首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microarrays printed on glass slides are often constructed by covalently linking modified oligonucleotide probes to a derivatized surface at considerable expense. In this article, we demonstrate that 14-base oligonucleotides with a poly(T)10 - poly(C)10 tail (TC tag), but otherwise unmodified, can be linked by UV light irradiation onto a plain, unmodified glass surface. Probes immobilized onto unmodified glass microscope slides performed similarly to probes bound to commercial amino-silane-coated slides and had comparable detection limits. The TC-tagged probes linked to unmodified glass did not show any significant decrease in hybridization performance after a 20 min incubation in water at 100 degrees C prior to rehybridization, indicating a covalent bond between the TC tag and unmodified glass. The probes were used in thermal minisequencing cycling reactions. Furthermore, the TC tag improved the hybridization performance of the immobilized probes on the amino-silane surface, indicating a general benefit of adding a TC tag to DNA probes. In conclusion, our results show that using TC-tagged DNA probes immobilized on an unmodified glass surface is a robust, heat-stable, very simple, and inexpensive method for manufacturing DNA microarrays.  相似文献   

2.
Mushroom tyrosinase was immobilized from an extract onto glass beads covered with one of the following compounds: the crosslinked totally cinnamoylated derivatives of glycerine, D-sorbitol, D-manitol, 1,2-O-isopropylidene-alpha-D-glucofuranose, D-glucuronic acid, D-gulonic acid, sucrose, D-glucosone, D-arabinose, D-fructose, D-glucose, ethyl-D-glucopyranoside, inuline, dextrine, dextrane or starch, or the partially cinnamoylated derivative 3,5,6-tricinnamoyl-D-glucofuranose which was obtained by the acid hydrolysis of 1,2-O-isopropylidene-alpha-d-glucofuranose. The enzyme was immobilized by direct adsorption onto the support and the quantity of tyrosinase immobilized was found to increase with the hydrophobicity of the supports. The kinetic constants of immobilized tyrosinase acting on the substrates, 4-tert-butylcatechol, dopamine and DL-dopa, were studied. When immobilized tyrosinase acted on 4-tert-butylcatechol, the values of K(m)(app) were lower than these obtained for tyrosinase in solution while, when dopamine and DL-dopa were used, the K(m)(app) were higher. The order of the substrates as regards their ionizable groups, DL-dopa (two ionizable groups)>dopamine (one ionizable group)>4-tert-butylcatechol (no ionizable group) coincided with the order of the K(m)(app) values shown by tyrosinase immobilized on the hydrophobic supports, and was the inverse of that observed for tyrosinase in solution. The K(m)(app) values of immobilized tyrosinase were in all cases higher than those of soluble tyrosinase and depended on the nature of the support and the hydrophobicity of the substrate, meaning that it is possible to design supports with different degrees of selectivity towards a mixture of enzyme substrates in the reaction medium.  相似文献   

3.
A glass slide and micro-well array chip on which anti-Cryptosporidium parvum antibody was immobilized were used for the rapid capture and detection of C. parvum. Biotinylated anti-C. parvum antibodies were spotted onto the streptavidin-coated glass slides. C. parvum oocysts were captured specifically on the spot when more than 73 ng of anti-C. parvum antibody was applied onto the glass slide. However, C. parvum oocysts captured on the glass slide were detached by repeating washing steps. To improve the capture efficiency of oocysts, capture was performed in a micro-well format consisting of 1024 wells/2.5 mm2 (32 x 32 wells) fabricated as a chip by photolithography. Instead of a flat surface on a glass slide, each well was 30 microm in diameter and 10 microm in depth. Streptavidin was also immobilized onto the micro-well array. The biotinylated anti-C. parvum antibodies were immobilized efficiently onto the chip using a buffer containing 20% methanol. Using this technique C. parvum oocysts were stably captured onto the chip after repeated washing procedures. These data show that the newly designed micro-well array technique described here is useful for antibody-mediated C. parvum capture.  相似文献   

4.
Tripartite molecular beacons   总被引:3,自引:0,他引:3       下载免费PDF全文
Molecular beacons (MBs) are hairpin-like fluorescent DNA probes that have single-mismatch detection capability. Although they are extremely useful for many solution-based nucleic acid detections, MBs are expensive probes for applications that require the use of a large number of different DNA probes due to the high cost and tedious procedures associated with probe synthesis and purification. In addition, since both ends of MB probes are covalently modified with chromophores, they do not offer the flexibility for fluorophore change and the capability for surface immobilization through free DNA ends. In this report, we describe an alternative form of MB, denoted tripartite molecular beacon (TMB), that may help overcome these problems. A TMB uses an unmodified oligodeoxyribonucleotide that forms a MB-like structure with two universal single-stranded arms to bring on a universal pair of oligodeoxyribonucleotides modified separately with a fluorophore and a quencher. We found that TMBs are as effective as standard MBs in signaling the presence of matching nucleic acid targets and in precisely discriminating targets that differ by a single nucleotide. TMBs have the necessary flexibility that may make MBs more affordable for various nucleic acid detection applications.  相似文献   

