首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tropical ecosystems support a diversity of species and ecological processes that are unparalleled anywhere else on Earth. Despite their tremendous social and scientific importance, tropical ecosystems are rapidly disappearing. To usher tropical ecosystems and the human communities dependent upon them through the environmental transformations of the 21st century, tropical biologists must provide critical knowledge in three areas: 1) the structure and function of tropical ecosystems; 2) the nature and magnitude of anthropogenic effects on tropical ecosystems; and 3) the socio‐economic drivers of these anthropogenic effects. To develop effective strategies for conservation, restoration, and sustainable management of tropical ecosystems, scientific perspectives must be integrated with social necessities. A new set of principles built on a framework for pursuing relevant tropical biological research will facilitate interdisciplinary approaches, integrate biological knowledge with the social sciences, and link science with policy. We propose four broad recommendations for immediate action in tropical biology and conservation that are fundamental to all biological and social disciplines in the tropics: 1) assemble and disseminate information on life's diversity in the tropics; 2) enhance tropical field stations and build a worldwide network to link them with tropical field biologists at their field sites; 3) bring the field of tropical biology to the tropics by strengthening institutions in tropical countries through novel partnerships between tropical and temperate zone institutions and scientists; and 4) create concrete mechanisms to increase interactions between tropical biologists, social scientists, and policy makers.  相似文献   

2.
The need to improve environmental management in Australia is urgent because human health, well‐being and social stability all depend ultimately on maintenance of life‐supporting ecological processes. Ecological science can inform this effort, but when issues are socially and economically complex the inclination is to wait for science to provide answers before acting. Increasingly, managers and policy‐makers will be called on to use the present state of scientific knowledge to supply reasonable inferences for action based on imperfect knowledge. Hence, one challenge is to use existing ecological knowledge more effectively; a second is to tackle the critical unanswered ecological questions. This paper identifies areas of environmental management that are profoundly hindered by an inability of science to answer basic questions, in contrast to those areas where knowledge is not the major barrier to policy development and management. Of the 22 big questions identified herein, more than half are directly related to climate change. Several of the questions concern our limited understanding of the dynamics of marine systems. There is enough information already available to develop effective policy and management to address several significant ecological issues. We urge ecologists to make better use of existing knowledge in dialogue with policy‐makers and land managers. Because the challenges are enormous, ecologists will increasingly be engaging a wide range of other disciplines to help identify pathways towards a sustainable future.  相似文献   

3.
《Global Change Biology》2018,24(6):2416-2433
Sustained observations of marine biodiversity and ecosystems focused on specific conservation and management problems are needed around the world to effectively mitigate or manage changes resulting from anthropogenic pressures. These observations, while complex and expensive, are required by the international scientific, governance and policy communities to provide baselines against which the effects of human pressures and climate change may be measured and reported, and resources allocated to implement solutions. To identify biological and ecological essential ocean variables (EOVs) for implementation within a global ocean observing system that is relevant for science, informs society, and technologically feasible, we used a driver‐pressure‐state‐impact‐response (DPSIR) model. We (1) examined relevant international agreements to identify societal drivers and pressures on marine resources and ecosystems, (2) evaluated the temporal and spatial scales of variables measured by 100+ observing programs, and (3) analysed the impact and scalability of these variables and how they contribute to address societal and scientific issues. EOVs were related to the status of ecosystem components (phytoplankton and zooplankton biomass and diversity, and abundance and distribution of fish, marine turtles, birds and mammals), and to the extent and health of ecosystems (cover and composition of hard coral, seagrass, mangrove and macroalgal canopy). Benthic invertebrate abundance and distribution and microbe diversity and biomass were identified as emerging EOVs to be developed based on emerging requirements and new technologies. The temporal scale at which any shifts in biological systems will be detected will vary across the EOVs, the properties being monitored and the length of the existing time‐series. Global implementation to deliver useful products will require collaboration of the scientific and policy sectors and a significant commitment to improve human and infrastructure capacity across the globe, including the development of new, more automated observing technologies, and encouraging the application of international standards and best practices.  相似文献   

