首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Histochemistry and morphology of porcine mast cells   总被引:11,自引:0,他引:11  
Summary Mast cells have been described extensively in rodents and humans but not in pigs, and the objective of this study was to characterize porcine mast cells by histochemistry and electron microscopy. Carnoy's fluid proved to be a good fixative but fixation with neutral buffered formalin blocked staining of most mast cells. Alcian Blue stained more mast cells than did Toluidine Blue (pH 0.5), although Alcian Blue also stained goblet cells. In pigs, unlike rodents, the Alcian Blue method did not distinguish between mast cells in the intestinal mucosa and those in the connective tissue of the intestinal submucosa, tongue and skin. Mast cells were significantly larger in adult pigs than in piglets; in adult pigs and piglets, mast cells in the intestinal mucosa were significantly larger than those in submucosal connective tissue, and they were more varied in shape in piglets and adults. Granules in mast cells in the intestinal mucosa stained less intensely than those in mast cells in connective tissue of tongue, skin and intestinal submucosa. Mast cells in the connective tissue of the tongue, skin and intestinal submucosa fluoresced strongly when stained with berberine sulphate or with a mixture of berberine sulphate and Acridine Orange, but mast cells in the intestinal mucosa did not. All mast cells reacted positively in an enzyme-histochemical method previously used to detect human tryptase but not in a method previously used to detect human chymase. Mast cells in the medulla of thymus stained similarly to mast cells in the intestinal mucosa. Ultrastructural differences between mast cells were not detected.  相似文献   

2.
Selective markers for human mast cells are of paramount importance for understanding their role in physiological and pathological processes. A mouse monoclonal antibody (MAb) designated 2C7, raised against in vitro-derived human mast cells, was used in immunoenzymatic analysis of sections from a variety of human organs. Double immunolabeling with 2C7 and tryptase, chymase, Fc epsilon RIalpha, and c-kit was performed on cryostat tissue sections from skin, colon, uterus, breast, stomach, bladder, and lung. MAb 2C7 stained greater than 93% of the tryptase(+) or chymase(+) mast cells in all tissues examined. In addition, the majority of cells stained with the tryptase or chymase also stained for Fc epsilon RIalpha. However, there were a significant number of Fc epsilon RIalpha(1) cells in all tissues studied that were tryptase(-) and/or chymase(-). In contrast, MAb 2C7 in double immunoenzymatic staining co-localized with 93-96% of the Fc epsilon RIalpha(1) cells in all tissues. Analysis for c-kit expression on the different tissues revealed that the majority of tryptase(+) or chymase(+) cells in skin, uterus, bladder, and lung stained with c-kit. However, only approximately 70-78% of tryptase(+) cells in colon and stomach were c-kit(+). These data suggest that MAb 2C7 appears to identify mature mast cells and a population of Fc epsilon RIalpha(1), chymase(-), and tryptase(-) cells in a variety of human tissues.  相似文献   

3.
Two of the major enzymes present in and released from rat mast cells are chymotrypsin-type serine protease (chymase) and trypsin-type serine protease (tryptase), and these have been postulated to be important in the inflammatory reactions. There have been no clear data regarding the trypsin-type protease in rat mast cells. Tryptase was recently purified from rat peritoneal mast cells with an associated protein (trypstatin) that inhibited the protease activity above pH 7.5. Chymase was also purified from rat peritoneal cells by employing a one-step method involving hydrophobic chromatography on octyl-Sepharose 4B or arginine-Sepharose 4B. The properties of chymase and tryptase were described in relation to substrate specificity and their relative sensitivity to inhibitors. It was found that proteolytic activities of these enzymes were modulated by naturally occurring substances, such as phosphoglycerides, long-chain fatty acids, and trypstatin. There is as yet little evidence for the physiological roles of these enzymes in the inflammatory reaction. It has been found that the specific, low-molecular-weight inhibitor of chymase, chymostatin, and that of tryptase, leupeptin, inhibit histamine release induced by addition of anti-rat IgE to mast cells. However, the inhibitors with molecular weights of more than 6000 were found to have no effect in this process. The data suggest that chymase and tryptase in mast cell granules play a crucial or significant role in the process of degranulation.  相似文献   

