首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Growth and alkaloid production of surface-immobilized C. roseus cells were studied in a 2-1 bioreactor. Media designed to maximize cell growth or alkaloid production were employed. Nitrate and carbohydrate consumption rates as well as growth rates and biomass yields of immobilized cultures were equal or somewhat lower than for cell suspension cultures. Respiration rate (O2 consumption and CO2 production rates) of immobilized C. roseus cell cultures was obtained by on-line analysis of inlet and outlet gas composition using a mass spectrometer. Respiration rate increased during the growth phase and decreased once the nitrogen or the carbon source was depleted from the medium. The respiration rate of immobilized C. roseus cells resembled rates reported in the literature for suspension cultures. Offprint requests to: Denis Rho  相似文献   

2.
This study investigated the growth rate of chitosan-immobilized cells of the marine cyanobacterium Synechococcus elongatus and its potential application in the removal of nitrogen and phosphorus for wastewater treatment. Immobilized cell cultures had a lag phase of growth due to the immobilization method, and their growth rate was similar to that of free-living cell cultures. Ammonia removal was higher in free cells (54%) than in immobilized cells (29%), but nitrate removal was similar in immobilized (38%) and free cells (44%); phosphorus removal was more efficient in free cells (88%) than in immobilized cells (77%). Chlorophyll a and protein content were higher in immobilized cells. Our study demonstrates that S. elongatus immobilized into chitosan capsules can remove nutrients and is able to maintain a growth rate comparable to that of free cells in culture.  相似文献   

3.
Summary Living cells of Candida parapsilosis KSh 21 were immobilized by adsorption on different types of glass rings. The presence of n-tetradecane enhanced the cell adsorption especially on normal glass rings. The high adhesion of cellulose-coated glass rings and of sintered glass rings induced a quick adsorption of the cells. The quantity of 1-tetradecanol produced in the cultures of immobilized cells especially on SGR was higher than that of the free cells. Low numbers of free cells released in the immobilized cultures were observed. Better contact between the immobilized cells and oil droplets was noticed.  相似文献   

4.
This paper investigates the effects of the oxygenation level on the performance of d-xylose alcoholic fermentation by free- and immobilized-cell batch cultures of Candida shehatae (ATCC 22984). Yeast cells were immobilized in composite agar layer/microporous membrane structures. Fermentations were performed under varying oxygenation levels corresponding to different O2 flow rates (OFRs). Low OFRs enhanced the fermentation performance of free and immobilized yeasts. The best ethanol yield coefficient, obtained at an OFR of 5 mmol O2 h–1 dm–3 for both culture modes, was slightly higher (0.425 g g–1) for immobilized cultures than for their free counterparts (0.39 g g–1). More sustained aeration inhibited ethanol production by free and immobilized organisms. However, this inhibition was more pronounced for agar-entrapped cultures. Xylitol production of free cultures normally decreased as the OFR increased. At high OFR, however, immobilized organisms surprisingly produced more xylitol than at lower OFR or in anaerobiosis. This effect is discussed by referring to the mass transfer limitations that occur inside the immobilized-cell structures. Gel-entrapped cultures displayed higher specific and volumetric production rates of ethanol and xylitol than free-cell cultures.  相似文献   

5.
Two hydrocarbon-degrading bacterial isolates, an Arthrobacter sp. and a Gram-negative bacillus isolated from Kuwait oil lakes, exhibited considerable cell-surface hydrophobicity without production of exopolysaccharides in complex media. However, the bacteria produced copious amounts of exopolysaccharides in a low nutrient medium. When incubated with sawdust, Styrofoam or wheat bran, as carriers, under low nutrient conditions, stable exopolysaccharide-mediated immobilized cultures were formed. Such immobilized cultures when air-dried at room temperature survived storage for 6 weeks at 45 °C and still retained the ability to degrade hydrocarbons. Viability was retained by the immobilized Arthrobacter sp. and the Gram-negative bacterium at 45 °C storage for up to 6 and 12 months, respectively.  相似文献   

