with wortmannin, a PI3 kinase inhibitor, 15 min before R not only significantly blocked Akt phosphorylation (P < 0.05) in exercise rats, but also abolished long-term AE-induced cardioprotection for the I/R heart as manifested by increased apoptosis and myocardial infarction, and reduced cardiac function. Conclusion Long-term AE exerts cardioprotective effect against MI/R injury, including anti-cardiomyocyte apoptosis, which is at least partly via PI3 kinase-dependent and Akt-mediated mechanism.  相似文献   

13.
14.
大鼠心脏缺血-再灌注损伤对心肌L-Arg/NO途径的影响   总被引:5,自引:2,他引:5  
Zheng HZ  Tang CS  Su JL  Wu T 《生理学报》1999,51(1):25-30
为探讨大鼠心脏缺血-再灌注损伤(IRI)期间一氧化氮(NO)生成增加的环节和过程。本实验用离体灌流大鼠心脏,预灌流15 min,停灌45 min,取30 ml KH 液循环灌流15 min,观察冠脉流出液中细胞胞浆酶(LDH)、蛋白质、肌红蛋白漏出量和NO  相似文献   

15.
目的:观察肢体缺血/再灌注(LI/R)时肺损伤的变化并探讨缺血预处理(IPC)对其保护作用。方法:复制家兔LI/R损伤模型,观察肢体缺血4 h再灌注4 h肺损伤的变化以及采用肢体IPC干预后对肺损伤的影响。从右颈外静脉和左颈总动脉采血,分别代表入肺血和出肺血,检测入、出肺血及肺组织超氧化物歧化酶(SOD)的活性、脂质过氧化物的代谢产物丙二醛(MDA)和一氧化氮(NO)的含量;同时测定肺组织总一氧化氮合酶(tNOS)和诱导型一氧化氮合酶(iNOS)的活性以及肢体IPC对上述指标的影响。结果:与对照组和缺血前比较,LI/R组松夹再灌注4 h入、出肺血及肺组织SOD活性明显降低,MDA和NO含量增高(P〈0.05,P〈0.01);肺组织tNOS和iNOS活性亦升高,与对照组比较,有统计学意义(P〈0.01)。在缺血前给予IPC组,SOD活性升高,而MDA、NO含量降低,tNOS、iNOS活性也降低(P〈0.01)。相关分析显示MDA与SOD间存在明显负相关(P〈0.01),而MDA与NO及iNOS呈显著正相关(P〈0.01)。结论:LI/R时并发的急性肺损伤与组织氧化代谢紊乱有关,IPC通过改善LI/R时肺组织氧化与抗氧化之间的平衡,进而增强肺组织的抗氧化能力,对LI/R肺损伤具有保护作用。  相似文献   

16.
Rationale: Myocardial ischemia/reperfusion (I/R) injury is a common clinic scenario that occurs in the context of reperfusion therapy for acute myocardial infarction (AMI). The mitochondrial F1Fo-ATPase inhibitory factor 1 (IF1) blocks the reversal of the F1Fo-ATP synthase to prevent detrimental consumption of cellular ATP and associated demise. In the present study, we study the role and mechanism of IF1 in myocardial I/R injury.Methods: Mice were ligated the left anterior descending coronary artery to build the I/R model in vivo. Rat hearts were isolated and perfused with constant pressure according to Langendorff. Also, neonatal cardiomyocytes hypoxia-reoxygenation (H/R) model was also used. Myocardial infarction area, cardiac function, cellular function, and cell viability was conducted and compared.Results: Our data revealed that IF1 is upregulated in hearts after I/R and cardiomyocytes with hypoxia/re-oxygenation (H/R). IF1 delivered with adenovirus and adeno-associated virus serotype 9 (AAV9) ameliorated cardiac dysfunction and pathological development induced by I/R ex vivo and in vivo. Mechanistically, IF1 stimulates glucose uptake and glycolysis activity and stimulates AMPK activation during in vivo basal and I/R and in vitro OGD/R conditions, and activation of AMPK by IF1 is responsible for its cardioprotective effects against H/R-induced injury.Conclusions: These results suggest that increased IF1 in the I/R heart confer cardioprotective effects via activating AMPK signaling. Therefore, IF1 can be used as a potential therapeutic target for the treatment of pathological ischemic injury and heart failure.  相似文献   