4.
Mast cell populations can be distinguished by differences in the content and substrate specificity of their two major cytoplasmic granule proteases, the chymases and the tryptases. To explore the origins of differences in the types of proteases present in mast cells, we used a double cytochemical staining technique to reveal both chymase and tryptase in cells from four lines of dog mast cell tumors containing both enzymes. We expected that if chymase and tryptase were expressed together during cell development the relative staining intensity of chymase compared to tryptase would be constant among different cells of each tumor. Instead, we found substantial variation in the relative intensity of chymase and tryptase staining among cells of a given mastocytoma line, each of which contained cells presumed to be monoclonal in origin but heterogeneous with respect to cell development. The overall staining intensity for chymase or tryptase correlated with the amount of protease activity in extracts of tumor homogenates. Staining specificity was established by use of selective inhibitors and competitive substrates and was tested on various types of dog cells obtained by bronchoalveolar lavage. The results suggest that active chymase and tryptase may be expressed differently during mast cell differentiation and support the possibility of a close developmental relationship between mast cells differing in protease phenotype. Moreover, the success of the staining procedures applied to mastocytoma cells suggests that they may be of general utility in phenotyping of mast cells according to the protease activities present in their granules.  相似文献   

5.
We tested four synthetic substances for their histochemical value to demonstrate the catalytic activities of chymase or tryptase in mast cells in sections of human gut. Both Suc-Ala-Ala-Phe-4 methoxy-2-naphthylamide (MNA) and N-acetyl-L-methionine-alpha-naphthyl ester (alpha-N-O-Met) reacted with chymase but not tryptase in mast cells. Conversely, D-Val-Leu-Arg-MNA and Z-Ala-Ala-Lys-MNA were hydrolyzed by mast cell tryptase but not chymase. These results were confirmed by use of two inhibitors of chymotrypsin-like activity, chymostatin and Z-Gly-Leu-Phe-chloromethyl ketone (CK) and two inhibitors of trypsin-like activity, Tos-Lys-CK and D-Val-Leu-Arg-CK. Excellent staining reactions were obtained on cryostat sections of unfixed or aldehyde-fixed tissues and on paraffin sections of Carnoy-fixed tissues. For chymase, however, Suc-Ala-Ala-Phe-MNA is preferred on cryostat sections because it is more specific. On paraffin sections alpha-N-O-Met is preferred because other cells are not then stained. For tryptase, Z-Ala-Ala-Lys-MNA was more selective and more specific and is the preferred general purpose substrate on cryostat sections of aldehyde-fixed tissues and for paraffin sections. D-Val-Leu-Arg-MNA is the preferred substrate for cryostat sections of unfixed tissue. Only a limited number of mast cells showed a reaction for chymase, and these occurred mainly in the submucosa. All mast cells, however, gave a reaction for tryptase, and we recommend the use of either substrate for this enzyme for routine detection of mast cells in human tissues. Double staining for the two main mast cell proteases is most conveniently undertaken on paraffin sections of Carnoy-fixed tissues using MNA substrates for tryptase and alpha-N-O-Met for chymase.  相似文献   

