首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To compare NADH-regeneration systems for the synthesis of (S)-4-chloro-3-hydroxybutanoate (ECHB), a novel NADH-dependent carbonyl reductase (KaCR1), which reduced ethyl 4-chloroacetoacetate (ECAA) to form (S)-ECHB, was screened and purified from Kluyveromyces aestuarii and a gene encoding KaCR1 was cloned. Glucose dehydrogenase (GDH) and formate dehydrogenase (FDH) were compared as enzymes for NADH regeneration using Escherichia coli cells coexpressing each enzyme with KaCR1. E. coli cells coexpressing GDH produced 45.6 g/l of (S)-ECHB from 50 g/l of ECAA and E. coli cells coexpressing FDH, alternatively, produced only 19.0 g/l. The low productivity in the case of FDH was suggested to result from the low activity and instability of FDH.  相似文献   

2.
We cloned and sequenced the gene encoding an NADPH-dependent aldehyde reductase (ARII) in Sporobolomyces salmonicolor AKU4429, which reduces ethyl 4-chloro-3-oxobutanoate (4-COBE) to ethyl (S)-4-chloro-3-hydroxybutanoate. The ARII gene is 1,032 bp long, is interrupted by four introns, and encodes a 37,315-Da polypeptide. The deduced amino acid sequence exhibited significant levels of similarity to the amino acid sequences of members of the mammalian 3beta-hydroxysteroid dehydrogenase-plant dihydroflavonol 4-reductase superfamily but not to the amino acid sequences of members of the aldo-keto reductase superfamily or to the amino acid sequence of an aldehyde reductase previously isolated from the same organism (K. Kita, K. Matsuzaki, T. Hashimoto, H. Yanase, N. Kato, M. C.-M. Chung, M. Kataoka, and S. Shimizu, Appl. Environ. Microbiol. 62:2303-2310, 1996). The ARII protein was overproduced in Escherichia coli about 2, 000-fold compared to the production in the original yeast cells. The enzyme expressed in E. coli was purified to homogeneity and had the same catalytic properties as ARII purified from S. salmonicolor. To examine the contribution of the dinucleotide-binding motif G(19)-X-X-G(22)-X-X-A(25), which is located in the N-terminal region, during ARII catalysis, we replaced three amino acid residues in the motif and purified the resulting mutant enzymes. Substrate inhibition of the G(19)-->A and G(22)-->A mutant enzymes by 4-COBE did not occur. The A(25)-->G mutant enzyme could reduce 4-COBE when NADPH was replaced by an equimolar concentration of NADH.  相似文献   

3.
An NADPH-dependent carbonyl reductase (S1) isolated from Candida magnoliae catalyzed the reduction of ethyl 4-chloro-3-oxobutanoate (COBE) to ethyl (S)-4-chloro-3-hydroxybutanoate (CHBE), with a 100% enantiomeric excess, which is a useful chiral building block for the synthesis of pharmaceuticals. The gene encoding the enzyme was cloned and sequenced. The S1 gene comprises 849 bp and encodes a polypeptide of 30,420 Da. The deduced amino acid sequence showed a high degree of similarity to those of the other members of the short-chain alcohol dehydrogenase superfamily. The S1 gene was overexpressed in Escherichia coli under the control of the lac promoter. The enzyme expressed in E. coli was purified to homogeneity and had the same catalytic properties as the enzyme from C. magnoliae did. An E. coli transformant reduced COBE to 125 g/l of (S)-CHBE, with an optical purity of 100% enantiomeric excess, in an organic solvent two-phase system.  相似文献   