17.
Acute statin treatment has been reported to be critical in protecting the cardiac cells against ischemia/reperfusion injury by activating PI3K/Akt signal pathway. In vitro rat myocardial ischemia/reperfusion model, chronic statin treatment led to upregulation of phosphatase and tensin homolog (PTEN). This has been potentially indicated the correlation in PTEN and protective effect of statin on myocardium. In this current study, we evaluated the role of sodium orthovanadate a nonspecific inhibitor to PTEN and its correlation with atorvastatin on protecting myocardium against ischemia/reperfusion injury. We found a long-term statin treatment could increase the PTEN level, and this process was counteracted in the presence of sodium orthovanadate. However, the phosphotyrosine level was not affected by this statin. Besides, this process was mediated by Akt signaling since phosphorylated Akt level was altered by statin and sodium orthovanadate treatment. In a conclusion, this study showed a potential mechanism underlying PTEN-induced attenuation in long-term statin’s therapeutic effect, which provided the new insight into the synergic role of PTEN and atorvastatin in protecting cardiac cells against ischemia/reperfusion injury.  相似文献   

18.
Myocardial injury due to ischemia‐reperfusion (I‐R) damage remains a major clinical challenge. Its pathogenesis is complex including endothelial dysfunction and heightened oxidative stress although the key driving mechanism remains uncertain. In this study we tested the hypothesis that the I‐R process induces a state of insufficient L ‐arginine availability for NO biosynthesis, and that this is pivotal in the development of myocardial I‐R damage. In neonatal rat ventricular cardiomyocytes (NVCM), hypoxia‐reoxygenation significantly decreased L ‐arginine uptake and NO production (42 ± 2% and 71 ± 4%, respectively, both P < 0.01), maximal after 2 h reoxygenation. In parallel, mitochondrial membrane potential significantly decreased and ROS production increased (both P < 0.01). NVCMs infected with adenovirus expressing the L ‐arginine transporter, CAT1, and NVCMs supplemented with L ‐arginine both exhibited significant (all P < 0.05) improvements in NO generation and mitochondrial membrane potentials, with a concomitant significant fall in ROS production and lactate dehydrogenase release during hypoxia‐reoxygenation. In contrast, L ‐arginine deprived NVCM had significantly worsened responses to hypoxia‐reoxygenation. In isolated perfused mouse hearts, L ‐arginine infusion during reperfusion significantly improved left ventricular function after I‐R. These improved contractile responses were not dependent on coronary flow but were associated with a significant decrease in nitrotyrosine formation and increases in phosphorylation of both Akt and troponin I. Collectively, these data strongly implicate reduced L ‐arginine availability as a key factor in the pathogenesis of I‐R injury. Increasing L ‐arginine availability via increased CAT1 expression or by supplementation improves myocardial responses to I‐R. Restoration of L ‐arginine availability may therefore be a valuable strategy to ameliorate I‐R injury. J. Cell. Biochem. 108: 156–168, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
Radiation-induced lung injury (RILI) is a potentially fatal and dose-limiting complication of thoracic radiotherapy. This study was to investigate the protective effects of grape seed pro-anthocyanidins (GSPs), an efficient antioxidant and anti-carcinogenic agent, on RILI. In our study, it was demonstrated that acute and late RILI was ameliorated after GSPs treatment possibly through suppressing TGF-β1/Smad3/Snail signalling pathway and modulating the levels of cytokines (interferon-γ, IL-4 and IL-13) derived from Th1/Th2 cells. In addition, a sustained high level of PGE2 was also maintained by GSPs treatment to limited fibroblast functions. As shown by electron spin resonance spectrometry, GSPs could scavenge hydroxyl radical (•OH) in a dose-dependent manner, which might account for the mitigation of lipid peroxidation and consequent apoptosis of lung cells. In vitro, GSPs radiosensitized lung cancer cell A549 while mitigating radiation injury on normal alveolar epithelial cell RLE-6TN. In conclusion, the results showed that GSPs protects mice from RILI through scavenging free radicals and modulating RILI-associated cytokines, suggesting GSPs as a novel protective agent in RILI.  相似文献   

20.
目的:探讨肢体缺血/再灌注(I/R)致肝损伤时肝组织iNOS表达的变化及其意义.方法:夹闭大鼠双侧股动脉根部4 h、开放2~24 h,制备肢体I/R模型.RT-PCR检测肝组织iNOSmRNA表达的改变,免疫组化染色法观察iNOS蛋白及过氧亚硝基阴离子(ONOO-)的生成与分布,比色法测定肝组织MDA含量及SOD活性;对肢体I-R大鼠用氨基胍抑制iNOS活性后,观察其肝组织的病理学变化.结果:肢体I-R后,肝组织iNOS mRNA的表达水平较对照组显著上调(P<0.05),肝组织内出现大量iNOS及ONOO-阳性肝细胞,肝组织MDA含量升高及SOD活性降低均与对照组有显著性差异(P<0.01).应用氨基胍抑制iNOS活性,使肢体I-R所致肝组织病变减轻.结论:肢体I/R后,肝组织iNOSmRNA及蛋白表达显著上调,所诱生的高浓度NO参与介导了肢体I/R引发的肝脏损伤.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号