首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigated whether adenosine mediates the decrease in plasma renin activity (PRA) during acute hypoxia. Eight chronically tracheotomized, conscious beagle dogs were kept under standardized environmental conditions and received a low-sodium diet (0.5 mmol.kg body wt(-1).day(-1)). During the experiments, the dogs were breathing spontaneously via a ventilator circuit: first hour, normoxia (21% inspiratory concentration of O(2)); second and third hours, hypoxia (10% inspiratory concentration of O(2)). Each of the eight dogs was studied twice in randomized order in control and theophylline experiments. In theophylline experiments, theophylline, an A(1)-receptor antagonist, was infused intravenously during hypoxia (loading dose: 3 mg/kg within 30 min, maintenance: 0.5 mg. kg(-1). h(-1)). In theophylline experiments, PRA (5.9 +/- 0.8 ng ANG I. ml(-1). h(-1)) and ANG II plasma concentration (15.9 +/- 2.3 pg/ml) did not decrease during hypoxia, whereas plasma aldosterone concentration decreased from 277 +/- 63 to 132 +/- 23 pg/ml (P < 0.05). In control experiments, PRA decreased from 6.8 +/- 0.8 during normoxia to 3.0 +/- 0.5 ng ANG I. ml(-1). h(-1) during hypoxia, ANG II decreased from 13.3 +/- 1.9 to 7.3 +/- 1.9 pg/ml, and plasma aldosterone concentration decreased from 316 +/- 50 to 70 +/- 13 pg/ml (P < 0.05). Thus infusion of the adenosine receptor antagonist theophylline inhibited the suppression of the renin-angiotensin system during acute hypoxia. The decrease in aldosterone occurred independently and is apparently directly related to hypoxia. In conclusion, it is likely that adenosine mediates the decrease in PRA during acute hypoxia in conscious dogs.  相似文献   

2.
Saline was infused intravenously for 90 min to normal, sodium-replete conscious dogs at three different rates (6, 20, and 30 micromol x kg(-1) x min(-1)) as hypertonic solutions (HyperLoad-6, HyperLoad-20, and HyperLoad-30, respectively) or as isotonic solutions (IsoLoad-6, IsoLoad-20, and IsoLoad-30, respectively). Mean arterial blood pressure did not change with any infusion of 6 or 20 micromol x kg(-1) x min(-1). During HyperLoad-6, plasma vasopressin increased by 30%, although the increase in plasma osmolality (1.0 mosmol/kg) was insignificant. During HyperLoad-20, plasma ANG II decreased from 14+/-2 to 7+/-2 pg/ml and sodium excretion increased markedly (2.3+/-0.8 to 19+/-8 micromol/min), whereas glomerular filtration rate (GFR) remained constant. IsoLoad-20 decreased plasma ANG II similarly (13+/-3 to 7+/-1 pg/ml) concomitant with an increase in GFR and a smaller increase in sodium excretion (1.9+/-1.0 to 11+/-6 micromol/min). HyperLoad-30 and IsoLoad-30 increased mean arterial blood pressure by 6-7 mm Hg and decreased plasma ANG II to approximately 6 pg/ml, whereas sodium excretion increased to approximately 60 micromol/min. The data demonstrate that, during slow sodium loading, the rate of excretion of sodium may increase 10-fold without changes in mean arterial blood pressure and GFR and suggest that the increase may be mediated by a decrease in plasma ANG II. Furthermore, the vasopressin system may respond to changes in plasma osmolality undetectable by conventional osmometry.  相似文献   