6.
Human mast cells can be divided into two subsets based on serine proteinase composition: a subset that contains the serine proteinases tryptase and chymase (MCTC), and a subset that contains only tryptase (MCT). In this study we examined both types of mast cells for two additional proteinases, cathepsin G and elastase, which are the major serine proteinases of neutrophils. Because human mast cell chymase and cathepsin G are both chymotrypsin-like proteinases, the properties of these enzymes were further defined to confirm their distinctiveness. Comparison of their N-terminal sequences showed 30% nonidentity over the first 35 amino acids, and comparison of their amino acid compositions demonstrated a marked difference in their Arg/Lys ratios, which was approximately 1 for chymase and 10 for cathepsin G. Endoglycosidase F treatment increased the electrophoretic mobility of chymase on SDS gels, indicating significant N-linked carbohydrate on chymase; no effect was observed on cathepsin G. Immunoprecipitation and immunoblotting with specific antisera to each proteinase revealed little, if any, detectable cross-reactivity. Immunocytochemical studies showed selective labelling of MCTC type mast cells by cathepsin G antiserum in sections of human skin, lung, and bowel. No labeling of mast cells by elastase antiserum was detected in the same tissues, or in dispersed mast cells from lung and skin. A protein cross-reactive with cathepsin G was identified in extracts of human skin mast cells by immunoblot analysis. This protein had a slightly higher Mr (30,000) than the predominant form of neutrophil cathepsin G (Mr 28,000), and could not be separated from chymase (Mr 30,000) by SDS gel electrophoresis because of the size similarity. Using casein, a protein substrate hydrolyzed at comparable rates by chymase and cathepsin G, it was shown that about 30% of the caseinolytic activity in mast cell extracts was sensitive to inhibitors of cathepsin G that had no effect on chymase. Hydrolytic activity characteristic of elastase was not detected in these extracts. These studies indicate that human MCTC mast cells may contain two different chymotrypsin-like proteinases: chymase and a proteinase more closely related to cathepsin G, both of which are undetectable in MCT mast cells. Neutrophil elastase, on the other hand, was not detected in human mast cells by our procedures.  相似文献   

7.
方法:利用中性蛋白酶成分、特征性酶抗体的免疫荧光染色和流式细胞仪确定分选肥大细胞亚型,以激光扫描共聚焦显微镜显示肥大细胞内分泌颗粒。结果:三种免疫表型被确定:肥大细胞的类胰蛋白酶阳性(MCT)、类糜蛋白酶阴性;类糜蛋白酶阳性(MCC)、类胰蛋白酶阴性和类胰蛋白酶阳性、类糜蛋白酶阳性(MCTC)。肥大细胞内分泌颗粒分散或聚集存在,分泌颗粒突起分泌或以分散的方式释放。分泌颗粒大范围释放后,肥大细胞的形态结构发生了改变。结论:利用肥大细胞的特征性酶抗体、免疫荧光标记和流式细胞仪可将人组织中的肥大细胞分选纯化为三种亚型;以共聚焦显微镜显示肥大细胞含有丰富的分泌颗粒,它说明肥大细胞具备了为人体I型变态反应提供快速反应的物质基础。  相似文献   

8.
Mast cells and macrophages in normal C57/BL/6 mice   总被引:8,自引:2,他引:6  
Mast cells and macrophages have an important role in immunity and inflammation. Because mice are used extensively for experimental studies investigating immunological and inflammatory responses, we examined mast cell and macrophage distribution in normal murine tissues. Mast cells were abundant in the murine dermis, tongue, and skeletal muscle but were rarely found in the heart, lung, spleen, kidney, liver, and the bowel mucosa. In contrast, dogs exhibited large numbers of mast cells in the lung parenchyma, liver, and bowel. Some murine dermal mast cells had long cytoplasmic projections filled with granular content. Mouse mast cells demonstrated intense histamine immunoreactivity and were identified with histochemical enzymatic techniques for tryptase and chymase. Macrophages, identified using the monoclonal antibody F4/80, were abundant in the spleen, lung, liver, kidney, and bowel but relatively rare in the heart, tongue, and dermis. Using a nuclease protection assay we investigated mRNA expression of stem cell factor (SCF), a crucial survival factor for mast cells, and the macrophage growth factors macrophage colony stimulating factor (M-CSF) and granulocyte macrophage colony stimulating factor (GM-CSF). Stem cell factor mRNA was highly expressed in the murine lung. Relatively low levels of SCF mRNA expression were found in the tongue and earlobe, which are tissues containing a high number of mast cells. Macrophage CSF and GM-CSF mRNA was highly expressed in the lung and spleen. The murine heart, an organ with a low macrophage content, expressed high levels of M-CSF but negligible levels of GM-CSF mRNA. Constitutive growth factor mRNA expression in murine tissues without significant populations of mast cells and macrophages may suggest an alternative role for these factors in tissue homeostasis.  相似文献   