4.
An NADPH-dependent aldehyde reductase (ALR, EC1.1.1.2) gene is cloned from Sporobolomyces salmonicolor ZJUB 105, and inserted into plasmid pQE30 to construct the expression plasmid (pQE30-ALR). A variety of E. coli strains were employed as hosts to obtain transformants with pQE30-ALR, respectively. Among these different types of transformants, the highest enzyme activity of ALR can be produced with E. coli M15 (pQE30-ALR). The bioactivity of ALR could be further improved significantly by the optimization of induction conditions. The results showed that the enzyme activity of ALR reached 6.48 U/mg protein, which is fifteen times higher than that of S. salmonicolor ZJUB 105. This recombinant strain was applied to the asymmetric reduction of ethyl 4-chloro-3-oxobutanoate (COBE) to ethyl (R)-4-chloro-3- hydroxybutanoate (CHBE). The results showed that the yield and optical purity of (R)-CHBE reached 98.5% and 99% e.e. (enantiomeric excess), respectively.  相似文献   

5.
【目的】通过表达多种重组立体选择性氧化还原酶,分析其催化不对称还原N,N-二甲基-3-酮-3-(2-噻吩)-1-丙胺(DKTP)的性质,从而构建酶促合成(S)-N,N-二甲基-3-羟基-3-(2-噻吩)-1-丙胺(DHTP)的反应体系。【方法】基于已有立体选择性氧化还原酶重组大肠杆菌,通过Ni离子亲和层析法纯化得到重组氧化还原酶,以DKTP为底物,考察不同重组氧化还原酶对DKTP的催化活性和选择性,进一步对高选择性酶促合成(S)-DHTP的重组酶CR2进行性质分析,并考察其在最适条件下不对称还原DKTP的过程。【结果】筛选获得产物构型为(S)-型的催化活性最高的酶为CR2,该酶米氏常数Km为0.135 mmol/L,kcat/Km为3.689 L/(mmol·s),最适p H 8.4(0.1 mol/L三乙醇胺缓冲液),最适反应温度为35°C,在10-45°C条件下和p H 7.5-8.5较为稳定,Zn2+离子对酶活有促进作用。CR2催化DKTP不对称还原反应6 h后,DHTP的产率达92.1%、光学纯度达99.9%。【结论】基于活性和选择性分析,获得不对称还原DKTP的目标酶CR2,其催化特性有利于高立体选择性还原DKTP生成度洛西汀中间体(S)-DHTP,从而为进一步提高酶促不对称还原DKTP的转化效率提供研究基础。  相似文献   

6.
【目的】研究羰基还原酶基因的克隆、表达及其在不对称生物催化中的应用。【方法】对羰基还原酶氨基酸序列进行BLAST推导出核苷酸序列,设计引物,以马克斯克鲁维酵母(Kluyveromyce marxianus)CGMCC 2.1977全基因组为模板,通过PCR扩增目的片段,与载体pET-28a连接,转化大肠杆菌获得重组菌BL21(DE3)-(pET28a-cMCR)和Rosetta(DE3)-(pET28a-cMCR)。【结果】扩增的序列与已报道的mer序列有100%同源性,全长1 038 bp,共编码345个氨基酸。目的蛋白在Rosetta(DE3)-(pET28a-cMCR)得到了高效表达,大小为42 kD。该酶最适反应温度为40°C,最适反应pH是8,热稳定性与pH稳定性较差。Ca2+对酶活具有明显的激活作用,且浓度为0.5 mmol/L时效果最好。重组菌可还原4-氯乙酰乙酸乙酯(COBE)为(S)-4-氯-3-羟基丁酸乙酯[(S)-CHBE],光学纯度为100%,转化率为81.0%。重组菌在制备度洛西汀关键中间体(S)-氮,氮-二甲基-3-羟基-(2-噻吩)-l-丙胺[(S)-DHTP]中也得到初步应用。【结论】从菌株马克斯克鲁维酵母(Kluyveromyce marxianus)CGMCC 2.1977中克隆获得了羰基还原酶基因,在大肠杆菌中成功表达,并可应用于不对称还原。  相似文献   

7.
A novel NADPH-dependent reductase (CaCR) from Candida albicans was cloned for the first time. It catalyzed asymmetric reduction to produce ethyl (S)-4-chloro-3-hydroxybutanoate ((S)-CHBE). It contained an open reading frame of 843 bp encoding 281 amino acids. When co-expressed with a glucose dehydrogenase in Escherichia coli, recombinant CaCR exhibited an activity of 5.7 U/mg with ethyl 4-chloro-3-oxobutanoate (COBE) as substrate. In the biocatalysis of COBE to (S)-CHBE, 1320 mM (S)-CHBE was obtained without extra NADP+/NADPH in a water/butyl acetate system, and the optical purity of the (S)-isomer was higher than 99% enantiomeric excess.  相似文献   

