首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Possible mechanisms for the cholesterol-lowering effects of plant stanol esters were addressed by feeding hamsters diets containing stanol esters, cholesterol, or cholestyramine/lovastatin. ABCA1, ATP binding cassette G1 (ABCG1), ABCG5, ABCG8, and Niemann-Pick C1-like 1 (NPC1L1) mRNA levels were then estimated in duodenum, jejunum, and ileum. Plasma cholesterol was decreased by 36% and 94% in animals fed stanol esters and cholestyramine/lovastatin, respectively. Cholesterol feeding increased plasma cholesterol by 2.5-fold. Plasma plant sterols were unchanged by stanol ester feeding but became undetectable by feeding cholestyramine/lovastatin. Cholesterol and stanols accumulated in enterocytes of animals fed cholesterol and stanol esters, respectively. ABCG5 and ABCG8 mRNA levels were decreased by stanol esters and cholestyramine/lovastatin. Cholesterol feeding markedly increased ABCA1 and ABCG1 expression and modestly increased ABCG5/ABCG8. NPC1L1 mRNA was not significantly altered by any of the diets. ABCG1, ABCG5, ABCG8, and NPC1L1 mRNAs were highest in cells of the upper villus, whereas ABCA1 mRNA was highest in cells of the lower villus. The results suggest that cholesterol lowering effect of stanol esters is unrelated to changes in mRNA levels of intestinal ABC sterol transporters or NPC1L1. Cholesterol flux regulates ABC expression but not NPC1L1. The different localization of ABCA1 suggests a different function for this protein than for ABCG1, ABCG5, ABCG8, and NPC1L1.  相似文献   

2.
The reported data indicate that oleic acid (OA) decreases cholesterol absorption. To explore the underlying mechanisms, the effects of OA on the expression of cholesterol transport-related proteins (NPC1L1, ABCG5/8, ACAT2, MTP) and the unfolded protein response (UPR) pathway were studied in CaCo-2 enterocytes by incubating CaCo-2 cells with taurocholate micelles or taurocholate micelles containing different concentrations of OA (0.25–1.0 mM). We show that OA effectively induces XBP1 mRNA splicing, a key component of the UPR signaling, and the expression of BiP and mature ATF6 proteins in a concentration-dependent manner, leading to the induction of endoplasmic reticulum (ER) stress and activation of the UPR. Interestingly, OA decreases NPC1L1 expression in a dose-dependent manner while it has no effects on ABCG5 and MTP mRNA level or SREBP-2, ABCG8, and ACAT2 protein level. In CaCo-2 cells treated with 1.0 mM OA, both the NPC1L1 mRNA level and the NPC1L1 protein expression in brush-border membrane fractions were decreased by 39% and 37%, respectively (P < 0.01). A dose of 1 mM dithiothreitol (DTT), a positive control for ER stress induction, also decreases NPC1L1 mRNA and protein expression by 27% and 23%, respectively (P < 0.05). Furthermore, 4-phenyl-butyric acid, an UPR inhibitor, blocks OA- and DTT-induced reduction on NPC1L1 mRNA and protein levels. The results suggest that OA down-regulates NPC1L1 mRNA and protein expression via the induction of the UPR, which may play an important role in reducing intestinal cholesterol absorption.  相似文献   

3.
Niemann-Pick C1-like 1 protein (NPC1L1) is the putative intestinal sterol transporter and the molecular target of ezetimibe, a potent inhibitor of cholesterol absorption. To address the role of NPC1L1 in cholesterol trafficking in intestine, the regulation of cholesterol trafficking by ezetimibe was studied in the human intestinal cell line, CaCo-2. Ezetimibe caused only a modest decrease in the uptake of micellar cholesterol, but markedly prevented its esterification. Cholesterol trafficking from the plasma membrane to the endoplasmic reticulum was profoundly disrupted by ezetimibe without altering the trafficking of cholesterol from the endoplasmic reticulum to the plasma membrane. Cholesterol oxidase-accessible cholesterol at the apical membrane was increased by ezetimibe. Cholesterol synthesis was modestly increased. Although the amount of cholesteryl esters secreted at the basolateral membrane was markedly decreased by ezetimibe, the transport of lipids and the number of lipoprotein particles secreted were not altered. NPC1L1 gene and protein expression were decreased by sterol influx, whereas cholesterol depletion enhanced NPC1L1 gene and protein expression. These results suggest that NPC1L1 plays a role in cholesterol uptake and cholesterol trafficking from the plasma membrane to the endoplasmic reticulum. Interfering with its function will profoundly decrease the amount of cholesterol transported into lymph.  相似文献   