6.
A new method for long-term storage of algal cultures in the laboratory was tested. The procedure is based on the cell immobilization technique. Cells of the filamentous cyanobacterium Pseudanabaena galeata Bocher were immobilized in sodium-alginate beads and stored for 14–18 months. The structure and functional features of the organism were maintained in this immobilized state and no ultrastructural biochemical, or growth rate differences were detected between stock and previously immobilized cell cultures after this period. We discuss the advantages of this method compared to other preservation methods and recommend the use of immobilization in alginate beads for long-term algal storage.  相似文献   

7.
The autolysis of chlamydospore-like cells in Phanerochaete chrysosporium immobilized in polyurethane foam correlated with the production of manganese peroxidase (MnP). The maximum specific activity of MnP was 1055 U g dry mycelium–1 in the immobilized culture, compared with 260 U g dry mycelium–1 in the submerged culture. Scattered mycelial pellets were formed in the immobilized culture in which almost all of the chlamydospore-like cells were subject to autolysis. However, highly crowded pellets were formed in the free culture, in which only the chlamydospore-like cells in the exterior were subject to autolysis. We propose that the enhanced production of MnP in immobilized cultures of P. chrysosporium is due to increased autolysis of the chlamydospore-like cells.  相似文献   

8.
Streptomyces fradiaewas immobilized in polyacrylamide gel prepared from 5% total acrylamide (90% acrylamide and 10%N,N′-methylenebisacrylamide). Production of protease by the immobilized mycelia was attempted in a batch system. A dilute medium containing 0.5% starch, 0.5% meat extract, and 0.05% yeast extract was employed. The reusability of the immobilized and washed mycelia was examined. The activity of protease production by washed mycelia was rapidly decreased with increasing use cycles. The activity of the immobilized mycelia increased gradually, and reached a maximum after ten use cycles. Then, the activity gradually decreased with increasing reaction cycles. This might be caused by destruction of the gels. On the other hand, the sterilization of the surface of the immobilized mycelia was effective for elongation of the lifetime. As a result, the half-life of protease production by the sterilized immobilized mycelia was about 30 days. The rate of protease production by immobilized mycelia was 12,000 U/ml/hr. This value was four times higher than that by submerged culture.  相似文献   

9.
Summary In comparing ethanol production by free and Ca-alginate immobilized cultures of the thermotolerant yeast, Kluyveromyces marxianus IMB3, on glucose-containing media at 45°C, it was found that initial yields produced by the immobilized culture lagged behind those produced by cultures in free suspension. However, in subsequent batch-feed experiments it was demonstrated that the ethanol-producing ability of the immobilized preparation increased with successive feeds, while production by the free suspension reduced significantly.  相似文献   

10.
The Bacillus sp. strain PHN 1 capable of degrading p-cresol was immobilized in various matrices namely, polyurethane foam (PUF), polyacrylamide, alginate and agar. The degradation rates of 20 and 40 mM p-cresol by the freely suspended cells and immobilized cells in batches and semi-continuous with shaken cultures were compared. The PUF-immobilized cells achieved higher degradation of 20 and 40 mM p-cresol than freely suspended cells and the cells immobilized in polyacrylamide, alginate and agar. The PUF- immobilized cells could be reused for more than 35 cycles, without losing any degradation capacity and showed more tolerance to pH and temperature changes than free cells. These results revealed that the immobilized cell systems are more efficient than freely suspended cells for degradation of p-cresol.  相似文献   

11.
Aminopeptidase B, an arginyl aminopeptidase, was purified from goat brain with a purification factor of ~280 and a yield of 2.7%. It was entrapped in calcium alginate together with bovine serum albumin. The optimal conditions for immobilization for maximum activity yield were 1% CaCl2 and 2.5% alginate. The immobilized enzyme retained ~62% of its initial activity and could be used for five successive batch reactions with retention of 30% of the initial activity. The pH and temperature optima of the free and immobilized enzyme were pH 7.4, 45°C and pH 7.8, 50°C respectively, while the pH and thermal stability as well as the stability of the enzyme in organic solvents were improved significantly after entrapment. The Km value for the immobilized enzyme was about twofold higher than that of the soluble enzyme. Because of this increased stability, the immobilized enzyme may be useful in the meat processing industry.  相似文献   