3.
Although recent data point to a possible indirect role for galanin in modulating renal blood flow (RBF) and fluid homeostasis in experimental animals, there have been no systematic studies exploring the possible direct effects of the peptide on the mammalian kidney. We ascertained the RBF, glomerular filtration rate (GFR) and plasma glucose responses to direct intrarenal infusion of three progressively increasing doses of synthetic galanin in anesthetized dogs. A 50 ng/kg per min dose (n = 6) failed to affect RBF, GFR or arterial plasma glucose (APG). Yet, a 100 ng/kg per min dose elevated RBF and GFR by 13 and 14%, respectively, while concomitantly increasing APG by 38%. At 200 ng/kg per min, galanin elevated RBF and GFR by 32 and 33%, respectively, while elevating APG by 57%. Intrarenal infusion of glucose (12.5 mg/kg per min; n = 6), reproducing the percentage rise in glucose (62%) elicited by the highest dose of galanin, elevated RBF and GFR by 20 and 23%, respectively. These data indicate that the elevated plasma glucose level, stimulated by galanin infusion, may account for about 63 and 70% of the RBF and GFR responses, respectively, elicited by galanin infusion at the 200 ng dose. The factors mediating the remaining renal hyperemia and hyperfiltration await resolution.  相似文献   

4.
Dietary alkali slows GFR decline in humans with a moderately reduced glomerular filtration rate (GFR) despite the absence of metabolic acidosis. Similarly, dietary alkali slows GFR decline in animals with 2/3 nephrectomy (Nx), a chronic kidney disease (CKD) model without metabolic acidosis in which GFR decline is mediated by acid (H(+)) retention through endothelin (ET) and mineralocorticoid receptors. To gain insight as to whether this mechanism might mediate GFR decline in humans, we explored whether macroalbuminuric subjects with moderately reduced (CKD stage 2 = 60-90 ml/min; CKD 2) compared with normal estimated GFR (> 90 ml/min; CKD 1), each without metabolic acidosis, have H(+) retention that increases plasma levels of ET-1 and aldosterone. Baseline plasma ET and aldosterone concentrations were each higher in CKD 2 than CKD 1. Baseline dietary H(+) and urine net acid excretion (NAE) were not different between groups, but an acute oral NaHCO? bolus reduced urine NAE less (i.e., postbolus urine NAE was higher) in CKD 2 than CKD 1, consistent with greater H(+) retention in CKD 2 subjects. Thirty days of oral NaHCO? reduced H(+) retention in CKD 2 but not CKD 1 subjects and reduced plasma ET and aldosterone in both groups but to levels that remained higher in CKD 2 for each. Subjects with CKD stage 2 eGFR and no metabolic acidosis nevertheless have H(+) retention that increases plasma ET and aldosterone levels, factors that might mediate subsequent GFR decline and other untoward vascular effects.  相似文献   

5.
Glucagon has been suggested to be involved in the pathway by which protein and amino acids elevate renal blood flow (RBF) and glomerular filtration rate (GFR) postprandially. Recent data suggest that amino acids elevate RBF and GFR through an autoregulatory mechanism (i.e., by impairing renal autoregulation). If glucagon mediates the renal hemodynamic effects of amino acids, 'physiologic' infusion of glucagon would also be expected to impair autoregulation. We examined the effects of glucagon (5 ng/kg per min given intraportally and intravenously) on RBF and GFR autoregulation in anesthetized dogs. Intraportal glucagon (n = 6) increased RBF (24%) and GFR (23%) at normal arterial pressure. RBF and GFR were well autoregulated (greater than 90% of control) at renal arterial pressures greater than or equal to 85 mm Hg before and after glucagon. At 70 mm Hg, RBF and GFR decreased by 15 and 16%, respectively, before glucagon and by 19 and 22%, respectively, after glucagon. Intravenous glucagon (n = 6) produced similar effects. Intraportal glucagon at 500 ng/kg per min increased RBF (35%), heart rate (69%) and plasma glucose (78%) and decreased arterial pressure (16%) (GFR not measured). This dose impaired RBF autoregulation by 30%. The data suggest that a 'physiologic' dose of glucagon increases renal hemodynamics without impairing renal autoregulation. It is suggested that glucagon's vasodilatory effect on the renal vasculature may be additive to the renal effects of amino acids.  相似文献   

