首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Upland cotton (Gossypium hirsutum) is the world's largest source of natural fibre and dominates the global textile industry. Hybrid cotton varieties exhibit strong heterosis that confers high fibre yields, yet the genome‐wide effects of artificial selection that have influenced Upland cotton during its breeding history are poorly understood. Here, we resequenced Upland cotton genomes and constructed a variation map of an intact breeding pedigree comprising seven elite and 19 backbone parents. Compared to wild accessions, the 26 pedigree accessions underwent strong artificial selection during domestication that has resulted in reduced genetic diversity but stronger linkage disequilibrium and higher extents of selective sweeps. In contrast to the backbone parents, the elite parents have acquired significantly improved agronomic traits, with an especially pronounced increase in the lint percentage. Notably, identify by descent (IBD) tracking revealed that the elite parents inherited abundant beneficial trait segments and loci from the backbone parents and our combined analyses led to the identification of a core genomic segment which was inherited in the elite lines from the parents Zhong 7263 and Ejing 1 and that was strongly associated with lint percentage. Additionally, SNP correlation analysis of this core segment showed that a non‐synonymous SNP (A‐to‐G) site in a gene encoding the cell wall‐associated receptor‐like kinase 3 (GhWAKL3) protein was highly correlated with increased lint percentage. Our results substantially increase the valuable genomics resources available for future genetic and functional genomics studies of cotton and reveal insights that will facilitate yield increases in the molecular breeding of cotton.  相似文献   

2.

Key message

A total of 62 SNPs associated with yield-related traits were identified by a GWAS. Based on significant SNPs, two candidate genes pleiotropically increase lint yield.

Abstract

Improved fibre yield is considered a constant goal of upland cotton (Gossypium hirsutum) breeding worldwide, but the understanding of the genetic basis controlling yield-related traits remains limited. To better decipher the molecular mechanism underlying these traits, we conducted a genome-wide association study to determine candidate loci associated with six yield-related traits in a population of 719 upland cotton germplasm accessions; to accomplish this, we used 10,511 single-nucleotide polymorphisms (SNPs) genotyped by an Illumina CottonSNP63K array. Six traits, including the boll number, boll weight, lint percentage, fruit branch number, seed index and lint index, were assessed in multiple environments; large variation in all phenotypes was detected across accessions. We identified 62 SNP loci that were significantly associated with different traits on chromosomes A07, D03, D05, D09, D10 and D12. A total of 689 candidate genes were screened, and 27 of them contained at least one significant SNP. Furthermore, two genes (Gh_D03G1064 and Gh_D12G2354) that pleiotropically increase lint yield were identified. These identified SNPs and candidate genes provide important insights into the genetic control underlying high yields in G. hirsutum, ultimately facilitating breeding programmes of high-yielding cotton.
  相似文献   

3.
Drought causes serious yield losses in cotton production throughout the world. Association mapping allows identification and localization of the genes controlling drought-related traits which will be helpful in cotton breeding. In the present study, genetic diversity analysis and association mapping of yield and drought traits were performed on a panel of 99 upland cotton genotypes using 177 SSR (simple sequence repeat) markers. Yield parameters and drought tolerance-related traits were evaluated for two seasons under two watering regimes: water-stressed and well-watered. The traits included seed cotton yield (SCY), lint yield (LY), lint percentage (LP), water-use efficiency (WUE), yield potential (YP), yield reduction (YR), yield index (YI), drought sensitivity index (DSI), stress tolerance index (STI), harmonic mean (HM), and geometric mean productivity (GMP). The genotypes with the least change in seed cotton yield under drought stress were Zeta 2, Delcerro, Nazilli 87, and DAK 66/3 which were also the most water-use efficient cultivars. The average genetic diversity of the panel was 0.38. The linkage disequilibrium decayed relatively rapidly at 20–30 cM (r2?≥?0.5). We identified 30 different SSR markers associated with the traits. Fifteen and 23 SSR markers were linked to the traits under well-watered and water-stress conditions, respectively. To our knowledge, most of these quantitative yield and drought tolerance-associated loci were newly identified. The genetic diversity and association mapping results should facilitate the development of drought-tolerant cotton lines with high yield in molecular breeding programs.  相似文献   