4.
There is increasing evidence that changes in habitat structure in the form of reduced understorey and loss of open habitats, both probably a result of increases in shading and deer browsing, may be responsible for causing recent changes in the composition of breeding bird communities in many lowland British woods and forests. In contrast, management of upland coniferous forests may prevent the attainment of mature and old-growth structures which would benefit community development in these new ecosystems. We suggest that the key challenge for woodland conservation policy is to create larger areas of both young-growth and old-growth habitat. These objectives need not necessarily conflict with each other, or with other multipurpose forestry objectives, provided that they inform strategic plans and are targeted at appropriate locations and scales. In the lowlands, the current large stock of middle-aged, often unmanaged and species-poor woodland provides an opportunity to restore or create new woodland habitats of high biodiversity value. The development of woodfuel markets may effectively increase the amount of young-growth but it is unclear exactly what habitat structures might be created. In the uplands, allowing more natural development of native woodland in mosaics with other habitats may provide opportunities for both old- and young-growth species. For the foreseeable future, deer impacts will continue to be widespread and probably increasingly severe in many areas. In view of the uncertainty about the implications of climate change for woodland ecosystems, a strong case can be made for attempting to buffer valued wildlife communities against damaging effects by creating and maintaining high structural diversity at a range of scales and increasing the area of woodland.  相似文献   

5.
Ciliate diversity was investigated in situ in freshwater ecosystems of the maritime (South Shetland Islands, mainly Livingston Island, 63 degrees S) and continental Antarctic (Victoria Land, 75 degrees S), and the High Arctic (Svalbard, 79 degrees N). In total, 334 species from 117 genera were identified in both polar regions, i.e. 210 spp. (98 genera) in the Arctic, 120 spp. (73 genera) in the maritime and 59 spp. (41 genera) in the continental Antarctic. Forty-four species (13% of all species) were common to both Arctic and Antarctic freshwater bodies and 19 spp. to both Antarctic areas (12% of all species). Many taxa are cosmopolitans but some, e.g. Stentor and Metopus spp., are not, and over 20% of the taxa found in any one of the three areas are new to science. Cluster analysis revealed that species similarity between different biotopes (soil, moss) within a study area was higher than between similar biotopes in different regions. Distinct differences in the species composition of freshwater and terrestrial communities indicate that most limnetic ciliates are not ubiquitously distributed. These observations and the low congruence in species composition between both polar areas, within Antarctica and between high- and temperate-latitude water bodies, respectively, suggest that long-distance dispersal of limnetic ciliates is restricted and that some species have a limited geographical distribution.  相似文献   

6.
SM Murphy  GM Wimp  D Lewis  RF Denno 《PloS one》2012,7(8):e43929
Anthropogenic nutrient inputs into native ecosystems cause fluctuations in resources that normally limit plant growth, which has important consequences for associated food webs. Such inputs from agricultural and urban habitats into nearby natural systems are increasing globally and can be highly variable, spanning the range from sporadic to continuous. Despite the global increase in anthropogenically-derived nutrient inputs into native ecosystems, the consequences of variation in subsidy duration on native plants and their associated food webs are poorly known. Specifically, while some studies have examined the effects of nutrient subsidies on native ecosystems for a single year (a nutrient pulse), repeated introductions of nutrients across multiple years (a nutrient press) better reflect the persistent nature of anthropogenic nutrient enrichment. We therefore contrasted the effects of a one-year nutrient pulse with a four-year nutrient press on arthropod consumers in two salt marshes. Salt marshes represent an ideal system to address the differential impacts of nutrient pulses and presses on ecosystem and community dynamics because human development and other anthropogenic activities lead to recurrent introductions of nutrients into these natural systems. We found that plant biomass and %N as well as arthropod density fell after the nutrient pulse ended but remained elevated throughout the nutrient press. Notably, higher trophic levels responded more strongly than lower trophic levels to fertilization, and the predator/prey ratio increased each year of the nutrient press, demonstrating that food web responses to anthropogenic nutrient enrichment can take years to fully manifest themselves. Vegetation at the two marshes also exhibited an apparent tradeoff between increasing %N and biomass in response to fertilization. Our research emphasizes the need for long-term, spatially diverse studies of nutrient enrichment in order to understand how variation in the duration of anthropogenic nutrient subsidies affects native ecosystems.  相似文献   