6.
The responses to infusion of nitric oxide synthase substrate (L-arginine 3 mg.kg(-1).min(-1)) and to slow volume expansion (saline 35 ml/kg for 90 min) alone and in combination were investigated in separate experiments. L-Arginine left blood pressure and plasma ANG II unaffected but decreased heart rate (6 +/- 2 beats/min) and urine osmolality, increased glomerular filtration rate (GFR) transiently, and caused sustained increases in sodium excretion (fourfold) and urine flow (0.2 +/- 0.0 to 0.7 +/- 0.1 ml/min). Volume expansion increased arterial blood pressure (102 +/- 3 to 114 +/- 3 mmHg), elevated GFR persistently by 24%, and enhanced sodium excretion to a peak of 251 +/- 31 micromol/min, together with marked increases in urine flow, osmolar and free water clearances, whereas plasma ANG II decreased (8.1 +/- 1.7 to 1.6 +/- 0.3 pg/ml). Combined volume expansion and L-arginine infusion tended to increase arterial blood pressure and increased GFR by 31%, whereas peak sodium excretion was enhanced to 335 +/- 23 micromol/min at plasma ANG II levels of 3.0 +/- 1.1 pg/ml; urine flow and osmolar clearance were increased at constant free water clearance. In conclusion, L-arginine 1) increases sodium excretion, 2) decreases basal urine osmolality, 3) exaggerates the natriuretic response to volume expansion by an average of 50% without persistent changes in GFR, and 4) abolishes the increase in free water clearance normally occurring during volume expansion. Thus L-arginine is a natriuretic substance compatible with a role of nitric oxide in sodium homeostasis, possibly by offsetting/shifting the renal response to sodium excess.  相似文献   

7.
Angiotensin (Ang) II induces oxidative stress in vitro and in animal models of hypertension. We tested the hypothesis that Ang II increases oxidative stress in human hypertension, as assessed by plasma F2-isoprostane concentrations. Plasma F2-isoprostanes, hemodynamic and endocrine parameters were measured at baseline and following a 55 min infusion of 3 ng/kg/min Ang II in 13 normotensive and 13 hypertensive volunteers ingesting a high- (200 mmol/d) or low- (10 mmol/d) sodium diet. Mean arterial pressure (MAP) and body mass index were higher in hypertensive subjects. Ang II infusion increased MAP (p<.001) and plasma aldosterone concentrations (p<.001) and decreased plasma renin activity (p<.001) and renal plasma flow (p<.001) to a similar extent in both groups. Plasma F2-isoprostane concentrations were similar at baseline. There was no effect of Ang II on F2-isoprostane concentrations during low-salt intake in either group (normotensive 51.7 +/- 7.1 to 53.7 +/- 6.5 pg/ml and hypertensive 52.2 +/- 8.2 to 56.2 +/- 10.0 pg/ml; mean +/- SE). During high-salt intake, Ang II increased F2-isoprostane concentrations in the hypertensive group (52.3 +/- 7.2 to 63.2 +/- 10.4 pg/ml, p=0.010) but not in the normotensive group (54.2 +/- 4.4 to 58.9 +/- 6.6 pg/ml, p=0.83). Acute Ang II infusion increases oxidative stress in vivo in hypertensive humans. The renin-angiotensin system may contribute to oxidative stress in human cardiovascular disease.  相似文献   

8.
Pedersen  H. D.  Koch  J.  Jensen  A. L.  Poulsen  K.  Flagstad  A. 《Acta veterinaria Scandinavica》1994,35(2):133-140
Eight normal male Beagle dogs received 0.7 mmol Na+/kg/day for 5 weeks and 4.0 mmol Na+/kg/day in one 3 week control period preceding and another similar period following the low sodium period. The dogs received 6.8 mmol K+/kg/day throughout the study. The median plasma renin activity (PRA) and plasma aldosterone concentration (PAC) were higher in the low sodium period than in the following control period (0.67 versus 0.28 ng/ml/h, p < 0.0001) and (204 versus 31 pg/ml, p < 0.0001). PRA and PAC quickly stabilized on a new steady level in response to altered intake of sodium chloride. The angiotensin-converting enzyme (ACE) activity was not changed by the altered intake of sodium chloride. The plasma concentrations of sodium and chloride were increased during the low sodium period. This could be due to an indirect effect of the high potassium intake of the dogs. Potassium leads to an increased secretion of aldosterone and thereby to an increased retention of sodium and chloride in the kidney. The possible implications of a high potassium content in a low sodium diet are discussed.  相似文献   