4.
Two field experiments in 1993 and 1994 as well as a laboratory germination experiment were conducted on the Egyptian cotton cultivar Giza 75 (Gossypium barbadense) to determine the effect of six concentrations of kinetin (6-furfurylaminopurine) ranging from 0 to 10.0 mg l(-1) and three different methods of application: (A) seeds were soaked for 24 h before germination (laboratory experiment) or sowing (field experiment) in solutions of different kinetin concentration, (B) cotton plants were sprayed twice with different kinetin concentrations at 60 and 75 days after sowing (DAS) during the square initiation and the beginning of bolling stages, at volume solution of 480 l ha(-1). (C) Seeds were soaked in kinetin solutions before sowing as method A. In addition cotton plants were sprayed twice as method B with the same kinetin concentrations. Kinetin application improved seed viability and seedling vigour as shown by lengths of the hypocotyl, radicle and the entire seedling, as well as seedling fresh weight. Moreover, significant increases were recorded in the number of open bolls/plant, boll weight, lint and seed indices, seed cotton yield/plant, and seed cotton and lint yields/plot. The highest means were obtained at 5 mg kinetin l(-1) concentration and under method C of application. Treatments generally, had no significant effects on lint percentage, yield earliness and fiber properties. These results show that, the use of kinetin at 5 mg l(-1) for pre-soaking seeds before planting and spraying cotton plants at 60 and 75 DAS with the same concentration could improve cotton germination, seed cotton and lint yields.  相似文献   

5.
Summary Four locally adapted and high yielding cultivars of upland cotton were examined in order to elucidate the relationship between total chiasma frequency and quantitative traits, including yield and fiber properties. Total chiasma frequency per nucleus was found to correlate positively with boll number (r = 0.4041), seed cotton yield (r = 0.6003), seed index (r = 0.4624), lint yield (r = 0.7325), and lint index (r = 0.9534). The data are discussed from the point of view that the heterozygosity caused by increased chiasma frequency in inbreeding cotton cultivars is an important compensating mechanism for enhancing effective recombination and genetic variability.  相似文献   

6.
Influential Upland cotton ( Gossypium hirsutum L.) varieties are those that have the higher genetic contributions to modern Upland cultivars than other germplasms. Our previous research has shown significant differences in general combining ability (GCA) effects for yield, yield components, and fiber properties among ten influential cotton varieties. In this study, we used random amplified polymorphic DNA (RAPD) data to evaluate DNA variation of these ten varieties. Of 86 random decamer primers screened for their capability of amplifying DNA via the polymerase chain reaction (PCR), 63 generated a total of 312 DNA fragments. Forty two bands were polymorphic, which showed a low percentage (13.5%) of DNA variation among these influential varieties. Genetic similarities among the ten varieties based on RAPD data were from 92.7% to 97.6%. All of the varieties were individually identified by variety specific markers in genetic fingerprinting. One primer, UBC-149, amplified a 1,430-bp DNA fragment that was absent in five varieties and present in the other five varieties. This RAPD marker had significant negative relationships with GCA-effect estimates for seed cotton yield, lint yield, number of bolls per plant and micronaire, and significant positive relationships with GCA effects for boll size and seed index. This finding, for the first time, identifies a DNA fragment in cotton that is a potential DNA marker linked to a yield gene(s) or a yield-related gene(s).  相似文献   

7.
云南红花种质资源主要农艺性状的遗传多样性分析   总被引:7,自引:0,他引:7  
为加强红花种质资源的研究利用,对筛选出的66份云南红花优异种质资源16个形态性状进行聚类分析与主成分分析。结果表明:云南红花种质资源具有丰富的遗传多样性,多样性指数最高的是果球着粒数,其次是株高、最末分枝高度和千粒重;性状变异系数最大的是分枝总数,其次分别是单株有效果球数和第一分枝高度,最小的为顶果球直径;基于各种质间形态性状的遗传差异,把66份红花种质聚类并划分为6大类群。第Ⅰ类群可作为有增产潜力的亲本材料,第Ⅲ类群可作为高产量目标选育的亲本,第Ⅳ类群可作为大粒型选育亲本,第Ⅴ类群可作为高含油量选育目标亲本,第Ⅵ类群既是大粒型又是高含油量双重选育目标亲本。11个数量性状的主成分分析结果表明,前4个主成分累计贡献率达82.59%,第一主成分反映植株高度,第二主成分反映产量构成因子,第三、第四主成分分别反映千粒重和果球着粒数。研究结果表明云南红花地方种质资源的变异较大,遗传较丰富。  相似文献   