7.
Several studies have shown that soil microorganisms play a key role in the success of plant invasion. Thus, ecologists have become increasingly interested in understanding the ecological effects of biological invasion on soil microbial communities given continuing increase in the effects of invasive plants on native ecosystems. This paper aims to provide a relatively complete depiction of the characteristics of soil microbial communities under different degrees of plant invasion. Rhizospheric soils of the notorious invasive plant Wedelia trilobata with different degrees of invasion (uninvaded, low-degree, and high-degree using its coverage in the invaded ecosystems) were collected from five discrete areas in Hainan Province, P. R. China. Soil physicochemical properties and community structure of soil microorganisms were assessed. Low degrees of W. trilobata invasion significantly increased soil pH values whereas high degrees of invasion did not significantly affected soil pH values. Moreover, the degree of W. trilobata invasion exerted significant effects on soil Ca concentration but did not significantly change other indices of soil physicochemical properties. Low and high degrees of W. trilobata invasion increased the richness of the soil fungal community but did not pose obvious effects on the soil bacterial community. W. trilobata invasion also exerted obvious effects on the community structure of soil microorganisms that take part in soil nitrogen cycling. These changes in soil physicochemical properties and community structure of soil microbial communities mediated by different degrees of W. trilobata invasion may present significant functions in further facilitating the invasion process.  相似文献   

8.
In the semi-arid western U.S., rivers and streams are becoming increasingly stressed and degraded, and wetlands lost, due to human development and associated management policies and actions that are generally ineffective for aquatic resources protection and restoration. There is often a significant disconnect between policy and management with science that leads to continued degradation of surface waters. Recent Supreme Court decisions and subsequent U.S. Army Corps of Engineers and Environmental Protection Agency guidance regarding determination of jurisdiction as ‘waters of the US’ that can be protected under Clean Water Act Section 404 (permitting discharge of dredged and fill materials into wetlands and other waters) is an example of this gap. This study identifies and evaluates key science and policy integration issues for stream and wetland jurisdictional determinations (JDs) in a semi-arid region of the western U.S., including much of the Rocky Mountains, Great Plains and Colorado Plateau. Issues discussed include identification and evaluation of navigable waters, hydrologic permanence/flow duration of perennial and intermittent/ephemeral streams, stream order, significant nexus, aggregation of waters and effects, human impacts and changes, resource inventories and tools, and JD outcomes. Recommendations are also presented to help address the identified issues for more effective management.  相似文献   

9.
Estuaries are productive ecosystems providing important habitat for a diversity of species, yet they also experience intense levels of anthropogenic development. To inform decision‐making, it is essential to understand the pathways of impacts of particular human activities, especially those that affect species such as salmon, which have high ecological, social‐cultural and economic values. Salmon systems provide an opportunity to build from the substantial body of research on responses to estuary developments and take stock of what is known. We conducted a systematic English‐language literature review on the responses of juvenile salmon to anthropogenic activities in estuaries and nearshore areas asking: what has been studied, where are the major knowledge gaps and how do stressors affect salmon? We found a substantial body of research (n = 167 studies; 1,369 comparative tests) to help understand responses of juvenile salmon to 24 activities and their 14 stressors. Across studies, 82% of the research was conducted in the eastern Pacific (Oregon and Washington, USA and British Columbia, Canada) showing a limited geographical scope. Using a semiquantitative approach to summarize the literature, including a weight‐of‐evidence metric, we found a range of results from low to moderate–high confidence in the consequences of the stressors. For example, we found moderate–high confidence in the negative impacts of pollutants and sea lice and moderate confidence in negative impacts from connectivity loss and changes in flow. Our results suggest that overall, multiple anthropogenic activities cause negative impacts across ecological scales. However, our results also reveal knowledge gaps resulting from minimal research on particular species (e.g. sockeye salmon), regions (e.g. Atlantic) or stressors (e.g. entrainment) that would be expedient areas for future research. With estuaries acting as a nexus of biological and societal importance and hotspots of ongoing development, the insights gained here can contribute to informed decision‐making.  相似文献   