12.
In this study, a new application of immobilized microbial cells for biodegradation of furfural in aqueous solution was investigated using spouted bed bioreactor. Pseudomonas sp., as a single type specie as well as activated sludge as mixed cultures were individually immobilized in 3 different bio-carrier matrices which were prepared by reinforcement of natural polysaccharides including sodium alginate, guar-gum and agar-agar with polyvinyl alcohol. The results demonstrated a complete removal (100%) of furfural from aqueous solutions using immobilized cells (IC) of Pseudomonas sp., and mixed cultures as well. Recycling of used IC for furfural removal in successive treatment cycles provided significant removal rates up to 96%. In general, results revealed that IC exhibited better performance compared to free cells in regard with the removal rate of furfural, duration of biodegradation process, as well as the ability for recycling and sustaining the high concentrations of furfural.  相似文献   

13.
Summary The wall-less marine alga,Dunaliella tertiolecta, was immobilized and grown within Ca-alginate gel beads. These beads cultured in bubbling columns remained stable even in hypersaline medium, up to 4 M NaCl. In repeated batchwise cultures, the immobilized cells were shown to produce significant amounts of glycerol in the culture medium.  相似文献   

14.
Summary Conidia of Aspergillus oryzae were immobilized in Ca-alginate beads and then incubated in a nutrient medium to yield an immobilized biocatalyst producing kojic acid. The immobilized cell cultures produced kojic acid linearly during cultivation. Regardless of the size of the immobilized particles, there existed an optimal nitrogen concentration for the maximum production rate of kojic acid, at which smaller bead sizes resulted in a higher production rate. When the growth of mycelia were confined within the bead surface and segregated from each other by gel material, they produced kojic acid with maximal catalytic activity and exhibited the highest conversion yield of glucose. The extent of mycelial segregation was especially higher in cultures of smaller bead particles, and the depth of mycelial growth was 150 to 250 m from the gel bead surface in all cultures of different nitrogen concentrations and bead sizes. Therefore, for the maximum expression of catalytic activities of immobilized mycelial cultures, it was found very critical to optimally control the mycelial distribution in gel beads by the culture conditions affecting mycelial growth.  相似文献   

15.
Summary Cells ofRhodospirillum rubrum have been immobilized in various gels and tested for photobiological hydrogen production. Agar proved to be the best immobilizing agent with respect to production rates as well as stability. Agar immobilized cells were also superior compared to liquid suspension cultures. Growth conditions of the cells prior to immobilization, e.g. cell age, light intensity or nutrient composition, were of primary importance for the activity in the later immobilized state. A reactor with agar immobilized cells has been operated successfully over 3000 h with a loss of the activity of about 60%. Mean rates for hydrogen production for immobilized cells in this work during the first 60 to 70 hours after immobilization were in the range of 18 to 34 μl H2 mg−1 d.w. h−1 and thus by a factor of up to 2 higher than liquid cultures under the same conditions. Maximal rates of hydrogen production (57 μl H2 ml−1 immobilized cell suspension) were reached in agar gel beads with cells immobilized after 70 h growth in liquid culture in the light and a cell density of 1.0 mg ml−1, 70 h after immobilization.  相似文献   

16.
Summary The continuous production of gibberellic acid with immobilized mycelia of Gibberella fujikuroi was maintained over a hundred days in a tubular fixed-bed reactor. Free mycelium at the beginning of the storage phase was harvested from G. fujikuroi shake-flask culture and was immobilized by ionotropic gelation in calcium alginate beads.The continuous recycle production system consisted of a fixed-bed reactor, a container in which the culture medium was heated, stirred and aerated, and valves for sample withdrawal or reactant addition during the first 1320 h (55 days). A two-phase continuous extractor was then added for the last 960 hours (40 days). Free and immobilized mycelium shake-flask cultures with the same strain used in the continuous culture system were also realized to compare growth, maintenance and production parameters. The results show about the same gibberellic acid productivity in both free and immobilized mycelium shakeflask cultures: 0.384 and 0.408 mgGA3·gBiomass-1 ·day-1, respectively, whereas in the continuous system the gibberellic acid production is about twice as large for a similar biomass: 0.768 mgGA3·gBiomass-1·day-1. Several factors affecting the overall productivity of the immobilized systems were found to be: the quality and the quantity of mycelia in the biocatalyst beads and the immobilization conditions.  相似文献   