8.
A. K. Basu 《Genetica》1996,97(3):279-290
Genetic research on cotton in India in recent times is reviewed. Establishment of a gene bank with global accessions of the four cultivated species, as well as wild relatives, has facilitated genetic improvement of cotton in India. Genetic control of the economic traits has been studied by biometrical approaches, particularly the line x tester analysis, diallel cross and generation mean analysis. Both additive and non-additive gene actions have been reported for most of the traits. Heritability estimates are low to high. Studies on G×E interaction and stability parameters indicate availability of lines which are stable in their performance over locations and seasons. Genetic improvement of yield, fibre properties, lint percent, seed oil, earliness and resistance to key pests and diseases has been targeted and considerable success has been achieved. Single cross, three-way cross, multiple cross, back cross, biparental mating, mutation breeding and heterosis breeding are the main procedures employed for improvement of yield. Heterosis breeding has, however, made the most significant contributions in improvement of both yield and fibre quality in recent times. While resistant genotypes have been developed for most of the pests and diseases, resistance against cotton bollworms has not been achieved. Genetic engineering to incorporate the Bt gene in cotton to impart resistance to bollworms is in progress. Keeping in view the increased requirements of cotton in the future, thrust areas in genetic research have been indicated.  相似文献   

9.
Aims Supplying optimal quantities of mineral nutrients to growing crop plants is one way to improve crop yields. Nutrients need to be used rationally in order to avoid a negative ecological impact and undesirable effects on the sustainability of agricultural production systems. Excessive application of nutrients also affects the farmer's economy. In order to calculate the amount of fertilizer to be applied to crops, it is necessary to develop recommendation programmers that adjust nutrient rates to crop requirements.Methods Experiments in two successive seasons were conducted to investigate the effect of K fertilization and foliar application of Zn and P on yield and fiber properties of cotton cv. Giza 86. Potassium (0.0 and 47.4 kg of K ha-1) was soil applied, while chelated zinc (0.0 and 57.6 g of Zn ha-1, applied twice at 70 and 85 days after sowing 'DAS') and phosphorus (0.0, 576, 1?152 and 1?728 g of P ha-1, applied twice at 80 and 95 DAS) were applied to the foliage.Important findings Dry matter yield, total chlorophyll concentration, K, Zn and P uptake per plant, number of opened bolls per plant, boll weight, seed index, lint index, seed cotton yield per plant, seed cotton and lint yield ha-1 and earliness of harvest increased with the application of K, Zn and P. Treatments generally had no significant effect on lint percentage and fiber properties, with exceptions, for micronaire reading and flat bundle strength, and uniformity ratio, where the mean values of these characters were significantly increased over the untreated control by applying K, and for the micronaire reading in the first season, when applying P at 1?728 g ha-1, and uniformity ratio in the second season, when applying P at 1?152 and 1?728 g ha-1, where the mean values of these characters were significantly increased over the untreated control by applying P. Under the conditions of this study, applying K fertilization at 47.4 kg ha-1 combined with spraying cotton plants with zinc at 57.6 g ha-1 and also with P at 1?728 g ha-1 improved growth and yield of Egyptian cotton.  相似文献   

10.
The inheritance of seed coat fuzz was studied in two half diallel sets of crosses of Upland cotton. One with F4 selections from an inter-varietal cross showed a significant level of non-additive variance attributable to dominance and non-allelic interaction. In the other, using inbred varieties of diverse origin, the genetic control of seed fuzz was adequately accounted for by an additive-dominance model with no interaction. Genotypic correlations between seed coat fuzz, yield and lint quality characters, calculated for both diallel sets and for two other groups of breeding material, showed good agreement within each experiment between parents and hybrids or between parents and progenies but no consistent pattern between experiments. The results serve to emphasize the risks in extrapolating correlations from one group of breeding material to another. A useful level of reduced fuzz has been obtained in selections from the AH breeding programme and the genetical investigations indicate that a further reduction may be possible, thereby leading to easier handling of seed, speedier and cheaper ginning, low levels of seed coat nep and better seed germination.  相似文献   