8.
The asymmetric reduction of ethyl 4-chloro-3-oxobutanoate (COBE) to ethyl (S)-4-chloro-3-hydroxybutanoate ((S)-CHBE) was investigated. Escherichia coli cells expressing both the carbonyl reductase (S1) gene from Candida magnoliae and the glucose dehydrogenase (GDH) gene from Bacillus megaterium were used as the catalyst. In an organic-solvent-water two-phase system, (S)-CHBE formed in the organic phase amounted to 2.58 M (430 g/l), the molar yield being 85%. E. coli transformant cells coproducing S1 and GDH accumulated 1.25 M (208 g/l) (S)-CHBE in an aqueous monophase system by continuously feeding on COBE, which is unstable in an aqueous solution. In this case, the calculated turnover of NADP+ (the oxidized form of nicotinamide adenine dinucleotide phosphate) to CHBE was 21,600 mol/mol. The optical purity of the (S)-CHBE formed was 100% enantiomeric excess in both systems. The aqueous system used for the reduction reaction involving E. coli HB101 cells carrying a plasmid containing the S1 and GDH genes as a catalyst is simple. Furthermore, the system does not require the addition of commercially available GDH or an organic solvent. Therefore this system is highly advantageous for the practical synthesis of optically pure (S)-CHBE.  相似文献   

9.
Cao H  Mi L  Ye Q  Zang G  Yan M  Wang Y  Zhang Y  Li X  Xu L  Xiong J  Ouyang P  Ying H 《Bioresource technology》2011,102(2):1733-1739
A novel NADH-dependent dehydrogenases/reductases (SDRs) superfamily reductase (PsCRII) was isolated from Pichia stipitis. It produced ethyl (S)-4-chloro-3-hydroxybutanoate [(S)-CHBE] in greater than 99% enantiomeric excess. This enzyme was purified to homogeneity by ammonium sulfate precipitation followed by Q-Sepharose chromatography. Compared to similar known reductases producing (S)-CHBE, PsCR II was more suitable for production since the purified PsCRII preferred the inexpensive cofactor NADH to NADPH as the electron donor. Furthermore, the Km of PsCRII for ethyl 4-chloro-3-oxobutanoate (COBE) was 3.3 mM, and the corresponding Vmax was 224 μmol/mg protein/min. The catalytic efficiency is the highest value ever reported for NADH-dependent reductases from yeasts that produce CHBE with high enantioselectivity. In addition, this enzyme exhibited broad substrate specificity for several β-keto esters using NADH as the coenzyme. The properties of PsCRII with those of other carbonyl reductases from yeasts were also compared in this study.  相似文献   

10.
A NADPH-dependent carbonyl reductase (CSCR1) was purified to homogeneity from Cylindrocarpon sclerotigenum IFO 31855. The enzyme catalyzed the stereoselective reduction of ethyl 4-chloro-3-oxobutanoate to the corresponding (S)-alcohol with a >99% enantiomer excess. The relative molecular mass of the enzyme was estimated to be 68,000 by gel filtration chromatography and 24,800 on SDS polyacrylamide gel electrophoresis. The enzyme had an extremely narrow substrate specificity and it highly reduced conjugated diketone, 2,3-butanedion, in addition to ethyl 4-chloro-3-oxobutanoate. The enzyme activity was inhibited by HgCl(2) (100%), 5,5'-dithiobis(2-nitrobenzoic acid) (56%), dicoumarol (42%), and CuSO(4) (46%). The N-terminal amino acid sequence of the enzyme (P-Q-G-I-P-T-A-S-R-L) showed no apparent similarity with those of other oxidoreductases.  相似文献   