4.
5.
ATP-binding cassette transporter G1 (ABCG1) mediates cholesterol efflux onto lipidated apolipoprotein A-I and HDL and plays a role in various important physiological functions. However, the mechanism by which ABCG1 mediates cholesterol translocation is unclear. Protein palmitoylation regulates many functions of proteins such as ABCA1. Here we investigated if ABCG1 is palmitoylated and the subsequent effects on ABCG1-mediated cholesterol efflux. We demonstrated that ABCG1 is palmitoylated in both human embryonic kidney 293 cells and in mouse macrophage, J774. Five cysteine residues located at positions 26, 150, 311, 390 and 402 in the NH2-terminal cytoplasmic region of ABCG1 were palmitoylated. Removal of palmitoylation at Cys311 by mutating the residue to Ala (C311A) or Ser significantly decreased ABCG1-mediated cholesterol efflux. On the other hand, removal of palmitoylation at sites 26, 150, 390 and 402 had no significant effect. We further demonstrated that mutations of Cys311 affected ABCG1 trafficking from the endoplasmic reticulum. Therefore, our data suggest that palmitoylation plays a critical role in ABCG1-mediated cholesterol efflux through the regulation of trafficking.  相似文献   

6.
7.
Several transporter proteins regulate intestinal cholesterol absorption. Of these proteins, NPC1L1 is a major contributor to this process. Fatty acids (FAs) modulate cholesterol absorption by a mechanism that remains unknown. We evaluate the effect of saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs) on the expression of NPC1L1 and others proteins associated with cholesterol absorption (SR-BI, ABCG5, ABCG8, ABCA1, CAV-1, ANX-2) in human enterocytes in vitro. The role of SREBPs, PPARs, LXR and RXR in this process was also investigated. Caco-2/TC-7 enterocytes were incubated for 24 h with a wide range of concentrations of FA–bovine serum albumin (50–300 μM). Gene expression was analyzed by quantitative real-time PCR. The NPC1L1 protein present in enterocyte membranes was analyzed using Western blot. NPC1L1 mRNA levels were reduced 35–58% by the n-3 PUFAs, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) (P<.05). Linoleic acid (n-6), palmitic acid and oleic acid did not affect NPC1L1 mRNA expression. ABCA1 mRNA levels were reduced 44–70% by n-6 arachidonic acid and 43–55% by n-3 EPA (P<.05). LXR and LXR+RXR agonists decreased NPC1L1 mRNA expression by 28% and 57%, respectively (P<.05). A concentration of 200 μM of EPA and DHA decreased NPC1L1 protein expression in enterocyte membranes by 58% and 59%, respectively. We have demonstrated that the PUFAs n-3 EPA and DHA down-regulate NPC1L1 mRNA expression. In addition, PUFAs also down-regulate NPC1L1 protein expression in enterocyte membranes. LXR and RXR activation induced a similar repression effect. The lipid-lowering effect of n-3 PUFAs could be mediated in part by their action at the NPC1L1 gene level.  相似文献   

8.
The Niemann-Pick C1 (NPC1) protein is a key participant in intracellular sterol trafficking and regulation of cholesterol homeostasis. NPC1 contains a pentahelical region that is evolutionarily related to sterol-sensing domains found in other polytopic proteins involved in sterol interactions or sterol metabolism, including sterol regulatory element-binding protein cleavage-activating protein and hydroxymethylglutaryl-CoA reductase. To gain insight into the role of the sterol-sensing domain of NPC1, we examined the effect of point mutations in the NPC1 sterol-sensing domain on the trafficking of low density lipoprotein-derived cholesterol and sphingolipids. We show that an NPC1 P692S loss of function mutation results in decreased cholesterol delivery to the plasma membrane and endoplasmic reticulum. By contrast, NPC1 proteins carrying a L657F or D787N point mutation, which correspond to the activating SCAP L315F and D443N mutations, respectively, exhibit a gain of function phenotype. Specifically, cell lines expressing the NPC1 L657F or D787N mutations show a nearly 2-fold increase in the rates of low density lipoprotein cholesterol trafficking to the plasma membrane and to the endoplasmic reticulum, and more rapid suppression of sterol regulatory element-binding protein-dependent gene expression. Trafficking of sphingolipids is intact in the D787N and L657F cell lines. Our finding that D787N and L657F are activating NPC1 mutations provide evidence for a conserved mechanism for the sterol-sensing domain among cholesterol homeostatic proteins.  相似文献   