11.
Water stress is a critical abiotic stress for plant reduction in arid and semiarid zones and, has been discovered to be detrimental to the development of seedlings as well as the growth and physiological characteristics of many crops such as cotton. The objectives of our study were to determine the combining ability and genetic components for five quantitative traits [(leaf area (LA), leaf dry weight (LDW), plant height (PH), fiber length (2.5 percent SL), and lint cotton yield/plant (LCY/P)] under water shortage stress, a half diallel cross between six cotton genotypes representing a wide range of cotton characteristics was evaluated in RCBD with four replications. The genotype mean squares were significant for all traits studied, demonstrating significant variation among genotypes for all characters under water shortage stress. LCY/P had the highest phenotypic and genotypic correlation co-efficient with PH, LDW, and LA shortage. The highest direct effect on lint cotton yield was exhibited by leaf area (3.905), and the highest indirect effects of all traits were through LA, with the exception of 2.5 percent SL, which was through LDW. The highest dissimilarity (Euclidean Distance) between parental genotypes was between G.87 and G.94, followed by G.87 and Menoufi. G.94 was also a well-adapted genotype, and the combinations G.87 x G.94 and G.87 x Menoufi may outperform their parents. The combining ability analysis revealed highly significant differences between parental GCA effects and F1 crosses SCA effects. The variation of GCA and SCA demonstrated the assurance of additive and non- additive gene action in the inheritance of all traits studied. In terms of general combining ability (GCA) effects, parental genotype G.94 demonstrated the highest significant and positive GCA effects for all traits studied, with the exception of 2.5 percent SL, where G.87 revealed the highest significant and positive GCA effects. The effects of specific combining ability (SCA) revealed that the cross (G.87 x2G.94) revealed stable, positive, and significant SCA for all of the studied traits.  相似文献   

12.
以高产陆地棉栽培品种中棉所12和8891的杂交组合湘杂棉2号为材料,采用单粒传法构建了含有180个家系的重组自交系(RILs)群体。本研究的目的是分析产量及其构成因子的相互关系并进行相应的QTL定位。重组自交系群体、两亲本和F1于2002年、2003年分别种植于南京农业大学江浦实验农场和江苏省灌云棉花基地。收获每行中间五株的籽棉并考察产量及产量构成因子性状。调查的产量及产量构成因子性状包括单株籽棉产量、单株皮棉产量、单株铃数、铃重、衣分、衣指和籽指。筛选了4,106对SSR引物和384个AFLP引物组合,分别得到127和18个多态位点;此外,2个RAPD引物、1个SRAP引物组合以及来自亲本8891的显性黄花药基因P1也被用来作为标记检测群体基因型。最终共获得149个多态位点,其中132个位点分布于26个染色体/连锁群,覆盖865.20cM,约占棉花基因组的18.57%,标记间平均距离6.55cM。利用此遗传图谱结合重组自交系群体3个环境下的产量及产量构成因子性状,应用QTLCartographer2.0的复合区间作图法进行单位点QTL定位。对各环境资料的分离分析共定位出34个QTL,而利用三环境平均值的联合分析定位出15个QTL。本研究定位的QTL可为棉花产量育种提供信息,其中衣分QTLqLP-A10-1在联合分析及分离分析下的两个环境都能检测到,可能对标记辅助选择有实际应用价值。通径分析结果表明,各产量构成因子中,铃数对皮棉产量贡献最大,这与产量构成因素性状在F1的杂种优势表现一致;因此,在棉花育种上,可优先考虑单株铃数并结合其它产量构成因素进行品种选育和杂交组合选配。  相似文献   

13.
Quantitative trait loci (QTL) mapping provides a powerful tool for unraveling the genetic basis of yield and yield components as well as heterosis in upland cotton. In this research, a molecular linkage map of Xiangzamian 2 (Gossypium hirsutum L.)-derived recombinant inbred lines (RILs) was reconstructed based on increased expressed sequence tag–simple sequence repeat markers. Both the RILs and immortalized F2s (IF2) developed through intermating between RILs were grown under multiple environments. Yield and yield components including seed-cotton yield, lint yield, bolls/plant, boll weight, lint percentage, seed index, lint index and fruit branch number were measured and their QTL were repeatedly identified across environments by the composite interval mapping (CIM) method. From a total of 111 non-redundant QTL, 23 were detected in both two populations. In the meantime, multi-marker joint analyses showed that 16 of these QTL had significant environmental interaction. QTL for correlated traits tended to be collocated and most of the QTL for seed-cotton yield and lint yield were associated with QTL for at least one yield component, consistent with the results observed in correlation analyses. For many QTL with significant additive effects, positive alleles from CRI12, the inferior parent with lower yield performance, were associated with trait improvement. Trait performance of IF2s and the large number of QTL with positive dominant effects implied that dominance plays an important role in the genetic basis of heterosis in Xiangzamian 2 and that non-additive inheritance is also an important genetic mode for lint percentage in the population. These QTL can provide the bases for marker-assisted breeding programs of upland cotton.  相似文献   