10.
Interdisciplinary research is increasingly recognized as the solution to today’s challenging scientific and societal problems, but the relationship between interdisciplinary research and scientific impact is still unclear. This paper studies the association between the degree of interdisciplinarity and the number of citations at the paper level. Different from previous studies compositing various aspects of interdisciplinarity into a single indicator, we use factor analysis to uncover distinct dimensions of interdisciplinarity corresponding to variety, balance, and disparity. We estimate Poisson models with journal fixed effects and robust standard errors to analyze the divergent relationships between these three factors and citations. We find that long-term (13-year) citations (1) increase at an increasing rate with variety, (2) decrease with balance, and (3) increase at a decreasing rate with disparity. Furthermore, interdisciplinarity also affects the process of citation accumulation: (1) although variety and disparity have positive effects on long-term citations, they have negative effects on short-term (3-year) citations, and (2) although balance has a negative effect on long-term citations, its negative effect is insignificant in the short run. These findings have important implications for interdisciplinary research and science policy.  相似文献   

11.
As anthropogenic stressors threaten the health of marine ecosystems, there is a need to better understand how the public processes and responds to information about ocean health. Recent studies of public perceptions about ocean issues report high concern but limited knowledge, prompting calls for information campaigns to mobilize public support for ocean restoration policy. Drawing on the literature from communication, psychology and related social science disciplines, we consider a set of social-cognitive challenges that researchers and advocates are likely to encounter when communicating with the public about ocean health and emerging marine diseases—namely, the psychological distance at which ocean issues are construed, the unfamiliarity of aquatic systems to many members of the public and the potential for marine health issues to be interpreted through politicized schemas that encourage motivated reasoning over the dispassionate consideration of scientific evidence. We offer theory-based strategies to help public outreach efforts address these challenges and present data from a recent experiment exploring the role of message framing (emphasizing the public health or environmental consequences of marine disease) in shaping public support for environmental policy.  相似文献   

12.
Estuarine and coastal ecosystems are productive and functionally diverse areas that provide a wide range of societal benefits. Along with human exploitative uses comes an array of anthropogenic disturbances that can affect ecological integrity, including changes to the composition and resilience of benthic macroinvertebrate communities. To understand the responses of ecological communities to anthropogenic disturbance and to manage and mitigate effects, indices for assessing the ecological integrity of estuarine and coastal waters have proliferated worldwide. Using data from 84 intertidal sites in Auckland, New Zealand, we evaluated the suitability of two widely used measures of ecological integrity that were developed in USA and Europe, respectively: the Benthic Index of Biotic Integrity (B-IBI) and the AZTI's Marine Biotic Index (AMBI). We then developed a local index based on macrofaunal traits and verified its utility using independent data from >100 additional sites. The local traits based index (TBI), constructed from the richness of macrofaunal taxa in seven functional groups, responded to changes in sediment mud percentage and heavy metal contaminant concentration gradients below international guidelines. The TBI performed better than the indices developed overseas, probably because they were designed to track organic enrichment and hypoxia, which are not the predominant stressors in New Zealand at present. The TBI successfully tracked the stressors that were the most relevant locally and indicated the relative levels of within-group taxonomic richness at various sites. As within-group richness is a component of functional redundancy and ecological resilience, the TBI offers a trifecta of simplicity, robustness and meaningfulness that will facilitate management.  相似文献   

13.
Functional ecosystems depend on biotic and abiotic connections among different environmental realms, including terrestrial, freshwater, and marine habitats. Accounting for such connections is increasingly recognized as critical for conservation of ecosystems, especially given growing understanding of the way in which anthropogenic landscape disturbances can degrade both freshwater and marine habitats. This need may be paramount in conservation planning for tropical island ecosystems, as habitats across realms are often in close proximity, and because endemic organisms utilize multiple habitats to complete life histories. In this study, we used Marxan analysis to develop conservation planning scenarios across the five largest islands of Hawaii, in one instance accounting for and in another excluding habitat connectivity between inland and coastal habitats. Native vegetation, perennial streams, and areas of biological significance along the coast were used as conservation targets in analysis. Cost, or the amount of effort required for conservation, was estimated using an index that integrated degree and intensity of anthropogenic landscape disturbances. Our results showed that when connectivity is accounted for among terrestrial, freshwater, and marine habitats, areas identified as having high conservation value are substantially different compared to results when connectivity across realms is not considered. We also showed that the trade-off of planning conservation across realms was minimal and that cross-realm planning had the unexpected benefit of selecting areas with less habitat degradation, suggesting less effort for conservation. Our cross-realm planning approach considers biophysical interactions and complexity within and across ecosystems, as well as anthropogenic factors that may influence habitats outside of their physical boundaries, and we recommend implementing similar approaches to achieve integrated conservation efforts.  相似文献   