9.
OBJECTIVE: The aim of this study was to investigate the cholesterol-lowering mechanisms of corn fiber oil (CFO), ferulate phytostanyl esters (FPEs) and parent compounds of FPE, including sitostanol and ferulic acid, in hamsters. METHOD: Seventy male Golden Syrian hamsters were randomly assigned to six experimental diets for 4 weeks: (1) cornstarch-casein-sucrose-based control diet (control); and (2) control diet plus 0.1% (wt/wt) cholesterol (cholesterol-control). The remaining four groups were given cholesterol-control diet with: (3) 10% (wt/wt) CFO; (4) 0.5% (wt/wt) sitostanol; (5) 0.23% (wt/wt) ferulic acid; and (6) 0.73% (wt/wt) FPE. At the end of dietary intervention, total plasma cholesterol, high-density lipoprotein cholesterol and triglyceride concentrations were determined. Parameters of cholesterol kinetics, including cholesterol absorption and synthesis, as well as mRNA expression of sterol transporters such as Niemann-Pick C1 like 1 (NPC1L1), ATP-binding cassette G5 (ABCG5) and ABCG8, were assessed. RESULTS: Supplementation with CFO decreased (P<.0001) plasma total cholesterol levels by 29% as compared with the cholesterol-control group, while FPE and sitostanol reduced (P<.02) cholesterolemia by 15% and 14%, respectively. CFO and sitostanol decreased (P<.05) cholesterol absorption by 24% compared to the cholesterol-control group. Dietary intervention did not alter the intestinal gene expression of ABCG5, ABCG8 and NPC1L1. CONCLUSION: The present results show that the CFO-induced and sitostanol-induced decrease in cholesterol absorption is independent of intestinal enterocyte sterol transporters such as ABCG5, ABCG8 and NPC1L1 in hamsters.  相似文献   

10.
Constitutive expression of a cholesterol-7alpha-hydroxylase (CYP7A1) transgene in LDL receptor-deficient mice blocked the ability of a cholesterol-enriched diet to increase plasma levels of apolipoprotein B-containing lipoproteins. LDL receptor-deficient mice expressing the CYP7A1 transgene exhibited complete resistance to diet-induced hypercholesterolemia and to the accumulation of cholesterol in the liver. Hepatic mRNA expression of liver X receptor-inducible ABCG5 and ABCG8 was decreased in CYP7A1 transgenic, LDL receptor-deficient mice fed a cholesterol-enriched diet. Thus, increased biliary cholesterol excretion could not account for the maintenance of cholesterol homeostasis. CYP7A1 transgenic, LDL receptor-deficient mice fed the cholesterol-enriched diet exhibited decreased jejunal Niemann-Pick C1-Like 1 protein (NPC1L1) mRNA expression, an important mediator of intestinal cholesterol absorption. A taurocholate-enriched diet also decreased NPC1L1 mRNA expression in a farnesoid X receptor-independent manner. Reduced expression of NPC1L1 mRNA was associated with decreased cholesterol absorption ( approximately 20%; P < 0.05) exhibited by CYP7A1 transgenic LDL receptor-deficient mice fed the cholesterol-enriched diet. The combined data show that enhanced expression of CYP7A1 is an effective means to prevent the accumulation of cholesterol in the liver and of atherogenic apolipoprotein B-containing lipoproteins in plasma.  相似文献   