9.
Mast cells (MCs) are metachromatic cells that originate from multipotential hemopoietic stem cells in the bone marrow. Two distinct populations of MCs have been characterized: mucosal MCs are tryptase-positive while mast cells in skin contain tryptase and chymase. We now show that a sub-population of MCs is highly immunoreactive for thymosin β4, as revealed by immunohistochemical analyses of normal skin, normal colon mucosa and salivary gland tumors. Four consecutive serial sections from each case were immunostained for thymosin β4 (Tβ4), chymase, tryptase and stained for toluidine blue. In skin biopsies, MCs showed a comparable immunoreactivity for Tβ4, chymase and tryptase. In normal colon mucosa the vast majority of mucosal MCs expressed a strong cytoplasmic immunoreactivity for tryptase and for Tβ4, in the absence of chymase reactivity. A robust expression of Tβ4 was detected in tumor-infiltrating and peritumoral mast cells in salivary gland tumors and breast ductal infiltrating carcinomas. Tumorinfiltrating MCs also showed a strong immunoreactivity for chymase and tryptase. In this paper, we first demonstrate that normal dermal and mucosal mast cells exhibit strong expression of thymosin β4, which could be considered a new marker for the identification of mast cells in skin biopsies as well as in human tumors. The possible relationship between the degree of Tβ4 expression in tumor-infiltrating mast cells and tumor behaviour warrants further consideration in future investigations.Key words: mast cells, thymosin β4, tryptase, chymase.  相似文献   

10.
Increased release of IL-18 in the skin causes atopic dermatitis (AD)-like skin lesions, suggesting a role of IL-18 in the pathogenesis of AD. Caspase-1 is a well-known activator of IL-18, but caspase-1 knockout mice still have biologically active IL-18. Normal human keratinocyte constitutively produces pro-IL-18, but it is unable to activate it, suggesting the existence of an alternative pathway for IL-18 in the skin. Dermal accumulation of mast cells is commonly observed in AD patients and in experimental mouse models of AD. Connective tissue mast cells contain high amounts of chymase and tryptase in their cytoplasmic granules. In the present study, we demonstrated that activation of IL-18 is a novel function of human mast cell chymase. Human mast cell chymase rapidly cleaves recombinant pro-IL-18 at 56-phenylalanine and produces a biologically active IL-18 fragment that is smaller than any other reported IL-18-derived species. The human mast cell chymase and the novel IL-18-derived active peptide may be novel therapeutic targets in AD- and IL-18-associated diseases.  相似文献   

11.
Previous studies with trans-4-(guanidinomethyl)cyclohexanecarboxylic acid 4-tert-butylphenyl ester (GMCHA-OPhBut), a trypsin inhibitor, strongly suggested the involvement of a trypsin-like protease in histamine release from mast cells induced by various secretagogues (Takei, M., Matumoto, T., Endo, K. & Muramatu, M. (1988) Agents and Actions, in press; Takei, M., Matumoto, T., Ito, T., Endo, K. & Muramatu, M.; Takei, M., Matumoto, T., Endo, K. & Muramatu, M. and Takei, M., Matumoto, T., Urashima, H., Endo, K. & Muramatu, M., unpublished results). Two serine proteases, chymase (Benditt, E.F. & Arase, M. (1959) J. Exp. Med. 110, 451-460) and tryptase Kido, H., Fukusen, N. & Katunuma, N. (1985) Arch. Biochem. Biophys. 239, 436-443) were demonstrated in rat peritoneal mast cells. Both enzymes were purified and the effects of inhibitors for trypsin and chymotrypsin on these proteases were examined. The trypsin-like protease was found in saline extract and purified by successive chromatographies on Sephadex G-100 and DEAE-cellulose columns. The molecular mass of this protease was apparently 120,000 Da. This protease showed maximal activity at pH 7.1 and was named pH 7 tryptase. Chymase was obtained from 1.5M NaCl extract. pH 7 Tryptase markedly hydrolysed Boc-Phe-Ser-Arg-NH-Mec and Boc-Val-Pro-Arg-NH-Mec among the various substrates containing arginyl and lysyl bonds but did not cleave Tos-Arg-OMe. Tos-Lys-CH2Cl and diisopropylfluorophosphate strongly inhibited this protease. Various inhibitors for trypsin inhibited pH 7 tryptase, and those for chymotrypsin inhibited chymase. Among the esters of GMCHA examined, GMCHA-OPhBut most strongly and competitively inhibited pH 7 tryptase but it had no effect on chymase.  相似文献   