14.
淡水鱼类功能生态学研究进展   总被引:5,自引:3,他引:2  
在全球变化和人类活动的影响下,生物多样性正以前所未有的速度丧失,全球生物正经受第六次生物多样性危机。淡水生态系统是最脆弱的生态系统之一。淡水鱼类作为淡水生态系统的重要组成部分,承受着日趋严重的气候变化、栖息地退化、生物入侵和过度捕捞等压力,面临巨大的威胁。在此背景下,如何准确评估鱼类种群和群落对环境变化的响应,以及鱼类群落结构和功能的变化对生态系统功能的影响是淡水鱼类多样性和淡水生态系统保护的关键问题。近年来,淡水鱼类功能生态学的快速发展为解答这一问题提供了一个框架。系统地介绍了淡水鱼类功能生态学主要研究内容、方法、进展及其应用,并着重介绍了淡水鱼类功能特征及其与环境的关系、环境变化下的功能生态学响应研究。据此提出了淡水鱼类功能生态学未来的重点研究方向,指出了其在鱼类多样性保护和资源利用等领域的应用前景。  相似文献   

15.
The cumulative effects of multiple stressors are becoming a priority concern for ecotoxicologists, ecologists and conservation biologists working to understand threats to ecosystems and species. In that context, parasites and pathogens are increasingly a focus of attention. Parasites interact with natural and anthropogenic stressors to increase mortality and reduce animal health in myriad ways in a wide spectrum of host and parasite taxa. The combined effects of parasites and other stressors can reduce either resistance or tolerance to infection. Recommendations are provided to guide further research.  相似文献   

16.
《Ecological Indicators》2007,7(2):215-228
This article approaches the concept of ecological indicators from a social science perspective. By applying theoretical concepts from policy analysis and social studies of science about knowledge utilization, problem structuring and the boundaries between science and policy to the issue of ecological indicators, we aim to contribute to our understanding not only of the development but more importantly of the actual use of ecological indicators in policy processes and the importance of political context.Our interest is in those ecological indicators that attempt to measure the ecological quality of ecosystems and that can be or are specifically developed to be used as instruments to evaluate the effects of policies on nature. We claim that these indicators, although they are highly dependent on scientific knowledge, cannot be solely science-based, due to the complexity of ecosystems and the normative aspects involved in assessing ecosystem quality. As a result, we situate ecological indicators in a fuzzy area between science and policy and between the production and the use of scientific knowledge.We will argue that ecological indicators can be expected to be used or rejected strategically, dependent on policy context. Furthermore we will argue that ecological indicators cannot be evaluated with traditional scientific quality criteria alone. The article concludes with some lessons for future indicator development one of them being the inclusion of stakeholder perspectives.  相似文献   

17.
1. Ecosystems can enhance the biodiversity of adjacent ecosystems through subsidies of prey, nutrients and also habitat. For example, trees can fall into aquatic ecosystems and act as a subsidy that increases aquatic habitat heterogeneity. This habitat subsidy is vulnerable in lakes where anthropogenic development of shorelines coincides with a thinning of riparian forests and the removal of these dead trees (termed coarse woody debris: CWD). How the disruption of this subsidy affects lake ecosystems is not well understood.
2. We performed a whole ecosystem experiment on Little Rock Lake, a small (18 ha), undeveloped, and unfished lake in Vilas County, WI, U.S.A., that is divided into two similar-sized basins by a double poly-vinyl chloride curtain that prevents both fish and water exchange between basins. In 2002, we removed about 70% of the littoral CWD in the treatment basin, while the reference basin was left unaltered. We tested for changes in both fish and benthic macroinvertebrate community composition in the two years following the CWD reduction.
3. Yellow perch ( Perca flavescens ) was the most abundant fish species in the lake prior to our experiment, but declined to very low densities in the treatment basin after manipulation. We found no evidence of an effect on macroinvertebrates – the treatment basin's macroinvertebrate community composition, diversity and density did not change relative to the reference basin.
4. Our results indicate that different trophic groups may have differential responses to the loss of a habitat subsidy, even if anthropogenic effects on that subsidy are severe. In the case of Little Rock Lake, fish community responses were evident on a short-time scale, whereas the macroinvertebrate community did not rapidly change following CWD reduction.  相似文献   