11.
Niemann-Pick C1 like 1 (NPC1L1) is a protein critical for intestinal cholesterol absorption. The nuclear receptors peroxisome proliferator-activated receptor alpha (PPARalpha) and liver X receptors (LXRalpha and LXRbeta) are major regulators of cholesterol homeostasis and their activation results in a reduced absorption of intestinal cholesterol. The goal of this study was to define the role of PPARalpha and LXR nuclear receptors in the regulation of NPC1L1 gene expression. We show that LXR activators down-regulate NPC1L1 mRNA levels in the human enterocyte cell line Caco-2/TC7, whereas PPARalpha ligands have no effect. Furthermore, NPC1L1 mRNA levels are decreased in vivo, in duodenum of mice treated with the LXR agonist T0901317. In conclusion, the present study identifies NPC1L1 as a novel LXR target gene further supporting a crucial role of LXR in intestinal cholesterol homeostasis.  相似文献   

12.
Regulation of gene expression of ATP-binding cassette transporter (ABC)A1 and ABCG1 by liver X receptor/retinoid X receptor (LXR/RXR) ligands was investigated in the human intestinal cell line CaCo-2. Neither the RXR ligand, 9-cis retinoic acid, nor the natural LXR ligand 22-hydroxycholesterol alone altered ABCA1 mRNA levels. When added together, ABCA1 and ABCG1 mRNA levels were increased 3- and 7-fold, respectively. T0901317, a synthetic non-sterol LXR agonist, increased ABCA1 and ABCG1 gene expression 11- and 6-fold, respectively. ABCA1 mass was increased by LXR/RXR activation. T0901317 or 9-cis retinoic acid and 22-hydroxycholesterol increased cholesterol efflux from basolateral but not apical membranes. Cholesterol efflux was increased by the LXR/RXR ligands to apolipoprotein (apo)A-I or HDL but not to taurocholate/phosphatidylcholine micelles. Actinomycin D prevented the increase in ABCA1 and ABCG1 mRNA levels and the increase in cholesterol efflux induced by the ligands. Glyburide, an inhibitor of ABCA1 activity, attenuated the increase in basolateral cholesterol efflux induced by T0901317. LXR/RXR activation decreased the esterification and secretion of cholesterol esters derived from plasma membranes. Thus, in CaCo-2 cells, LXR/RXR activation increases gene expression of ABCA1 and ABCG1 and the basolateral efflux of cholesterol, suggesting that ABCA1 plays an important role in intestinal HDL production and cholesterol absorption.  相似文献   

13.
Niemann-Pick disease type C (NPC), caused by mutations in the NPC1 gene or the NPC2 gene, is characterized by the accumulation of unesterified cholesterol and other lipids in endo/lysosomal compartments. NPC2 is a small, soluble, lysosomal protein that is targeted to this compartment via a mannose 6-phosphate-inhibitable pathway. To obtain insight into the roles of mannose 6-phosphate receptors (MPRs) in NPC2 targeting, we here examine the trafficking and function of NPC2 in fibroblast lines deficient in one or both of the two MPRs, MPR46 and MPR300. We demonstrate that either MPR alone is sufficient to transport NPC2 to the endo/lysosomal compartment, although MPR300 seems to be more efficient than MPR46. In the absence of both MPRs, NPC2 is secreted into the culture medium, and only a small amount of intracellular NPC2 can be detected, mainly in the endoplasmic reticulum. This leads to massive accumulation of unesterified cholesterol in the endo/lysosomal compartment of the MPR46/300-deficient fibroblasts, a phenotype similar to that of the NPC patient fibroblasts. In addition, we observed an upregulation of NPC1 protein and mRNA in the MPR-double-deficient cells. Taken together, our results suggest that the lysosomal targeting of NPC2 is strictly dependent on MPRs in fibroblasts.  相似文献   