12.
To identify chymase- and tryptase-positive mast cells in the human uvea, and to study their associations with different types of resident uveal cells, uveal specimens from 24 human donor eyes were cryosectioned in sagittal and tangential planes. Enzyme histochemical staining of chymase was combined with immunohistochemical staining for tryptase, detected with the APAAP method. Fluorescence immunohistochemistry was performed with antibodies against c-kit, alpha smooth muscle actin, protein gene product (PGP) 9.5, CD45, and HLA-DR. In different uveal compartments, the total amounts of mast cells were calculated and the distributions of chymase and tryptase were quantified. All uveal mast cells were c-kit and CD45 positive and HLA-DR negative. No association existed between mast cells and actin-containing cells. Only a few mast cells were in close association with PGP 9.5-labeled nerve fibers. In the choroid, most mast cells were located in the inner central part (mean density = 48.9/mm2), and contained both chymase and tryptase (96%). The ciliary muscle contained numerous mast cells (mean density = 33.7/mm2), many of them tryptase positive but chymase negative (63%). In the pars plana, a high number of chymase-positive, tryptase-negative mast cells were found (20%). In the iris only a few mast cells were present. Although the choroid contains the most common subtype of mast cells, a unique situation concerning the distribution of chymase and tryptase is present in the anterior uveal tissues. A possible role for these cells in the special immunological situation of the anterior eye chamber merits further investigation. Accepted: 16 September 1999  相似文献   

13.
Serine class proteinases with trypsin-like and chymotrypsin-like specificity were purified from dog mastocytoma tissue. An antiserum was produced against the chymotrypsin-like proteinase. The antiserum reacted with mast cells in skin sections prepared from normal dogs consistent with the proteinase being a mast cell constituent. The antiserum also cross-reacted with the major chymotrypsin-like proteinase isolated from normal dog skin and partially cross-reacted with human skin chymase. No cross-reaction was detected with rat chymase. The trypsin-like proteinase from dog mastocytoma tissue was similar to tryptase isolated from human skin. It had a similar subunit structure, was not inhibited by many protein proteolytic enzyme inhibitors, bound to heparin, and reacted strongly with antiserum against human tryptase. Antiserum against human tryptase also reacted with mast cells in skin sections prepared from normal dog skin. No immunocytochemical labeling of rat skin mast cells was observed with anti-human tryptase. These studies establish the presence of a trypsin-like and chymotrypsin-like proteinase in dog skin mast cells and provide immunological evidence which suggests that both proteinases are more closely related to human than rat mast cell proteinases. These immunological and biochemical relationships are important when comparing the roles of these proteinases in different animals.  相似文献   

14.
Recently interest has been focused on secretory leucocyte protease inhibitor (SLPI) and its role in immediate hypersensitive reactions, possibly by inhibiting mast cell chymase. The purpose of this investigation was to show whether or not SLPI is produced in mast cells. Double-immunolabelling revealed that SLPI coexists with mast cell tryptase (60%) and chymase (37%). On the other hand, in situ hybridisation studies demonstrated the expression of SLPI mRNA in all mast cells. The differences in results can be attributed to the fact that in situ hybridisation is a more sensitive method than immunohistochemistry. Hence, we conclude that SLPI is produced in human tonsillar mast cells.  相似文献   