5.
Screening unlabeled DNA targets with randomly ordered fiber-optic gene arrays   总被引:17,自引:0,他引:17  
We have developed a randomly ordered fiber-optic gene array for rapid, parallel detection of unlabeled DNA targets with surface immobilized molecular beacons (MB) that undergo a conformational change accompanied by a fluorescence change in the presence of a complementary DNA target. Microarrays are prepared by randomly distributing MB-functionalized 3-microm diameter microspheres in an array of wells etched in a 500-microm diameter optical imaging fiber. Using several MBs, each designed to recognize a different target, we demonstrate the selective detection of genomic cystic fibrosis related targets. Positional registration and fluorescence response monitoring of the microspheres was performed using an optical encoding scheme and an imaging fluorescence microscope system.  相似文献   

6.
Fluorescent in situ hybridization (FISH) remains a key technique in microbial ecology. Molecular beacons (MBs) are self-reporting probes that have potential advantages over linear probes for FISH. MB-FISH strategies have been described using both DNA-based and peptide nucleic acid (PNA)-based approaches. Although recent reports have suggested that PNA MBs are superior, DNA MBs have some advantages, most notably cost. The data presented here demonstrate that DNA MBs are suitable for at least some FISH applications in complex samples, providing superior discriminatory power compared to that of corresponding linear DNA-FISH probes. The use of DNA MBs for flow cytometric detection of Pseudomonas putida resulted in approximately double the signal-to-noise ratio of standard linear DNA probes when using laboratory-grown cultures and yielded improved discrimination of target cells in spiked environmental samples, without a need for separate washing steps. DNA MBs were also effective for the detection and cell sorting of both spiked and indigenous P. putida from activated sludge and river water samples. The use of DNA MB-FISH presents another increase in sensitivity, allowing the detection of bacteria in environmental samples without the expense of PNA MBs or multilaser flow cytometry.  相似文献   

7.
Molecular-beacon-based array for sensitive DNA analysis   总被引:13,自引:0,他引:13  
Yao G  Tan W 《Analytical biochemistry》2004,331(2):216-223
Molecular beacon (MB) DNA probes provide a new way for sensitive label-free DNA/protein detection in homogeneous solution and biosensor development. However, a relatively low fluorescence enhancement after the hybridization of the surface-immobilized MB hinders its effective biotechnological applications. We have designed new molecular beacon probes to enable a larger separation between the surface and the surface-bound MBs. Using these MB probes, we have developed a DNA array on avidin-coated cover slips and have improved analytical sensitivity. A home-built wide-field optical setup was used for imaging the array. Our results show that linker length, pH, and ionic strength have obvious effects on the performance of the surface-bound MBs. The fluorescence enhancement of the new MBs after hybridization has been increased from 2 to 5.5. The MB-based DNA array could be used for DNA detection with high sensitivity, enabling simultaneous multiple-target bioanalysis in a variety of biotechnological applications.  相似文献   

8.
The immobilization of chlorophyllase was optimized by physical adsorption on various inorganic supports, including alumina, celite, Dowex-1-chloride, glass beads and silica gel. The enzyme was also immobilized in different media, including water, Tris-HCl buffer solution and a ternary micellar system containing Tris-HCl buffer solution, hexane and surfactant. The highest immobilization efficiency (84.56%) and specific activity (0.34 mumol hydrolyzed chlorophyll mg protein-1 per min) were obtained when chlorophyllase was suspended in Tris-HCl buffer solution and adsorbed onto silica gel. The effect of different ratios of chlorophyllase to the support and the optimum incubation time for the immobilization of chlorophyllase were determined to be 1-4 and 60 min, respectively. The experimental results showed that the optimum pH and temperature for the immobilized chlorophyllase were 8.0 and 35 degrees C, respectively. The use of optimized amounts of selected membrane lipids increased the specific activity of the immobilized chlorophyllase by approximately 50%. The enzyme kinetic studies indicated that the immobilized chlorophyllase showed a higher affinity towards chlorophyll than pheophytin as substrate.  相似文献   