14.
The exit of low‐density lipoprotein derived cholesterol (LDL‐C) from late endosomes (LE)/lysosomes (Ly) is mediated by Niemann–Pick C1 (NPC1), a multipass integral membrane protein on the limiting membranes of LE/Ly, and by NPC2, a cholesterol‐binding protein in the lumen of LE/Ly. NPC2 delivers cholesterol to the N‐terminal domain of NPC1, which is believed to insert cholesterol into the limiting membrane for subsequent transport to other subcellular organelles. Few cytoplasmic factors have been identified to govern cholesterol efflux from LE/Ly, and much less is known about the underlying molecular mechanisms. Here we establish VPS4, an AAA ATPase that has a well‐established role in disassembling the ESCRT (endosomal sorting complex required for transport)‐III polymer, as an important regulator of endosomal cholesterol transport. Knocking down VPS4 in HeLa cells resulted in prominent accumulation of LDL‐C in LE/Ly, and disrupted cholesterol homeostatic responses at the endoplasmic reticulum. The level and localization of NPC1 and NPC2 appeared to be normal in VPS4 knockdown cells. Importantly, depleting any of the ESCRT‐III components did not exert a significant effect on endosomal cholesterol transport. Our results thus identify an important cytoplasmic regulator of endosomal cholesterol trafficking and represent the first functional separation of VPS4 from ESCRT‐III.  相似文献   

15.
Niemann‐Pick type C (NPC) disease is a fatal neurodegenerative disorder characterized by over‐accumulation of low‐density lipoprotein‐derived cholesterol and glycosphingolipids in late endosomes/lysosomes (LE/L) throughout the body. Human mutations in either NPC1 or NPC2 genes have been directly associated with impaired cholesterol efflux from LE/L. Independent from its role in cholesterol homeostasis and its NPC2 partner, NPC1 was unexpectedly identified as a critical player controlling intracellular entry of filoviruses such as Ebola. In this study, a yeast three‐hybrid system revealed that the NPC1 cytoplasmic tail directly interacts with the clathrin adaptor protein AP‐1 via its acidic/di‐leucine motif. Consequently, a nonfunctional AP‐1A cytosolic complex resulted in a typical NPC‐like phenotype mainly due to a direct impairment of NPC1 trafficking to LE/L and a partial secretion of NPC2. Furthermore, the mislocalization of NPC1 was not due to cholesterol accumulation in LE/L, as it was not rescued upon treatment with Mβ‐cyclodextrin, which almost completely eliminated intracellular free cholesterol. Our cumulative data demonstrate that the cytosolic clathrin adaptor AP‐1A is essential for the lysosomal targeting and function of NPC1 and NPC2.  相似文献   

16.
ATP-binding cassette transporter G1 (ABCG1) plays an important role in macrophage reverse cholesterol transport in vivo by promoting cholesterol efflux onto lipidated apoA-I. However, the underlying mechanism is unclear. Here, we found that ABCG1 co-immunoprecipitated with caveolin-1 (CAV1) but not with flotillin-1 and -2. Knockdown of CAV1 expression using siRNAs significantly reduced ABCG1-mediated cholesterol efflux without detectable effect on ABCA1-mediated cholesterol efflux. Disruption of the putative CAV1 binding site in ABCG1, through replacement of tyrosine residues at positions 487 and 489 or at positions 494 and 495 with alanine (Y487AY489A and Y494AY495A), impaired the interaction of ABCG1 with CAV1 and significantly decreased ABCG1-mediated cholesterol efflux. The substitution of Tyr494 and Tyr495 with Phe or Trp that resulted in an intact CAV1 binding site had no effect. Furthermore, Y494AY495A affected trafficking of ABCG1 to the cell surface. The mutant protein is mainly located intracellularly. Finally, we found that CAV1 co-immunoprecipitated with ABCG1 and regulated cholesterol efflux to reconstituted HDL in THP-1-derived macrophages upon the liver X receptor agonist treatment. These findings indicate that CAV1 interacts with ABCG1 and regulates ABCG1-mediated cholesterol efflux.  相似文献   