9.
We investigated whether Losartan, an angiotensin II (Ang II) AT1 receptor antagonist, decreases renal vascular resistance (RVR) and increases glomerular filtration rate (GFR) in isolated perfused porcine slaughterhouse kidneys (11 control experiments and 11 Losartan experiments with 7.5mg Losartan in the preservation solution and 100(g/minute Losartan infused during perfusion). With perfusion, plasma renin activity (PRA) increased markedly from 3 +/- 1 to 90 +/- 17 ng Ang I/ml/h (control), and from 4 +/- 1 to 70 +/- 8 ng Ang I/ml/h (Losartan), plasma Ang II increased from 86 +/- 63 to 482 +/- 111 pg/ml (control), and from 73 +/- 42 to 410 +/- 91 pg/ml (Losartan). The GFR was decreased in Losartan experiments as compared with control experiments (5 +/- 1 versus 10 +/- 2 ml/min/100g kidney wt; p < 0.05). The RVR was the same in both groups (0.2 +/- 0.01 mm Hg/100g kidney wt/min/ml). Tubular sodium reabsorption was decreased in Losartan experiments as compared with control experiments (0.7 +/- 0.1 versus 1.4 +/- 0.3 mmol/min/100g kidney wt). Overall, Losartan accentuated pathophysiological signs of acute renal failure. Although other drugs have to be investigated, these results suggest that porcine slaughterhouse kidneys could be useful as a tool for research in areas such as transplantation and intensive-care medicine.  相似文献   

10.
The present studies were performed to quantify circulating components of the renin-angiotensin-aldosterone axis and to determine the functional importance of this system during alterations in sodium intake in conscious mice. Increasing sodium intake from approximately 200 to 1,000 microeq/day significantly decreased plasma renin concentration from 472 +/- 96 to 304 +/- 83 ng ANG I. ml(-1). h(-1) (n = 5) but did not alter plasma renin activity from the low-sodium level of 7.7 +/- 1.1 ng ANG I. ml(-1). h(-1). Despite the elevated plasma renin concentration, plasma ANG II in mice on low-sodium level averaged 14 +/- 3 pg/ml and was significantly suppressed to 6 +/- 1 pg/ml by high-sodium intake (n = 7). Consistent with the modulation of ANG II, plasma aldosterone significantly decreased from 41 +/- 8 to 8 +/- 3 ng/dl when sodium intake was elevated (n = 6). In a final set of experiments, the continuous infusion of ANG II (20 ng. kg(-1). min(-1)) led to a mild salt-sensitive increase in mean arterial pressure from 108 +/- 2 to 131 +/- 2 mmHg as sodium intake was varied from low to high (n = 7). In vehicle-infused mice, mean arterial pressure was unaltered from 109 +/- 2 mmHg when sodium intake was increased (n = 6). These studies indicate that the physiological suppression of circulating ANG II may be required to maintain a constancy of arterial pressure during alterations in sodium intake in normal mice.  相似文献   