9.
A novel surface treatment method was developed to enhance polymer-based microchannel enzyme-linked immunosorbent assay (ELISA) for Escherichia coli O157:H7 detection. By applying an amine-bearing polymer, poly(ethyleneimine) (PEI), onto poly(methyl methacrylate) (PMMA) surface at pH higher than 11, PEI molecules were covalently attached and their amine groups were introduced to PMMA surface. Zeta potential analysis and X-ray photoelectron spectroscopy (XPS) demonstrated that the alkali condition is preferable for PEI attachment onto the PMMA surface. The amine groups on the PMMA surface were then functionalized with glutaraldehyde, whose aldehyde groups served as the active sites for binding the antibody by forming covalent bonds with the amine groups of the protein molecules. This surface modification greatly improved antibody binding efficiency and the microchannel ELISA for E. coli O157:H7 detection. Compared with untreated PMMA microchannels, approximately 45 times higher signal and 3 times higher signal/noise ratio were achieved with the PEI surface treatment, which also shortened the time required for cells to bind to the microchannel surface to approximately 2 min, much less than that usually required for the same ELISA carried out in 96-well plates. The detection in the microchannel ELISA only required 5-8 cells per sample, which is also better than 15-30 cells required in multi-well plates. With the high sensitivity, short assay time, and small reagent consumption, the microchannel ELISA can be economically used for fast detection of E. coli O157:H7.  相似文献   

10.
In recent years, the oligonucleotide-based microarray technique has emerged as a powerful and promising tool for various molecular biological studies. Here, a facile protocol for the construction of an oligonucleotide microarray is demonstrated that involves immobilization of oligonucleotide-trimethoxysilyl conjugates onto virgin glass microslides. The projected immobilization strategy reflects high immobilization efficiency ( approximately 36-40%) and signal-to-noise ratio ( approximately 98), and hybridization efficiency ( approximately 32-35%). Using the proposed protocol, aminoalkyl, mercaptoalkyl, and phosphorylated oligonucleotides were immobilized onto virgin glass microslides. Briefly, modified oligonucleotides were reacted first with 3-glycidyloxypropyltriethoxysilane (GOPTS), and subsequently, the resultant conjugates were directly immobilized onto the virgin glass surface by making use of silanization chemistry. The constructed microarrays were then used for discrimination of base mismatches. On subjecting to different pH and thermal conditions, the microarray showed sufficient stability. Application of this chemistry to manufacture oligonucleotide probe-based microarrays for detection of bacterial meningitis is demonstrated. Single-step reaction for the formation of conjugates with the commercially available reagent (GOPTS), omission of capping step and surface modification, and efficient immobilization of oligonucleotides onto the virgin glass surface are the key features of the proposed strategy.  相似文献   

11.
Endothelial cells synthesize and secrete von Willebrand factor (VWF) multimers, including unusually large forms (ULVWF), which are usually cleaved into smaller multimers found in normal plasma (P-VWF). Thrombotic thrombocytopenic purpura (TTP) is a microangiopathic disorder characterized by systemic attachment of platelets to inadequately cleaved ULVWF multimers. We have compared ULVWF and P-VWF in their capacity to become immobilized onto surfaces in vitro and their ability to mediate platelet adhesion. We have also used functional assays to directly compare ULVWF forms with purified P-VWF in mediating platelet aggregation in solution. At comparable concentrations, ULVWF is more effectively adsorbed onto glass surfaces than P-VWF and supports increased platelet adhesion. ULVWF is also significantly more potent than P-VWF in mediating both shear-induced platelet aggregation and ristocetin-mediated platelet agglutination.  相似文献   

12.
Cholesterol oxidase (ChOx) has been covalently immobilized onto 1-fluoro-2-nitro-4-azidobenzene (FNAB) modified poly-(3-hexylthiophene) (P3HT) self-assembled monolayer (SAM) onto gold coated glass plates. These ChOx/FNAB/P3HT/Au bio-electrodes have been characterized using contact angle (CA) measurements, UV-vis spectroscopy, electrochemical impedance technique, cyclic voltammetric technique and atomic force microscopic (AFM) technique, respectively. The ChOx/FNAB/P3HT/Au bio-electrodes were utilized for the estimation of cholesterol concentration in standard solutions using surface plasmon resonance (SPR) technique. It is shown that this SPR biosensor has linearity from 50 to 500 mg/dl of cholesterol in solution with detection limit of 50 mg/dl, sensitivity of 1.0 4 m degrees /(mg dl), reusability of around 15 times and a shelf-life of about 10 weeks when stored at 4 degrees C.  相似文献   

