首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
3.
4.
Using the direct amplification of genomic DNA from two cultivars of leaf mustard (Brassica juncea), we obtained two homologs of the MADS-box gene FLOWERING LOCUS C(FLC), which regulates flowering time in arabidopsis. Nucleotide and deduced amino acid sequences of two cloned FLC fragments (from exon 2 to exon 7) were compared to the previously characterized FLC genes in arabidopsis and FLC homologs in other Brassicaceae species. The homolog AY266265 is an ortholog of the FLC3 gene from Brassica rapa (95% identity), whereas the function of the homolog AY268931 has not been established conclusively. The FLC gene and its homologs were used to compare the variability in the primary structures of exons and introns.  相似文献   

5.
Jiang D  Wang Y  Wang Y  He Y 《PloS one》2008,3(10):e3404
Polycomb group (PcG) proteins are evolutionarily conserved in animals and plants, and play critical roles in the regulation of developmental gene expression. Here we show that the Arabidopsis Polycomb repressive complex 2 (PRC2) subunits CURLY LEAF (CLF), EMBRYONIC FLOWER 2 (EMF2) and FERTILIZATION INDEPENDENT ENDOSPERM (FIE) repress the expression of FLOWERING LOCUS C (FLC), a central repressor of the floral transition in Arabidopsis and FLC relatives. In addition, CLF directly interacts with and mediates the deposition of repressive histone H3 lysine 27 trimethylation (H3K27me3) into FLC and FLC relatives, which suppresses active histone H3 lysine 4 trimethylation (H3K4me3) in these loci. Furthermore, we show that during vegetative development CLF and FIE strongly repress the expression of FLOWERING LOCUS T (FT), a key flowering-time integrator, and that CLF also directly interacts with and mediates the deposition of H3K27me3 into FT chromatin. Our results suggest that PRC2-like complexes containing CLF, EMF2 and FIE, directly interact with and deposit into FT, FLC and FLC relatives repressive trimethyl H3K27 leading to the suppression of active H3K4me3 in these loci, and thus repress the expression of these flowering genes. Given the central roles of FLC and FT in flowering-time regulation in Arabidopsis, these findings suggest that the CLF-containing PRC2-like complexes play a significant role in control of flowering in Arabidopsis.  相似文献   

6.
7.
8.
9.
Wasabi (Wasabia japonica) is a commercially important crop in Japan. We isolated a FLC ortholog from wasabi and named as WjFLC. Predicted amino acid sequence encoded by WjFLC showed 89% identity with FLC of arabidopsis and conserved the MADS box motif. WjFLC was expressed in young and mature leaves, apical region of lateral bud, rhizome, and root. The expression of WjFLC was high in October and reduced in November when flower buds are formed in wasabi. WjFLC may be useful in monitoring the flowering response in wasabi.  相似文献   

10.
11.
12.
13.
14.
The epigenetic regulation of the floral repressor FLOWERING LOCUS C ( FLC ) is one of the critical factors that determine flowering time in Arabidopsis thaliana . Although many FLC regulators, and their effects on FLC chromatin, have been extensively studied, the epigenetic resetting of FLC has not yet been thoroughly characterized. Here, we investigate the FLC expression during gametogenesis and embryogenesis using FLC::GUS transgenic plants and RNA analysis. Regardless of the epigenetic state in adult plants, FLC expression disappeared in gametophytes. Subsequently, FLC expression was reactivated after fertilization in embryos, but not in the endosperm. Both parental alleles contributed equally to the expression of FLC in embryos. Surprisingly, the reactivation of FLC in early embryos was independent of FRIGIDA (FRI) and SUPPRESSOR OF FRIGIDA 4 (SUF4) activities. Instead, FRI , SUF4 and autonomous-pathway genes determined the level of FLC expression only in late embryogenesis. Many FLC regulators exhibited expression patterns similar to that of FLC , indicating potential roles in FLC reprogramming. An FVE mutation caused ectopic expression of FLC in the endosperm. A mutation in PHOTOPERIOD-INDEPENDENT EARLY FLOWERING 1 caused defects in FLC reactivation in early embryogenesis, and maintenance of full FLC expression in late embryogenesis. We also show that the polycomb group complex components, Fertilization-Independent endosperm and MEDEA, which mediate epigenetic regulation in seeds, are not relevant for FLC reprogramming. Based on our results, we propose that FLC reprogramming is composed of three phases: (i) repression in gametogenesis, (ii) reactivation in early embryogenesis and (iii) maintenance in late embryogenesis.  相似文献   