11.
A novel carbonyl reductase (KLCR1) that reduced ethyl 4-chloroacetoacetate (ECAA) to synthesize ethyl (S)-4-chloro-3-hydroxybutanoate ((S)-ECHB) was purified from Kluyveromyces lactis. KLCR1 catalyzed the NADPH-dependent reduction of ECAA enantioselectively but not the oxidation of (S)-ECHB. From partial amino acid sequences, KLCR1 was suggested to be an alpha subunit of fatty acid synthase (FAS) but did not have FAS activity.  相似文献   

12.
An NAD(+)-dependent alcohol dehydrogenase was purified to homogeneity from Nocardia fusca AKU 2123. The enzyme catalyzed (S)-specific oxidation of 3-pentyn-2-ol (PYOH), i.e., part of the stereoinversion reaction for the production of (R)-PYOH, which is a valuable chiral building block for pharmaceuticals, from the racemate. The enzyme used a broad variety of secondary alcohols including alkyl alcohols, alkenyl alcohols, acetylenic alcohols, and aromatic alcohols as substrates. The oxidation was (S)-isomer specific in every case. The K(m) and Vmax for (S)-PYOH and (S)-2-hexanol oxidation were 1.6 mM and 53 mumol/min/mg, and 0.33 mM and 130 mumol/min/mg, respectively. The enzyme also catalyzed stereoselective reduction of carbonyl compounds. (S)-2-Hexanol and ethyl (R)-4-chloro-3-hydroxybutanoate in high optical purity were produced from 2-hexanone and ethyl 4-chloro-3-oxobutanoate by the purified enzyme, respectively. The K(m) and Vmax for 2-hexanone reduction were 2.5 mM and 260 mumol/min/mg. The enzyme has a relative molecular mass of 150,000 and consists of four identical subunits. The NH2-terminal amino acid sequence of the enzyme shows similarity with those of the carbonyl reductase from Rhodococcus erythropolis and phenylacetaldehyde reductase from Corynebacterium sp.  相似文献   

13.
The last enzyme (LytB) of the methylerythritol phosphate pathway for isoprenoid biosynthesis catalyzes the reduction of (E)-4-hydroxy-3-methylbut-2-enyl diphosphate into isopentenyl diphosphate and dimethylallyl diphosphate. This enzyme possesses a dioxygen-sensitive [4Fe-4S] cluster. This prosthetic group was characterized in the Escherichia coli enzyme by UV/visible and electron paramagnetic resonance spectroscopy after reconstitution of the purified protein. Enzymatic activity required the presence of a reducing system such as flavodoxin/flavodoxin reductase/reduced nicotinamide adenine dinucleotide phosphate or the photoreduced deazaflavin radical.  相似文献   

14.
【目的】获得以DKTP为底物合成度洛西汀关键中间体手性醇(S)-DHTP的菌株。【方法】采用常规及改进的微生物转化法从土壤中进行筛选。【结果】筛选获得一株菌株,能够将底物DKTP对映选择性地还原为(S)-DHTP,且具有较高的转化率(>90%)和几乎绝对的对映体过量值(e.e.>99%),改进的筛选方法更为简便高效。形态学特征和26S rDNA序列分析综合判断,该菌株属于红酵母属,命名为红酵母Rhodotorula sp.507。【结论】供试菌株能够高效地、不对称地生物还原DKTP成度洛西汀前体物(S)-DHTP,使大量获得度洛西汀前体原料变得经济可行。  相似文献   

15.
An NADPH-dependent enzyme that reduces ethyl 2-methylacetoacetate stereoselectively to ethyl (2R)-methyl-(3S)-hydroxybutanoate was purified 730-fold from Escherichia coli. The N-terminal amino acid sequence data obtained from the purified reductase were used to search the E. coli genome, and a single match was found at the start of the yqhE open reading frame. The YqhE protein had been identified previously by Yum et al. as a 2,5-diketo-D-gluconate reductase on the basis of sequence similarity to other bacterial homologues [Yum, D.-Y.; Lee, B.-Y.; Pan, J.-G. Appl.Environ. Microbiol. 1999, 65, 3341-3346]; however, it had not been examined for beta-keto ester reductions. Our results thus link a key enzyme in the microbial production of ascorbate with stereoselective beta-keto ester reductions, two important fields in biocatalysis. The purified YqhE reductase accepts ethyl acetoacetate and a variety of 2-substituted derivatives, and its sequence is similar to other aldose reductase superfamily members that also reduce alpha-substituted beta-keto esters to syn-(2R,3S) alcohols.  相似文献   