13.
The potential of using immobilized Heat Shock Protein 70 (HSP 70) in combination with other molecular chaperones to ameliorate problems of enzyme denaturation was investigated. Firefly luciferase was used as a model enzyme due to its sensitivity to thermal denaturation, and the availability of a sensitive chemiluminescent assay method for determination of relative activity of this enzyme. Control experiments and development of effective combinations of HSP with other chaperones involved re-activation of enzyme in bulk solution. A combination of HSP 70, alpha-crystallin and reticulocyte lysate (RL) in bulk solution were found to re-activate soluble firefly luciferase to about 60% of the initial activity after the enzyme activity had been reduced to less than 2% by thermal denaturation. HSP 70 that was covalently immobilized onto glass surfaces was also able to re-activate denatured enzyme that was in bulk solution. Over 30% of the initial activity could be regained from heat denatured enzyme when using immobilized HSP in the presence of other chaperones. The activity of soluble enzyme decayed to negligible values in a period of days when stored at room temperature. In the presence of immobilized HSP and chaperones, activity stabilized at about 10% of the initial activity even after many weeks. The results suggest that immobilized molecular chaperones such as HSP 70 may provide some potential for stabilization and re-activation of enzymes that are trapped in thin aqueous films for applications in biosensors and reactors.  相似文献   

14.
Pseudomonas cepaciae lipase adsorbed onto non-porous structured fiber supports in the form of woven fabrics, was used to catalyze hydrolysis and transesterification reactions in the gas phase. The enzyme adsorbed onto carbon fiber support exhibited much higher catalytic activity compared to the enzyme immobilized onto glass fiber carrier. The effect of temperature and relative humidity on reactions catalyzed by P. cepaciae lipase adsorbed onto structured fiber carbon support was studied in the gas system. Under the conditions investigated (up to 60 °C and 80% relative humidity), the immobilized enzyme showed a high thermostability and could be efficiently used to catalyze hydrolytic and transesterification reactions in continuous mode. Structured fiber supports, with a high specific surface area and a high mechanical resistance, showed a low-pressure drop during the passage of reactants through a reactor. The approach proposed in this study could be suitable for immobilization of a wide variety of enzymes.  相似文献   

15.
We demonstrate the formation of micropatterned sol-gel structures containing active proteins by patterning with polydimethylsiloxane (PDMS) microchannels. To transport sol solution efficiently into the hydrophobic PDMS microchannels, a hydrophilic-hydrophobic block copolymer was used to impart hydrophilicity to the PDMS microchannels. Poor adhesion of the micropatterned gel structure onto glass slides was improved by treating the glass surface with a polymeric substrate. To minimize cracks in the gel microstructure, hybrid matrices of interpenetrating organic and inorganic networks were prepared containing the reactive organic moieties polyvinylalcohol or polyvinylpyrrolidone. Retention of biochemical activity within the micropatterned gel was demonstrated by performing immunobinding assays with immobilized immunoglobulin G (IgG) antibody. The potential application of microfluidics technology to immobilized-enzyme biocatalysis was demonstrated using PDMS-patterned microchannels filled with trypsin-containing sol-gels. This work provides a foundation for the microfabrication of functional protein chips using sol-gel processes.  相似文献   

16.
We describe a process for covalently linking proteins to glass microscope slides and microbeads in a manner that optimizes the reactivity of the immobilized proteins and that is suitable for high-throughput microarray and flow cytometry analysis. The method involves the diazo coupling of proteins onto activated self-assembled monolayers formed from p-aminophenyl trimethoxysilane. Proteins immobilized by this method maintained bioactivity and produced enhanced levels of protein-protein interaction, low background fluorescence, and high selectivity. The binding of immobilized proteins to their specific binding partner was analyzed quantitatively and successfully correlated with solution concentrations. Diazotized surfaces bound more efficiently to proteins containing a hexahistidine tag than those without a his-tag. Moreover, significantly higher reactivity of the immobilized his-tagged proteins was observed on diazotized surfaces than on amine-terminated surfaces. Results suggest that his-tagged proteins are immobilized by reaction of the his-tag with the diazotized surface, thus offering the possibility for preferential orientation of covalently bound proteins.  相似文献   