11.
The effects of synthetic atrial natriuretic factor (ANF) on the renin-aldosterone axis were studied in fifteen 4-7 day-old male milk-fed calves divided into 3 groups of 5 animals each. Synthetic ANF intravenous (i.v.) administration (1.6 micrograms/kg body wt over 30 min) induced a transient significant fall in plasma renin activity (from 2.5 +/- 0.3 to 1.7 +/- 0.3 ng angiotensin l/ml/h; P less than 0.05) but failed to reduce basal plasma aldosterone levels in the first group of animals. Administration (i.v.) of angiotensin II (AII) (0.8 micrograms/kg body wt for 75 min) was accompanied by a progressive fall in plasma renin activity (from 2.2 +/- 0.3 to 0.8 +/- 0.1 ng angiotensin l/ml/h; P less than 0.01) and by an increase in plasma aldosterone levels (from 55 +/- 3 to 86 +/- 5 pg/ml; P less than 0.01) both in the second and the third groups; addition of ANF to AII infusion (AII: 0.5 mu/kg body wt for 45 min; AII: 0.3 micrograms/kg body wt and ANF 1.6 micrograms/kg body wt during 30 min) in the third group did not modify plasma renin activity or AII-stimulated plasma aldosterone levels when compared to the AII-treated group. These findings show that in the newborn calf ANF is able to reduce plasma renin activity but fails to affect basal and AII-stimulated plasma aldosterone levels, suggesting that the zona glomerulosa of the newborn adrenal cortex is insensitive to a diuretic, natriuretic and hypotensive dose of the atrial peptide.  相似文献   

12.
Acute hypoxia induces a decrease in plasma renin activity (PRA), mediated, e.g., by an increase in adenosine concentration, calcium channel activity, or inhibition of ATP-sensitive potassium channels. The decrease in PRA results in a decrease in angiotensin II (AngII) and plasma aldosterone concentration (PAC). This study investigates whether these hypoxia-induced mechanisms can be inhibited by the L-type voltage-dependent calcium channel antagonist nifedipine. Eight conscious, chronically tracheotomized dogs received a low sodium diet (0.5 mmol Na x kg body wt(-1) x day(-1)). The dogs were studied twice in randomized order, either with nifedipine infusion (1.5 microg x kg body wt(-1) x min(-1), Nifedipine) or without (Control). The dogs were breathing spontaneously: first hour, normoxia [inspiratory oxygen fraction (FiO2)=0.21]; second and third hour hypoxia (FiO2=0.1). In Controls, PRA (6.8+/-0.8 vs. 3.0+/-0.5 ngAngI x ml(-1) x min(-1)), AngII (13.3+/-1.9 vs. 7.3+/-1.9 pg/ml), and PAC (316+/-50 vs. 69+/-12 pg/ml) decreased during hypoxia (P<0.05). In Nifedipine experiments, PRA (6.5+/-0.9 vs. 10.5+/-2.4 ngAngI x ml(-1) x min(-1)) and AngII (14+/-1.1 vs. 18+/-3.9 pg/ml) increased during hypoxia, whereas the decrease in PAC (292+/-81 vs. 153+/-41 pg/ml) was blunted (P<0.05). These results foster the idea that the hypoxia-induced decrease in PRA involves L-type calcium channel activity.  相似文献   

13.
Previous experiments from our laboratory showed that longer-lasting reductions in renal perfusion pressure (RPP) are associated with a gradual decrease in renal blood flow (RBF) that can be abolished by clamping plasma ANG II concentration ([ANG II]). The aim of the present study was to investigate the mechanisms behind the RBF downregulation in halothane-anesthetized Sprague-Dawley rats during a 30-min reduction in RPP to 88 mmHg. During the 30 min of reduced RPP we also measured glomerular filtration rate (GFR), proximal tubular pressure (P(prox)), and proximal tubular flow rate (Q(LP)). Early distal tubular fluid conductivity was measured as an estimate of early distal [NaCl] ([NaCl](ED)), and changes in plasma renin concentration (PRC) over time were measured. During 30 min of reduced RPP, RBF decreased gradually from 6.5 +/- 0.3 to 6.0 +/- 0.3 ml/min after 5 min (NS) to 5.2 +/- 0.2 ml/min after 30 min (P < 0.05). This decrease occurred in parallel with a gradual increase in PRC from 38.2 +/- 11.0 x 10(-5) to 87.1 +/- 25.1 x 10(-5) Goldblatt units (GU)/ml after 5 min (P < 0.05) to 158.5 +/- 42.9 x 10(-5) GU/ml after 30 min (P < 0.01). GFR, P(prox), and [NaCl](ED) all decreased significantly after 5 min and remained low. Estimates of pre- and postglomerular resistances showed that the autoregulatory mechanisms initially dilated preglomerular vessels to maintain RBF and GFR. However, after 30 min of reduced RPP, both pre- and postglomerular resistance had increased. We conclude that the decrease in RBF over time is caused by increases in both pre- and postglomerular resistance due to rising plasma renin and ANG II concentrations.  相似文献   