15.
In interspecific pollination of Brassica rapa stigmas with Brassica oleracea pollen grains, pollen tubes cannot penetrate stigma tissues. This trait, called interspecific incompatibility, is similar to self-incompatibility in pollen tube behaviors of rejected pollen grains. Since some B. rapa lines have no interspecific incompatibility, genetic analysis of interspecific incompatibility was performed using two F2 populations. Analysis with an F2 population between an interspecific-incompatible line and a self-compatible cultivar ‘Yellow sarson’ having non-functional alleles of S-locus genes and MLPK, the stigmas of which are compatible with B. oleracea pollen grains, revealed no involvement of the S locus and MLPK in the difference of their interspecific incompatibility phenotypes. In QTL analysis of the strength of interspecific incompatibility, three peaks of LOD scores were found, but their LOD scores were as high as the threshold value, and the variance explained by each QTL was small. QTL analysis using another F2 population derived from selected parents having the highest and lowest levels of interspecific incompatibility revealed five QTLs with high LOD scores, which did not correspond to those found in the former population. The QTL having the highest LOD score was found in linkage group A02. The effect of this QTL on interspecific incompatibility was confirmed by analyzing backcrossed progeny. Based on synteny of this QTL region with Arabidopsis thaliana chromosome 5, a possible candidate gene, which might be involved in interspecific incompatibility, is discussed.  相似文献   

16.
17.
The late-flowering, vernalization-responsive habit of many Arabidopsis ecotypes is mediated predominantly through repression of the floral programme by the FLOWERING LOCUS C (FLC) gene. To better understand this repressive mechanism, we have taken a genetic approach to identify novel genes that positively regulate FLC expression. We identified recessive mutations in a gene designated VERNALIZATION INDEPENDENCE 4 (VIP4), that confer early flowering and loss of FLC expression in the absence of cold. We cloned the VIP4 gene and found that it encodes a highly hydrophilic protein with similarity to proteins from yeasts, Drosophila, and Caenorhabditis elegans. Consistent with a proposed role as a direct activator of FLC, VIP4 is expressed throughout the plant in a pattern similar to that of FLC. However, unlike FLC, VIP4 RNA expression is not down-regulated in vernalized plants, suggesting that VIP4 is probably not sufficient to activate FLC, and that VIP4 is probably not directly involved in a vernalization mechanism. Epistasis analysis suggests that VIP4 could act in a separate pathway from previously identified FLC regulators, including FRIGIDA and the autonomous flowering promotion pathway gene LUMINIDEPENDENS. Mutants lacking detectable VIP4 expression flower earlier than FLC null mutants, suggesting that VIP4 regulates flowering-time genes in addition to FLC. Floral morphology is also disrupted in vip4 mutants; thus, VIP4 has multiple roles in development.  相似文献   

18.
Arabidopsis (Arabidopsis thaliana) accessions provide an excellent resource to dissect the molecular basis of adaptation. We have selected 192 Arabidopsis accessions collected to represent worldwide and local variation and analyzed two adaptively important traits, flowering time and vernalization response. There was huge variation in the flowering habit of the different accessions, with no simple relationship to latitude of collection site and considerable diversity occurring within local regions. We explored the contribution to this variation from the two genes FRIGIDA (FRI) and FLOWERING LOCUS C (FLC), previously shown to be important determinants in natural variation of flowering time. A correlation of FLC expression with flowering time and vernalization was observed, but it was not as strong as anticipated due to many late-flowering/vernalization-requiring accessions being associated with low FLC expression and early-flowering accessions with high FLC expression. Sequence analysis of FRI revealed which accessions were likely to carry functional alleles, and, from comparison of flowering time with allelic type, we estimate that approximately 70% of flowering time variation can be accounted for by allelic variation of FRI. The maintenance and propagation of 20 independent nonfunctional FRI haplotypes suggest that the loss-of-function mutations can confer a strong selective advantage. Accessions with a common FRI haplotype were, in some cases, associated with very different FLC levels and wide variation in flowering time, suggesting additional variation at FLC itself or other genes regulating FLC. These data reveal how useful these Arabidopsis accessions will be in dissecting the complex molecular variation that has led to the adaptive phenotypic variation in flowering time.  相似文献   

19.
In Arabidopsis thaliana, flowering-time variation exists among accessions, and the winter-annual (late-flowering without vernalization) versus rapid-cycling (early flowering) growth habit is typically determined by allelic variation at FRIGIDA (FRI) and FLOWERING LOCUS C (FLC). FRI upregulates the expression of FLC, a central floral repressor, to levels that inhibit flowering, resulting in the winter-annual habit. Here, we show that FRI promotes histone H3 lysine-4 trimethylation (H3K4me3) in FLC to upregulate its expression. We identified an Arabidopsis homolog of the human WDR5, namely, WDR5a, which is a conserved core component of the human H3K4 methyltransferase complexes called COMPASS-like. We found that recombinant WDR5a binds H3K4-methylated peptides and that WDR5a also directly interacts with an H3K4 methyltransferase, ARABIDOPSIS TRITHORAX1. FRI mediates WDR5a enrichment at the FLC locus, leading to increased H3K4me3 and FLC upregulation. WDR5a enrichment is not required for elevated H3K4me3 in FLC upon loss of function of an FLC repressor, suggesting that two distinct mechanisms underlie elevated H3K4me3 in FLC. Our findings suggest that FRI is involved in the enrichment of a WDR5a-containing COMPASS-like complex at FLC chromatin that methylates H3K4, leading to FLC upregulation and thus the establishment of the winter-annual growth habit.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号