17.
In molecular testing using PCR, the target DNA is amplified via PCR and the sequence of interest is investigated via hybridization with short oligonucleotide capture probes that are either in a solution or immobilized on solid supports such as beads or glass slides. In this report, we report the discovery of assembly of DNA complex(es) between a capture probe and multiple strands of the PCR product. The DNA complex most likely has branched structure. The assembly of branched DNA was facilitated by the product of asymmetric PCR. The amount of branched DNA assembled was increased five fold when the asymmetric PCR product was denatured and hybridized with a capture probe all in the same PCR reaction mixture. The major branched DNA species appeared to contain three reverse strands (the strand complementary to the capture probe) and two forward strands. The DNA was sensitive to S1 nuclease suggesting that it had single-stranded gaps. Branched DNA also appeared to be assembled with the capture probes immobilized on the surface of solid support when the product of asymmetric PCR was hybridized. Assembly of the branched DNA was also increased when hybridization was performed in complete PCR reaction mixture suggesting the requirement of DNA synthesis. Integration of asymmetric PCR, heat denaturation and hybridization in the same PCR reaction mixture with the capture probes immobilized on the surface of solid support achieved dramatic increase in the signal and sensitivity of detection of DNA. Such a system should be advantageously applied for development of automated process for detection of DNA.  相似文献   

18.
The well-characterized small heat-shock protein, alphaB-crystallin, acts as a molecular chaperone by interacting with unfolding proteins to prevent their aggregation and precipitation. Structural perturbation (e.g., partial unfolding) enhances the in vitro chaperone activity of alphaB-crystallin. Proteins often undergo structural perturbations at the surface of a synthetic material, which may alter their biological activity. This study investigated the activity of alphaB-crystallin when covalently bound to a support surface; alphaB-crystallin was immobilized onto a range of solid material surfaces, and its characteristics and chaperone activity were assessed. Immobilization was achieved via a plasma-deposited thin polymeric interlayer containing aldehyde surface groups and reductive amination, leading to the covalent binding of alphaB-crystallin lysine residues to the surface aldehyde groups via Schiff-base linkages. Immobilized alphaB-crystallin was characterized by X-ray photoelectron spectroscopy, atomic force microscopy, and quartz crystal microgravimetry, which showed that 300 ng cm(-2) (dry mass) of oligomeric alphaB-crystallin was bound to the surface. Immobilized alphaB-crystallin exhibited a significant enhancement (up to 5000-fold, when compared with the equivalent activity of alphaB-crystallin in solution) of its chaperone activity against various proteins undergoing both amorphous and amyloid fibril forms of aggregation. The enhanced molecular chaperone activity of immobilized alphaB-crystallin has potential applications in preventing protein misfolding, including against amyloid disease processes, such as dialysis-related amyloidosis, and for biodiagnostic detection of misfolded proteins.  相似文献   

19.
Michel W  Mai T  Naiser T  Ott A 《Biophysical journal》2007,92(3):999-1004
We investigate the kinetics of DNA hybridization reactions on glass substrates, where one 22 mer strand (bound-DNA) is immobilized via phenylene-diisothiocyanate linker molecule on the substrate, the dye-labeled (Cy3) complementary strand (free-DNA) is in solution in a reaction chamber. We use total internal reflection fluorescence for surface detection of hybridization. As a new feature we perform a simultaneous real-time measurement of the change of free-DNA concentration in bulk parallel to the total internal reflection fluorescence measurement. We observe that the free-DNA concentration decreases considerably during hybridization. We show how the standard Langmuir kinetics needs to be extended to take into account the change in bulk concentration and explain our experimental results. Connecting both measurements we can estimate the surface density of accessible, immobilized bound-DNA. We discuss the implications with respect to DNA microarray detection.  相似文献   

20.
A chemical procedure was developed to functionalize poly(methyl methacrylate) (PMMA) substrates. PMMA is reacted with hexamethylene diamine to yield an aminated surface for immobilizing DNA in microarrays. The density of primary NH2 groups was 0.29 nmol/cm2. The availability of these primary amines was confirmed by the immobilization of DNA probes and hybridization with a complementary DNA strand. The hybridization signal and the hybridization efficiency of the chemically aminated PMMA slides were comparable to the hybridization signal and the hybridization efficiency obtained from differently chemically modified PMMA slides, silanized glass, commercial silylated glass and commercial plastic Euray™ slides. Immobilized and hybridized densities of 10 and 0.75 pmol/cm2, respectively, were observed for microarrays on chemically aminated PMMA. The immobilized probes were heat stable since the hybridization performance of microarrays subjected to 20 PCR heat cycles was only reduced by 4%. In conclusion, this new strategy to modify PMMA provides a robust procedure to immobilize DNA, which is a very useful substrate for fabricating single use diagnostics devices with integrated functions, like sample preparation, treatment and detection using microfabrication and microelectronic techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号