15.
Protease activated receptors (PARs) compose a family of G protein signal transduction receptors activated by proteolysis. In this study, the susceptibility of PARs expressed on human keratinocytes and dermal fibroblasts to the human mast cell proteases tryptase and chymase was evaluated. PAR activation was measured by monitoring cytosolic [Ca2+] in cells loaded with the fluorescent Ca2+ probe Fura-2. Tryptase produced transient cytosolic Ca2+ mobilization in keratinocytes, but not in fibroblasts. Ca2+ mobilization in keratinocytes required enzymatically active tryptase, demonstrated desensitization, and was blocked by pretreatment of cells with the PAR-2 peptide agonist SLIGKV, trypsin, or the phospholipase inhibitor U73122. Heparin, a GAG that binds to tryptase, stabilizing its functional form, also inhibited tryptase-induced Ca2+ mobilization. The maximal response elicited by tryptase was smaller than that observed upon treatment of keratinocytes with trypsin, a known activator of PAR-2, and keratinocytes made refractory to tryptase by pretreatment with the protease remained responsive to trypsin. Pretreatment of keratinocytes with thrombin, an activator of PAR-1 and -3 (thrombin receptors), had no detectable effect on the tryptase or trypsin responses. These data suggest that in keratinocytes tryptase may be activating a subpopulation of PAR-2 receptors. Treatment of keratinocytes or fibroblasts with human chymase did not produce Ca2+ mobilization, nor did it affect Ca2+ mobilization produced by trypsin. However, chymase pretreatment of fibroblasts rapidly inhibited the ability of these cells to respond to thrombin. Inhibition was dependent on chymase enzymatic activity and was not significantly affected by the presence of heparin. This finding is consistent with studies indicating that PAR-1 may be susceptible to proteases with chymotrypsin-like specificity. These results suggest that the proteases tryptase and chymase secreted from mast cells in skin may affect the behavior of surrounding cells by the hydrolysis of PARs expressed by these cells. J. Cell. Physiol. 176:365–373, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

16.
Scroll-rich, "mucosal" mast cells are the predominant human lung mast cell type. It has been proposed that these mast cells store tryptase but are mostly chymase deficient. We present a detailed immunolocalisation study of chymase and tryptase in lung specimens of eight patients. Using monoclonal antibody B7 in a conventional tissue processing method for light microscopy, chymase-positive mast cells were much fewer than tryptase-positive ones. However, they approached the number of tryptase-positive cells when optimised processing was used. Two different monoclonal antibodies, B7 and CC1, were used to visualise chymase in purified lung mast cells of two patients using ultrastructural immunogold labelling. Immunoabsorption controls demonstrated a reactivity of B7 with both tryptase and chymase, but indicated specificity of CC1 for chymase. On the ultrastructural level, all of more than 1,400 lung mast cells evaluated labelled for chymase. Reactivity was seen in cytoplasmic granules, cytoplasm and vesicles, but not elsewhere. Tryptase labelling using monoclonal antibody G3 was also present in all mast cells detected, and was retained in altered granules (=activated mast cells), where B7 labelling was sparse. The average labelling density was approximately sixfold higher than for chymase. In summary, chymase may be more abundant in human lung mast cells than hitherto thought.  相似文献   

17.
Mast cells are immune cells that produce and secrete a variety of mediators and cytokines that influence various inflammatory and immune processes. Leptin is a cytokine regulating metabolic, endocrine as well as immune functions via the leptin receptor which is expressed by many immune cells. However, there are no data about leptin receptor expression in mast cells. Immunohistochemical and immunofluorescent double stainings showed the expression of leptin and leptin receptors in mast cells in human skin and several parts of the respiratory, gastrointestinal and urogenital tract. Leptin was expressed in mast cells expressing the classification marker chymase, whereas a variable expression was observed in tryptase positive mast cells. For leptin receptors, the expression pattern was tissue dependent and not related to tryptase or chymase expression. Our results demonstrate the expression of leptin and leptin receptors on mast cells, suggesting paracrine and/or autocrine immunomodulatory effects of leptin on mast cells.  相似文献   