14.
Basbag S  Ekinci R  Gencer O 《Hereditas》2007,144(5):185-190
The objective of this study was to estimate the general combining ability of the parents and specific combining ability of hybrids for earliness traits for line selection. Inheritance and interrelationships of earliness characters were evaluated in a line x tester design. Three intermediate-early-maturing female (lines) which are grown regionally and four early-maturing males (testers) cotton varieties were crossed in 2003. The twelve F(1) and seven parents were planted randomized block design with three replications in 2004. For each earliness trait, general combining ability (GCA) and specific combining ability and gene effects were estimated using the line x tester method of analysis and also were determined heterosis and narrow sense heritability. Parents and their hybrids (except the monopodial branch) were significant for all the earliness traits studied. Estimates of variance due to GCA and SCA and their ratio revealed predominantly non-additive gene effects for date of first square, date of first flowers and harvested rate of first picking. Among the lines, Ersan 92 and Maras 92 and among the testers Acala Royal was found to be the best general combiners for most of the earliness characters. Four out of twelve crosses namely Ersan 92 x Chirpan 603, Ersan 92 x Acala Maxa, Maras 92 x Acala Royal and Nazilli 87 x Acala Royal were found to be the best crosses for investigated earliness characters.  相似文献   

15.
The production of attractive, uniform true potato seed (TPS) progenies was investigated. Four breeding schemes were compared: intercrossing tetraploid cultivars (cv x cv); doubled dihaploids x cultivars (ddh x cv); cultivars x diploid unreduced-gamete producers (cv x FDR) and doubled dihaploids x diploid unreduced-gamete producers (ddh x FDR). Fifty three progenies and five clones were grown in a glasshouse in a randomised complete block design with three replicates of 25 plants per progeny and clone. Each plant's tubers were counted and the colour, shape, quality of skin finish, flesh colour, and commencai attractiveness (which includes yield) recorded. The most uniform progenies were also selected by visual comparison with the clones. For mean attractiveness, differences (P < 0.001) between breeding schemes and between progenies within breeding schemes were detected. The cv x cv and cv x FDR progenies were more attractive than clonal controls. There were significant additive and non-additive effects for attractiveness in all breeding schemes except cv x FDR. There were between-progeny differences (P < 0.001) for uniformity for all characters. Progenies uniform for one character could be variable for other traits. Breeding schemes gave different levels of uniformity (P < 0.001) for all characters except shape and flesh colour, but none gave low levels of variation for all traits. Doubled-dihaploid parents increased the variation in progenies. There were uniformity differences (P < 0.001) between progenies within breeding schemes for all characters. Evidence of additive and nonadditive genetic variation for uniformity in all traits was detected. In each breeding scheme, parents with good general combining ability (GCA) for uniformity in several characters were identified. Visually selected uniform progenies had parents with good GCAs for uniformity in a range of traits and high specific combining abilities (SCAs) for several traits. A desynaptic first-division restitution (FDR) clone and a male-sterile doubled-dihaploid clone had the best GCAs for tuber uniformity in TPS progenies. Achieving multitrait uniformity in TPS is problematic but may be aided by the selection of parents with GCAs for uniformity coupled with progeny testing to allow for non-additive effects.  相似文献   

16.
于2014—2015年在内蒙古自治区阿拉善盟阿拉善左旗内蒙古棉花综合实验站设置大田试验,以‘中棉所50’为材料,采用“一膜三管六行”机采棉配套栽培技术种植,研究播期(4月20日、4月30日和5月10日)对棉花产量、品质及养分吸收的影响.结果表明: 随着播期推迟,棉花生育时期推迟,生育期缩短,铃期日均温降低,收获密度增加;播期显著影响棉株干物质累积、养分吸收与分配,以及产量和品质形成,4月30日播种条件下,棉株干物质和养分在经济器官中的分配比例、养分总积累量及养分的皮棉生产效率较高,籽棉和皮棉产量最高,达6505.9和2660.9 kg·hm-2,且纤维品质较优;4月20日播期下,收获密度、生物量和养分累积量最低,虽然生物量和养分经济系数最高,但最终籽棉和皮棉产量仍较4月30日播期降低10.9%~14.0%和11.1%~14.2%;5月10日播期,虽然可以避开种子萌发期低温冷害,但棉铃发育期日均温偏低,尽管生物量和养分累积量最高,但是生物量和养分经济系数、养分的皮棉生产效率最低,最终籽棉和皮棉产量较4月30日播期降低32.5%~34.7%和35.9%~36.2%,且纤维品质最差.综合分析, 4月30日左右为内蒙古西部荒漠旱区棉花种植的最佳播期.  相似文献   