18.
《Global Change Biology》2018,24(7):3105-3116
The aquatic environment is increasingly bombarded by a wide variety of noise pollutants whose range and intensity are increasing with each passing decade. Yet, little is known about how aquatic noise affects marine communities. To determine the implications that changes to the soundscape may have on fishes, a meta‐analysis was conducted focusing on the ramifications of noise on fish behavior and physiology. Our meta‐analysis identified 42 studies that produced 2,354 data points, which in turn indicated that anthropogenic noise negatively affects fish behavior and physiology. The most predominate responses occurred within foraging ability, predation risk, and reproductive success. Additionally, anthropogenic noise was shown to increase the hearing thresholds and cortisol levels of numerous species while tones, biological, and environmental noise were most likely to affect complex movements and swimming abilities. These findings suggest that the majority of fish species are sensitive to changes in the aquatic soundscape, and depending on the noise source, species responses may have extreme and negative fitness consequences. As such, this global synthesis should serve as a warning of the potentially dire consequences facing marine ecosystems if alterations to aquatic soundscapes continue on their current trajectory.  相似文献   

19.
Freshwater ecosystems are affected by a variety of anthropogenic stressors. Temporal variability of biotic communities in these ecosystems makes it difficult to accurately assess the impacts of specific stressors, which has seldom been considered in understudied regions of Asia. We studied the seasonal effects of anthropogenic stressors on stream macroinvertebrates based on sampling every three months over two years at five stream sites in central Taiwan. Several macroinvertebrate metrics (taxon richness, Shannon diversity index, and relative abundance of Trichoptera) were lower during the wet season than the dry season. The presence of dams caused changes in the structure of macroinvertebrate communities, decreased the seasonal variability in relative abundances of Trichoptera, as well as resulted in lower dissolved inorganic nitrogen concentrations and larger substrate size. The presence of urban areas had less or no influence on environmental factors and structural changes. However, significantly lower total abundance, taxon richness, and relative abundance of Trichoptera occurred in the presence of either dams and/or urban areas. One key management implication from the present study is that bioassessment utilizing macroinvertebrates should be facilitated by awareness of the potential role of temporal factors on the effects of anthropogenic stressors, especially in monsoonal Asia.  相似文献   

20.
Although urban ecosystems are hotspots for biological invasions, the field of invasion science has given scant attention to invasion dynamics and the challenges facing managers in towns and cities. This paper provides an introduction to the growing challenges of understanding and managing invasive species in urban systems, and the context for a special issue of Biological Invasions, comprising 17 papers, that arose from a workshop on “Non-native species in urban environments: patterns, processes, impacts and challenges” held in Stellenbosch, South Africa, in November 2016. Contributions explore the following key questions: Are patterns and processes of urban invasions different from invasions in other contexts? Why is it important to manage non-native species in urban ecosystems? What are the special management needs in an urban context? How can we bridge the gaps between science, management, and policy with regards to biological invasions in urban ecosystems? The papers in this special issue show that patterns and processes of urban invasions differ in many ways from invasions in other contexts, and that managing invasive species in cities poses unique and increasingly complex challenges. Progress in urban invasion science requires further work to: (1) address key limitations that hinder our understanding of invasion dynamics in cities; (2) clarify whether fundamental concepts in the field of invasion science are appropriate for urban ecosystems; (3) integrate insights from invasion science with those from the burgeoning literature on the “Anthropocene biosphere”, novel ecosystems, social–ecological systems, human–wildlife conflicts, urban green infrastructure, urban planning and design, and ecosystem services/disservices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号