14.
Evidence of biological activity of fragments of ANG II is accumulating. Fragments considered being inactive degradation products might mediate actions previously attributed to ANG II. The study aimed to determine whether angiotensin fragments exert biological activity when administered in amounts equimolar to physiological doses of ANG II. Cardiovascular, endocrine, and renal effects of ANG II, ANG III, ANG IV, and ANG-(1-7) (6 pmol.kg-1.min-1) were investigated in conscious dogs during acute inhibition of angiotensin I-converting enzyme (enalaprilate) and aldosterone (canrenoate). Furthermore, ANG III was investigated by step-up infusion (30 and 150 pmol.kg-1.min-1). Arterial plasma concentrations [ANG immunoreactivity (IR)] were determined by an ANG II antibody cross-reacting with ANG III and ANG IV. Metabolic clearance rates were higher for ANG III and ANG IV (391 +/- 19 and 274 +/- 13 ml.kg-1.min-1, respectively) than for ANG II (107 +/- 13 ml.kg-1.min-1). ANG II increased ANG IR by 60 +/- 7 pmol/ml, blood pressure by 30%, increased plasma aldosterone markedly (to 345 +/- 72 pg/ml), and plasma vasopressin transiently, while reducing glomerular filtration rate (40 +/- 2 to 33 +/- 2 ml/min), sodium excretion (50 +/- 7 to 16 +/- 4 micromol/min), and urine flow. Equimolar amounts of ANG III induced similar antinatriuresis (57 +/- 8 to 19 +/- 3 micromol/min) and aldosterone secretion (to 268 +/- 71 pg/ml) at much lower ANG IR increments ( approximately 1/7) without affecting blood pressure, vasopressin, or glomerular filtration rate. The effects of ANG III exhibited complex dose-response relations. ANG IV and ANG-(1-7) were ineffective. It is concluded that 1) plasma clearances of ANG III and ANG IV are higher than those of ANG II; 2) ANG III is more potent than ANG II in eliciting immediate sodium and potassium retention, as well as aldosterone secretion, particularly at low concentrations; and 3) the complexity of the ANG III dose-response relationships provides indirect evidence that several effector mechanisms are involved.  相似文献   

15.
In wild-type mice, 2-wk administration of losartan, an angiotensin (Ang) II type 1 (AT1) receptor antagonist, along with dietary sodium restriction, resulted in an elevation of plasma aldosterone greater than that seen with sodium restriction alone (2.75 +/- 0.35 vs. 1.38 +/- 0.16 ng/ml, P < 0.01). Plasma potassium increased in sodium-restricted, losartan-treated mice (6.0 +/- 0.2 mEq/liter), while potassium remained unchanged in mice with sodium restriction alone. To study the effect of Ang II on glomerulosa cells that may operate independently of plasma potassium in situ, we used chimeric mice made of cells with or without the intact AT1A gene (Agtr1a). When animals were fed a normal diet or chronically infused with Ang II, the aldosterone synthase mRNA was detectable only in Agtr1a+/+ but not Agtr1a-/- zona glomerulosa cells. After 2 wk of sodium restriction, plasma aldosterone increased (1.51 +/- 0.27 ng/ml) and potassium remained on average at 4.5 +/- 0.2 mEq/liter, with aldosterone synthase mRNA expressed intensively in Agtr1a+/+, but not detectable in Agtr1a-/- cells. Simultaneous sodium restriction and losartan treatment caused increases in plasma potassium (5.5 +/- 0.1 mEq/liter) and aldosterone (1.84 +/- 0.38 ng/ml), with both Agtr1a-/- and Agtr1a+/+ cells intensively expressing aldosterone synthase mRNA. Thus, aldosterone production is regulated by Ang II in the adrenal gland during chronic alterations in extracellular fluid volume when plasma potassium is maintained within the normal range. In the light of a previous observation that dietary potassium restriction superimposed on sodium restriction abolished secondary hyperaldosteronism in angiotensinogen null-mutant mice, the present findings demonstrate that when the renin-Ang system is compromised, plasma potassium acts as an effective alternative mechanism for the volume homeostasis through its capacity to induce hyperaldosteronism.  相似文献   