16.
The gene (hmgA) for 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase (EC 1.1.1.34) from the thermophilic archaeon Sulfolobus solfataricus P2 was cloned and sequenced. S. solfataricus HMG-CoA reductase exhibited a high degree of sequence identity (47%) to the HMG-CoA reductase of the halophilic archaeon Haloferax volcanii. Phylogenetic analyses of HMG-CoA reductase protein sequences suggested that the two archaeal genes are distant homologs of eukaryotic genes. The only known bacterial HMG-CoA reductase, a strictly biodegradative enzyme from Pseudomonas mevalonii, is highly diverged from archaeal and eukaryotic HMG-CoA reductases. The S. solfataricus hmgA gene encodes a true biosynthetic HMG-CoA reductase. Expression of hmgA in Escherichia coli generated a protein that both converted HMG-CoA to mevalonate and cross-reacted with antibodies raised against rat liver HMG-CoA reductase. S. solfataricus HMG-CoA reductase was purified in 40% yield to a specific activity of 17.5 microU per mg at 50 degrees C by a sequence of steps that included heat treatment, ion-exchange chromatography, hydrophobic interaction chromatography, and affinity chromatography. The final product was homogeneous, as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The substrate was (S)- not (R)-HMG-CoA; the reductant was NADPH not NADH. The Km values for HMG-CoA (17 microM) and NADPH (23 microM) were similar in magnitude to those of other biosynthetic HMG-CoA reductases. Unlike other HMG-CoA reductases, the enzyme was stable at 90 degrees C and was optimally active at pH 5.5 and 85 degrees C.  相似文献   

17.
3-Hydroxy-3-methylglutaryl coenzyme A reductase has been purified from rat liver microsomes with a recovery of approx. 25%. The enzyme was homogeneous on gel electrophoresis and enzyme activity comigrated with the single protein band. The molecular weight of the reductase determined by gel filtration on Sephadex G-200 was 200,000. SDS-polyacrylamide gel electrophoresis gave a subunit molecular weight of 52,000 +/- 2000, suggesting that the enzyme was a tetramer. The specific activities of the purified enzyme obtained from rats fed diets containing 0% or 5% cholestyramine were 11,303 and 19,584 nmol NADPH oxidized/min per mg protein, respectively. The reductase showed unique binding properties to Cibacron Blue Sepharose; the enzyme was bound to the Cibacron Blue via the binding sites for both substrates, NADPH and (S)-3-hydroxy-3-methylglutaryl coenzyme A. Antibodies prepared against purified reductase inactivated 100% of the soluble and at least 91% of the microsomal enzyme activity. Immunotitrations of solubilized enzyme obtained from normal and cholestyramine-fed rats indicated that cholestyramine feeding both increased the amount of enzyme protein and resulted in enzyme activation. Administration of increasing amounts of mevalonolactone to rats decreased the equivalence point obtained from immunotitration studies with solubilized enzyme. These data indicate that the antibody cross-reacts with the inactive enzyme formed after mevalonolactone treatment.  相似文献   