17.
S100A8/9 and S100A12 are emerging biomarkers for disease activity of autoimmune and cardiovascular diseases. We demonstrated previously that S100A12 accelerates atherosclerosis accompanied by large cholesterol deposits in atherosclerotic lesions of apoE-null mice. The objective of this study was to ascertain whether S100/calgranulin influences cholesterol homeostasis in macrophages. Peritoneal macrophages from transgenic mice expressing human S100A8/9 and S100A12 in myeloid cells [human bacterial artificial chromosome (hBAC)/S100] have increased lipid content and reduced ABCG1 expression and [3H]cholesterol efflux compared with WT littermates. This was associated with a 6-fold increase in plasma interleukin (IL)-22 and increased IL-22 mRNA in splenic T cells. These findings are mediated by the receptor for advanced glycation endproducts (RAGE), because hBAC/S100 mice lacking RAGE had normal IL-22 expression and normal cholesterol efflux. In vitro, recombinant IL-22 reduced ABCG1 expression and [3H]cholesterol efflux in THP-1 macrophages, while recombinant S100A12 had no effect on ABCG1 expression. In conclusion, S100/calgranulin has no direct effect on cholesterol efflux in macrophages, but rather promotes the secretion of IL-22, which then directly reduces cholesterol efflux in macrophages by decreasing the expression of ABCG1.  相似文献   

18.
The fetus has a high requirement for cholesterol and synthesizes cholesterol at elevated rates. Recent studies suggest that fetal cholesterol also can be obtained from exogenous sources. The purpose of the current study was to examine the transport of maternal cholesterol to the fetus and determine the mechanism responsible for any cholesterol-driven changes in transport. Studies were completed in pregnant hamsters with normal and elevated plasma cholesterol concentrations. Cholesterol feeding resulted in a 3.1-fold increase in the amount of LDL-cholesterol taken up by the fetus and a 2.4-fold increase in the amount of HDL-cholesterol taken up. LDL-cholesterol was transported to the fetus primarily by the placenta, and HDL-cholesterol was transported by the yolk sac and placenta. Several proteins associated with sterol transport and efflux, including those induced by activated liver X receptor, were expressed in hamster and human placentas: NPC1, NPC1L1, ABCA2, SCP-x, and ABCG1, but not ABCG8. NPC1L1 was the only protein increased in hypercholesterolemic placentas. Thus, increasing maternal lipoprotein-cholesterol concentrations can enhance transport of maternal cholesterol to the fetus, leading to 1) increased movement of cholesterol down a concentration gradient in the placenta, 2) increased lipoprotein secretion from the yolk sac (shown previously), and possibly 3) increased placental NPC1L1 expression.  相似文献   

19.
20.
脑是富含胆固醇的器官,机体大约有25%的胆固醇集中在脑组织中.ATP结合盒超家族转运蛋白对脑组织中胆固醇的膜外转运和动态平衡起着重要的调节作用.研究发现,ATP结合盒超家族转运蛋白亚体ABCG1、ABCG4和ABCA1在成体脑组织中存在不同程度的表达,一种或多种亚体的缺失可以导致神经退行性病变.然而,ATP结合盒超家族转运蛋白亚体对脑发育过程中脑胆固醇动态变化的调节缺乏相关性的报道.在本研究中,从低胆固醇饮食喂养的C57BL/6J小鼠中获取出生后不同发育时期的脑组织,对ABCG1、ABCG4和ABCA1的mRNA与蛋白质表达水平进行测定,并对脑组织和血清中ATP结合盒超家族转运蛋白的表达水平与胆固醇水平的相关性进行研究.同时,使用ABCG1、ABCG4单一基因敲除鼠和ABCG1、ABCG4双基因敲除鼠,研究ATP结合盒超家族转运蛋白对与胆固醇合成的相关基因表达的影响以及对脑组织胆固醇代谢的调节作用.结果发现,ABCG1、ABCG4和ABCA1在机体多个器官中均有表达,但ABCG1和ABCG4在小鼠脑组织中表达量最高.在脑组织发育过程中,ABCG1和ABCG4mRNA水平呈现明显的表达时效性,小鼠于出生后42天达到峰值,而ABCA1 mRNA的表达水平无明显变化.血清和脑组织中中酯化型胆固醇水平呈双高峰分布,也于出生后42天达到最高.基因敲除鼠模型显示,单一敲除ABCG1或者ABCG4基因对脑组织胆固醇水平无明显影响,而ABCG1和ABCG4基因的同时缺失导致脑胆固醇水平显著升高,并明显降低胆固醇合成相关基因的表达水平.本研究表明,在脑发育成熟过程中,ATP结合盒超家族转运蛋白亚体ABCG1和ABCG4,而非ABCA1,以调节脑胆固醇的膜外转运;ABCG1和ABCG4互补调控脑胆固醇的动态平衡.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号