16.
The adrenocortical secretory activity under basal conditions and after treatment with tetracosactid (1-24ACTH) has been investigated in chronically cannulated male rabbits. Basal plasma concentrations of glucocorticosteroids (0.74 micrograms/100 ml) and aldosterone (78 pg/ml) have been determined in a greater number of animals. No significant positive correlation between basal glucocorticosteroid and aldosterone plasma levels could be found. After intravenous injection of 2.5, 5.0, 10.0 and 20.0 micrograms/kg body weight tetracosactid glucocorticosteroid concentrations were significantly elevated between 40--100 min after administration; aldosterone release, on the other hand, was significantly increased only after injection of 10.0 or 20.0 micrograms/kg body weight tetracosactid between 20--60 min after injection. After administration of high tetracosactid doses glucocorticosteroid and aldosterone plasma concentrations were significantly correlated (10.0 micrograms/kg: r = 0.62; 20.0 micrograms/kg: r = 0.26). Because of the relative insensitivity of the zona glomerulosa cells to tetracosactid administered intravenously, it is concluded that ACTH is only of minor importance in the regulation of aldosterone secretion in the rabbit.  相似文献   

17.
High plasma concentrations of C-terminal immunoreactive glucagon (IRG) have been found during early life in several mammalian species. We have analyzed the plasma IRG of 12 h to 60 day-old dogs in terms of the 4 peaks (IRG greater than 20,000, IRG9000, IRG3500 and IRG2000) obtained by gel filtration on Bio-Gel P-30. Significant changes with age and in response to administered agents were confined to IRG9000 and IRG3500. IRG9000 was 9-fold higher in 12-36 h old dogs than in adults (108 +/- 24 pg/ml pancreatic glucagon equivalents v. 12 +/- 3 pg/ml, mean +/- SEM) and showed a decline to 2-fold higher (27 +/- 5 pg/ml) at 31-60 days. IRG3500 was higher than in the adult only during the first 36 h of life (36 +/- 5 pg/ml v. 15 +/- 3 pg/ml). Arginine infusion (0.5 g/kg over 15 min) caused an increase in plasma levels of both IRG9000 and IRG3500 in the newborn, whereas in adult dogs only IRG3500 was increased. Insulin injection (0.2 U/kg intravenously) causing a marked hypoglycemia had no significant effect on the plasma level of any IRG component in newborn dogs. Dihydrosomatostatin infusion (10 micrograms/kg bolus +/- 90 micrograms/kg over 30 min) caused a decrease in both IRG9000 and IRG3500. The increased basal level and secretory response to arginine of IRG9000 in newborn dogs may reflect an immaturity of the A cells, whereby more of this component, which may represent a precursor of pancreatic glucagon, is secreted than in the adult. The immature A cells also appear to have an impaired secretory response to hypoglycemia.  相似文献   