18.
The pyrimidine reductase of the riboflavin biosynthetic pathway (MjaRED) specified by the open reading frame MJ0671 of Methanocaldococcus jannaschii was expressed in Escherichia coli using a synthetic gene. The synthetic open reading frame that was optimized for expression in E. coli directed the synthesis of abundant amounts of the enzyme with an apparent subunit mass of 25 kDa. The enzyme was purified to apparent homogeneity and was shown to catalyze the conversion of 2,5-diamino-6-ribosylamino-4(3H)-pyrimidinone 5'-phosphate into 2,5-diamino-6-ribitylamino-4(3H)-pyrimidinone 5'-phosphate at a rate of 0.8 micromol min(-1) mg(-1) at pH 8.0 and at 30 degrees C. The protein is a homodimer as shown by sedimentation equilibrium analysis and sediments at an apparent velocity of 3.5 S. The structure of the enzyme in complex with the cofactor nicotinamide adenine dinucleotide phosphate was determined by X-ray crystallography at a resolution of 2.5 Angstroms. The folding pattern resembles that of dihydrofolate reductase with the Thermotoga maritima ortholog as the most similar structure. The substrate, 2,5-diamino-6-ribosylamino-4(3H)-pyrimidinone 5'-phosphate, was modeled into the putative active site. The model suggests the transfer of the pro-R hydrogen of C-4 of NADPH to C-1' of the substrate.  相似文献   

19.
Liver microsomal 3-hydroxy-3-methylglutaryl-CoA reductase was partially purified from cholestyramine-fed rats by sequential extraction of the membrane with 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) and polyethylene glycol nonylphenyl ether (Triton N-101) and solubilized by incorporation of the resulting insoluble protein preparation into a detergent mixture of Triton N-101 and sodium N-lauroylsarcosinate (Sarkosyl) in the presence of high salt. The purification procedure resulted in approximately a 3-4-fold increase in specific activity compared with the microsomal fraction, and the enzyme was recovered with yields as high as 63%. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and a blotting experiment using antiserum to the purified 53,000-dalton reductase fragment showed that the major immunoreactive polypeptide had a Mr of 97,000, that expected for the native intact form of the enzyme (Chin, D. J., Gil, G., Russell, D. W., Liscum, L., Luskey, K. L., Basu, S. K., Okayama, H., Berg, P., Goldstein, J. L., and Brown, M. S. (1984) Nature 308, 613-617). In addition, the effect of various detergents on the activity and stability of the membrane-bound and the partially purified enzyme was determined, and a method for protection of the reductase from inactivation caused by the addition of anionic detergents to the assay mixture is described.  相似文献   

20.
Two NADPH-dependent oxidoreductases catalyzing the enantioselective reduction of 3-oxo esters to (S)- and (R)-3-hydroxy acid esters, [hereafter called (S)- and (R)-enzymes] have been purified 121- and 332-fold, respectively, from cell extracts of Saccharomyces cerevisiae by means of streptomycin sulfate treatment, Sephadex G-25 filtration, DEAE-Sepharose CL-6B chromatography, Sephadex G-150 filtration, Sepharose 6B filtration and hydroxyapatite chromatography. The relative molecular mass Mr, of the (S)-enzyme was estimated to be 48,000-50,000 on Sephadex G-150 column chromatography and 48,000 on sodium dodecyl sulfate/polyacrylamide gel electrophoresis. The enzyme was most active at pH 6.9 and reduced 3-oxo esters, 4-oxo and 5-oxo acids and esters enantioselectively to (S)- hydroxy compounds in the presence of NADPH. The Km values for ethyl 3-oxobutyrate, ethyl 3-oxohexanoate, 4-oxopentanoic and 5-oxohexanoic acid were determined as 0.9 mM, 5.3 mM, 17.1 mM and 13.1 mM, respectively. The Mr of the (R)-enzyme, estimated by means of column chromatography on Sepharose 6B, was 800,000. Under dissociating conditions of SDS/polyacrylamide gel electrophoresis the enzyme resolved into subunits of Mr 200,000 and 210,000, respectively. The enzyme is optimally active at pH 6.1, catalyzing specifically the reduction of 3-oxo esters to (R)-hydroxy esters, using NADPH for coenzyme. Km values for ethyl 3-oxobutyrate and ethyl 3-oxohexanoate were determined as 17.0 mM and 2.0 mM, respectively. Investigations with purified fatty acid synthase of baker's yeast revealed that the (R)-enzyme was identical with a subunit of this multifunctional complex; intact fatty acid synthase (Mr 2.4 X 10(6)) showed no activity in catalyzing the reduction of 3-oxo esters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号