18.
 The present study was carried out to determine the physiological distribution of mast cell numbers and types in the dog according to tissue location, staining and fixation methods. Tissue samples from stomach, duodenum, lung, lymph node, skin and uterus were evaluated. Samples were fixed in formalin as well as in Carnoy’s fluid. The average number of mast cells was determined using a metachromatic staining method. Protease content of mast cells was examined with a double enzyme-immunohistochemical staining technique, using a histochemical reaction for chloroacetate esterase to detect chymase activity and an immunohistochemical staining method for the detection of tryptase. Canine mast cells can be subdivided into formalin-sensitive and -resistant mast cells. Three subtypes were identified according to their content of the mast cell-specific proteases tryptase (T) and chymase (C): T-, TC- and C-mast cells. Significant differences regarding the distribution of mast cell subtypes as well as the influence of the fixation method can be observed. This underlines the fact that data regarding mast cell heterogeneity from other species, obtained by different fixation methods, are not comparable. This fact has to be taken into consideration when evaluating mast cell subtypes under pathological conditions. Accepted: 29 January 1998  相似文献   

19.
This study describes the distribution, proteoglycan properties and protease activity of mast cells from 15 different dog organs. In beagles and mixed breed dogs, staining with Alcian Blue-Safranin O revealed mast cells in all the organs examined. However, their numbers varied and they demonstrated unique localization patterns within some of these organs. Berberine sulphate fluorescence-positive mast cells were observed in the submucosa, muscularis and serosa of the intestines, as well as the tongue and liver (within the connective tissue). Mast cells within the intestinal mucosa were negative for, or demonstrated weak, berberine sulphate staining. Heterogeneity of mast cells in terms of the proteoglycans contained within their granules was further confirmed by determination of critical electrolyte concentrations (CECs). The CECs of mast cells within the connective tissue of several organs, including the intestines (submucosal and muscularis-serosal layers) were all greater than 1.0 M. The results from CEC experiments together with berberine staining indicate that heparin was contained within their granules. Relative to the CECs of mast cells in other organs, mast cells in the intestinal mucosa exhibited lower CECs, suggesting that the proteoglycans within their granules were of lower charge density and/or molecular weight. Although mast cells were classified into two groups by proteoglycans within the granules, enzyme histochemical analysis in beagles revealed three subtypes of mast cells: chymase (MC(C)), tryptase (MC(T)) and dual positive (MC(TC)) cells. There was no correlation between the proteoglycan content and enzyme properties of the mast cell granules.  相似文献   

20.
目的:研究食管癌细胞迁移到小鼠腹腔时肿瘤细胞周边微环境的变化。方法:将食管癌细胞株EC109和/或诱导试剂植入小鼠腹腔,利用组织化学的方法、荧光标记的肥大细胞蛋白酶和流式细胞术,我们在小鼠模型观察肠组织的形态和腹腔的MC亚型的变化。结果:胰酶导致小鼠肠道平滑肌层和黏膜下层的组织增厚,细胞间隙的增加可能有益于MC在组织移动或迁移进入腹腔;它引起小鼠腹腔液的总MC增加,MCC亚型的相对比例增加,MCT亚型减少。EC109细胞不能明显地改变小鼠肠道组织的形态,但它显著地引起腹腔MCT亚型的相对比例增加。结论:根据肥大细胞内颗粒的类胰蛋白酶和类糜蛋白酶的差异表达,可证实小鼠的MC亚型;并且不同的诱导物可能影响腹部微环境的变化。目前的研究表明,食道癌细胞可以诱导MCT(含有类胰蛋白酶)亚型迁移到小鼠腹腔,造成肿瘤细胞周围的内部环境的变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号