18.
Inhibition of angiotensin I-converting enzyme (ACE) (kininase II) provides a powerful new method for evaluating the role of the renin-angiotensin-aldosterone and kallikrein-kinin systems in the control of aldosterone secretion, renal function, and arterial blood pressure. This study compares the effects of long-term administration of a sulfhydryl inhibitor, captopril, with a nonsulfhydryl inhibitor, enalapril (1-[N-[1-(ethoxycarbonyl-3-phenylpropyl]-L-alanyl]-L-proline), in conscious sodium-deficient dogs. Plasma aldosterone concentration (PAC), plasma renin activity (PRA), urinary sodium excretion (UNaV), arterial pressure (AP), blood kinins (BK), urinary kinins (UK), and urinary kallikrein activity (UKA) were determined during long-term inhibition of ACE in sodium-deficient dogs. In response to captopril administration (20 mg/(kg . day], PAC decreased from 38.9 +/- 6.7 to 14.3 +/- 2.3 ng/dl, PRA increased from 3.58 +/- 0.53 to 13.7 +/- 1.6 ng/(ml . h), UNaV increased from 0.65 +/- 0.27 to 6.4 +/- 1.2 meq/day, AP decreased from 102 +/- 3 to 65 +/- 2 mm Hg, BK increased from 0.17 +/- 0.02 to 0.41 +/- 0.04 ng/ml, UK increased from 7.2 +/- 1.5 to 31.4 +/- 3.2 micrograms/day, and UKA decreased from 23.6 +/- 3.1 to 5.3 +/- 1.2 EU/day. Quantitatively similar changes in AP, UNaV, and PAC were observed in sodium-deficient dogs in response to long-term enalapril administration (4 mg/(kg X day]. In sodium-deficient dogs maintained on captopril or enalapril for several days, angiotensin II (AngII) infusion (3 ng/(kg X min] restored PAC, UNaV, and AP to levels observed in untreated sodium-deficient dogs. These data indicate that the long-term hypotensive and natriuretic actions of inhibitors of ACE are mediated by inhibition of AngII formation and that the renin-angiotensin system plays an essential role in regulating aldosterone secretion, renal function, and AP during sodium deficiency.  相似文献   

19.
Mongrel dogs prepared with chronic catheters in their femoral artery and vein and urinary bladder received 60 minute infusions of atrial peptide ranging from 5 to 100 ng/kg/min. Infusion of atrial peptides caused dose dependent increases in plasma atrial peptide concentration with doses of 25 ng/kg/min or less increasing plasma concentrations to levels observed in normal animals during stimulation of endogenous atrial peptide secretion. Atrial peptide infusion at doses of 10 ng/kg/min and above caused significant decreases in mean arterial pressure which were not accompanied by statistically significant changes in heart rate. Atrial peptide infusion at doses of 25 ng/kg/min and above increased urinary sodium excretion and urine flow rate. Atrial peptide infusion was without effect on plasma vasopressin, ACTH and corticosterone concentrations. However, atrial peptide infusion resulted in dose dependent decreases in plasma aldosterone concentration and plasma renin activity, but the decreases were only significant with the high physiologic (25 ng/kg/min) and pharmacologic doses (50 & 100 ng/kg/min). These data show that atrial peptide infusions in conscious dogs have minimal effects when infused in small doses that mimic endogenous atrial peptide release. At higher doses, significant effects on the cardiovascular, renal and endocrine systems can be observed but their physiological significance is unclear.  相似文献   

20.
The effects of endothelin on renal hemodynamics and excretory functions were investigated in anesthetized dogs. Infusion of endothelin at a rate of 1 ng/kg.min resulted in a slight but significant decrease in renal blood flow and an increase in renal vascular resistance and filtration fraction. Endothelin at doses higher than 10 ng/kg.min significantly decreased cardiac output, glomerular filtration rate, urine volume, and urinary sodium and potassium excretion, whereas it increased systemic vascular resistance. Mean arterial pressure and heart rate showed a transient decrease and increase, respectively, at doses higher than 50 ng/kg.min. Plasma renin activity and plasma aldosterone concentrations were increased only at the dose of 100 ng/kg.min. These effects lasted for more than 60 min. These results suggest that endothelin may have an important role in the modulation of renal functions as well as in the modulation of systemic hemodynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号