17.
Quantitative trait variation in phenotypically normal regenerants of cotton   总被引:11,自引:0,他引:11  
Summary Somaclonal variation for quantitative traits could affect the practical utilization of regenerants in cotton improvement. Three groups of experimental lines were derived to analyze variation, including one control group from the explant-source cultivar and two groups of R3 somaclones from different R0’s (R0 = initial regenerant) free of observable chromosomal rearrangements. A three-environment field trial was conducted to evaluate group means, genetic variance, and line performance. Mean seedcotton yields of the somaclonal groups were reduced by 21 and 26% relative to the Coker 310 standard at two locations, but lint percentage and certain fiber properties were improved. Group-by-environment interactions were significant (P<0.05) for 10 of the 12 measured traits. Genetic variance tended to decrease in the somaclones, plant height being an exception. Line performance of the somaclones indicated that 50-boll weight, seed index, and fiber length did not reach the Coker 310 group means. These data suggest that genetic gain will be improved if regenerants of cotton are self-pollinated and the progenies evaluated for quantitative traits before crossing somaclones with the explantsource cultivar or other elite germplasm.  相似文献   

18.
胞质雄性不育系冀2658A细胞质对陆地棉主要性状的影响   总被引:1,自引:0,他引:1  
利用棉花(Gossypium hirsutum)雄性不育不仅可以培育优质的杂交种,还能提高棉花制种效率并降低制种成本。该研究以冀2658系及其同核异质不育系冀2658A为母本,以6个恢复系为父本配制12个杂交组合。利用F1代研究棉花细胞质对棉花农艺性状、抗病性、种子中粗脂肪和粗蛋白含量、纤维品质及产量性状的影响。结果表明,冀2658A的细胞质主要影响棉花杂交种F1代的产量相关性状、黄萎病抗性及棉籽粗脂肪含量等,表现为衣分显著降低(比对照组低1.61%),黄萎病抗性增强(黄萎病指数比对照组低18.29%),棉籽中的粗脂肪含量降低(比对照组低2.88%)。该研究初步探讨了胞质不育型细胞质对陆地棉主要性状的影响,为陆地棉胞质雄性不育系的利用提供了理论参考。  相似文献   

19.
Okra-leaf cotton (Gossypium hirsutum L.) types have been reputed to produce equal or higher amounts of lint yield than normal-leaf types, while intercepting less or similar amounts of radiation. In this field study, okra- and normal-leaf cotton isolines were compared for their efficiency to produce dry matter utilizing intercepted radiation. At three weeks after first flower, the two leaf-shape isolines produced similar amounts of dry matter, with the okra-leaf type partitioning a larger fraction to fruiting organs. However, at the end of the season no differences in lint yield, yield components and fiber-quality properties were recorded between the two isolines. Fractional light interception throughout the period of the study was greater for the normal-leaf type compared to the okra-leaf type. The okra-leaf isoline utilized intercepted radiation more efficiently to produce dry matter. Values of radiation use efficiency were estimated at 1.897 and 2.636 g MJ−1 of intercepted photosynthetically active radiation for the normal- and okra-leaf types, respectively. Growth chamber studies revealed similar single leaf carbon exchange rates, therefore radiation use efficiency differences between the leaf shape isolines could be attributed to light interception characteristics.  相似文献   

20.
The examination of nine potato cultivars for external mechanical damage resistance found that tests involving the damage index of Robertson (1970) were reasonably consistent over five years. Progeny testing of eight cultivars in two years, by means of a half diallel with selfs, showed that all of the progeny variation was due to general combining ability and there was no evidence of significant specific combining ability. Ranking of cultivars by damage index was significantly correlated with their ranking by general combining ability from their progenies. The results indicate that the best parents for breeding to improve damage resistance can be predicted using their own damage index.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号