17.
Aims: This study examined the effect of microbial cell‐free meat extract (CFME) derived from spoiled meat, in which quorum sensing (QS) compounds were present, on the growth kinetics (lag phase, and growth rate) of two spoilage bacteria, Pseudomonas fluorescens and Serratia marcescens. Methods and Results: Aliquots of CFME from spoiled meat were transferred to Brain Heart Infusion broth inoculated with 103 CFU ml?1 of 18 h cultures of Ps. fluorescens or Ser. marcescens, both fresh meat isolates; CFME derived from unspoiled fresh meat (‘clean’ meat) served as a control. Changes in impedance measurements were monitored for 48 h, and the detection time (Tdet) was recorded. It was found that in the absence of CFME containing QS compounds the Tdet was shorter (P < 0·05) than that in broth samples with added CFME from spoiled meat. The rate of growth of Ps. fluorescens, recorded as the maximum slope rate of conductance changes (MSrCC), after Tdet, was higher (P < 0·05) in samples with CFME containing QS compounds compared to samples without CFME or CFME derived from ‘clean’ meat. Similar results in MSrCC of impedance changes were obtained for Ser. marcescens. Conclusions: The study indicated that the growth rate (expressed in MSrCC units) of meat spoilage bacteria in vitro was enhanced in samples supplemented with CFME containing QS compounds compared to control samples (i.e., without CFME or with CFME from ‘clean’ meat). This behaviour may explain the dominant role of these two bacteria in the spoilage of meat. Significance and Impact of the Study: These results illustrate the potential effect of signalling compounds released during storage of meat on the behaviour of meat spoilage bacteria. Understanding such interactions may assist in the control of fresh meat quality and the extension of its shelf life.  相似文献   

18.
The ability of immobilized cell cultures of Aspergillus niger FETL FT3 to produce extracellular tannase was investigated. The production of enzyme was increased by entrapping the fungus in scouring mesh cubes compared to free cells. Using optimized parameters of six scouring mesh cubes and inoculum size of 1 × 106 spores/mL, the tannase production of 3.98 U/mL was obtained from the immobilized cells compared to free cells (2.81 U/mL). It was about 41.64% increment. The immobilized cultures exhibited significant tannase production stability of two repeated runs.  相似文献   

19.
Cells of the non-N2-fixing cyanobacteriumPhormidium laminosum were immobilized in polyurethane (PU) foams either by absorption or by entrapment in the PU prepolymer followed by polymerisation and by adsorption onto polyvinyl (PV) foams. Although entrapment caused toxicity problems which lead to rapid death of the immobilized cells, they were immobilized successfully by adsorption onto PU or PV foams and maintained their photosynthetic electron transport activities (PS I, II, I + II) for at least 7 weeks. Changes in the morphology resulting from immobilization, as revealed by scanning electron microscopy (SEM) and low temperature-SEM, were investigated. Batch cultures and a continuous-flow packed bed photobioreactor were used to study nitrate removal from water. The effects of light intensity and CO2 concentration on bioreactor performance were studied with respect to the nitrate uptake efficiency of the system. It was concluded thatP. laminosum immobilized on polymer foams is of potential value for biological nitrate removal in a continuous-flow system. author for correspondence  相似文献   

20.
Several fungal strains ofAspergillus andPenicillium were immobilized by cryopolymerization in polyvinyl alcohol cryogel beads.Aspergillus clavatus was the best producer of extracellular ribonuclease. Enzyme productivity and growth of free and immobilized cells in shake flasks and agitated bioreactor were studied. Ribonuclease production and growth behaviour depended on concentrations of glucose, peptone and soybean in the culture medium. Enzyme production was influenced by agitation and aeration intensity. In repeated batch, shake-flask cultures, the immobilized cells showed 2 to 3.5 times higher enzyme activity than free cells. The optimal conditions in a bioreactor were at 150 rev/min agitation speed and 0.5 vol/vol.min aeration. Enzyme productivity of immobilized cells (237 units/g dry mycelium.h) was 2.1 times higher than the productivity of free cells in a bioreactor, and 2.3 times higher than that of a shake-flask culture.R.J. Manolov is with the Institute of Microbiology, Department of Enzymes, Bulgarian Academy of Sciences, Georgy Bonchev Street 26, 1113 Sofia, Bulgaria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号