共查询到20条相似文献,搜索用时 15 毫秒
1.
p16INK4a基因的功能及其调控 总被引:4,自引:0,他引:4
p16INK4a蛋白能抑制CDK4和CDK6的活性,使pRb处于非磷酸化或低磷酸化状态而能与转录因子E2Fs结合,从而抑制DNA 的合成,阻止细胞由G1期进入S期.p16INK4a的表达受Ets1和Ets2的正调控,受Bmi-1的负调控.p16INK4a基因缺失、突变、甲基化、RNA剪接加工错误可导致细胞周期失控和癌变.应用p16INK4a对某些肿瘤进行基因治疗的研究正在进行中. 相似文献
2.
Tumor suppressor INK4: refinement of p16INK4A structure and determination of p15INK4B structure by comparative modeling and NMR data
下载免费PDF全文

Yuan C Selby TL Li J Byeon IJ Tsai MD 《Protein science : a publication of the Protein Society》2000,9(6):1120-1128
Within the tumor suppressor protein INK4 (inhibitor of cyclin-dependent kinase 4) family, p15INK4B is the smallest and the only one whose structure has not been determined previously, probably due to the protein's conformational flexibility and instability. In this work, multidimensional NMR studies were performed on this protein. The first tertiary structure was built by comparative modeling with p16INK4A as the template, followed by restrained energy minimization with NMR constraints (NOE and H-bonds). For this purpose, the solution structure of pl6INK4A, whose quality was also limited by similar problems, was refined with additional NMR experiments conducted on an 800 MHz spectrometer and by structure-based iterative NOE assignments. The nonhelical regions showed major improvement with root-mean-square deviation (RMSD) improved from 1.23 to 0.68 A for backbone heavy atoms. The completion of p15INK4B coupled with refinement of p16INK4A made it possible to compare the structures of the four INK4 members in depth, and to compare the structures of p16INK4A in the free form and in the p16INK4A-CDK6 complex. This is an important step toward a comprehensive understanding of the precise functional roles of each INK4 member. 相似文献
3.
Waaijer ME Parish WE Strongitharm BH van Heemst D Slagboom PE de Craen AJ Sedivy JM Westendorp RG Gunn DA Maier AB 《Aging cell》2012,11(4):722-725
Cellular senescence is a defense mechanism in response to molecular damage which accumulates with aging. Correspondingly, the number of senescent cells has been reported to be greater in older than in younger subjects and furthermore associates with age-related pathologies. Inter-individual differences exist in the rate at which a person ages (biological age). Here, we studied whether younger biological age is related to fewer senescent cells in middle-aged individuals with the propensity for longevity, using p16INK4a as a marker for cellular senescence. We observed that a younger biological age associates with lower levels of p16INK4a positive cells in human skin. 相似文献
4.
Nelson JA Krishnamurthy J Menezes P Liu Y Hudgens MG Sharpless NE Eron JJ 《Aging cell》2012,11(5):916-918
The p16(INK4a) tumor suppressor gene is a mediator of cellular senescence and has been suggested to be a biomarker of 'molecular' age in several tissues including T cells. To determine the association of both active and suppressed HIV infection with T-cell aging, T-cell p16(INK4a) expression was compared between 60 HIV+ suppressed subjects, 23 HIV+ untreated subjects, and 18 contemporaneously collected HIV-negative controls, as well as 148 HIV-negative historical samples. Expression did not correlate with chronologic age in untreated HIV+ patients, consistent with an effect of active HIV replication on p16(INK4a) expression. In patients on cART with suppressed viral loads, however, p16(INK4a) levels were similar to uninfected controls and correlated with chronologic age, with a trend toward an inverse correlation with CD4 count. These data show that p16(INK4a) is a reliable biomarker of T-cell aging in HIV+ patients with suppressed viral loads and suggest that poor CD4 cell recovery on cART may be associated with increased T-cell expression of p16(INK4a) , a marker of cellular senescence. 相似文献
5.
The physiology of p16INK4A-mediated G1 proliferative arrest 总被引:11,自引:0,他引:11
Phosphorylation of the product of the retinoblastoma susceptibility gene (Rb) physiologically inactivates its growth-suppressive properties. Rb phosphorylation is mediated by cyclin-dependent kinases
(CDKs), whose activity is enhanced by cyclins and inhibited by CDK inhibitors. p16INK4A is a member of a family of inhibitors specific for CDK4 and CDK6. p16INK4A is deleted and inactivated in a wide variety of human malignancies, including familial melanomas and pancreatic carcinoma
syndromes, indicating that it is an authentic human tumor suppressor. Although one mechanism for its tumor suppression may
be prevention of Rb phosphorylation, thereby causing G1 arrest, many normal cell types express p16INK4A, and are still able to traverse the cell cycle. In a search for other mechanisms, we have found that p16INK4A is required for p53-independent G1 arrest in response to DNA-damaging agents, including topoisomerase I and II inhibitors.
Thus, like other tumor suppressors, p16INK4A plays an essential role in a DNA-damage checkpoint that leads to cell cycle arrest. 相似文献
6.
7.
Prevalence of aberrant methylation of p14ARF over p16INK4a in some human primary tumors 总被引:12,自引:0,他引:12
Dominguez G Silva J Garcia JM Silva JM Rodriguez R Muñoz C Chacón I Sanchez R Carballido J Colás A España P Bonilla F 《Mutation research》2003,530(1-2):9-17
The INK4a/ARF locus encodes two unrelated tumor suppressor proteins, p16INK4a and p14ARF, which participate in the two main cell-cycle control pathways, p16–Rb and p14–p53. Methylation of CpG promoter islands has been described as a mechanism of gene silencing. Exon 1 of the p16INK4a gene and the p14ARF promoter gene reside within CpG islands. Therefore, both can become methylated de novo and silenced. It has recently been proposed that the methylation changes in certain genes could be used as molecular markers for the detection of almost all forms of human cancer. Here, we analyzed concomitantly in each tumor sample and normal tissue the methylation status of p16INK4a and p14ARF by methylation-specific PCR (MSP) in 100 breast, 95 colon and 27 bladder carcinomas. A series of clinicopathological parameter were obtained from the medical records of the patients, p14ARF showed a higher rate of hypermethylation than p16INK4a in all three tumor types. p16INK4a and p14ARF aberrant methylation was significantly correlated with poor prognosis clinicopathological parameters of the three tumor types. We conclude that both p16INKa and p14ARF hypermethylation may be involved in breast, colon and bladder carcinogenesis, with special emphasis on the role of the lesser studied p14ARF gene, and that tumors with aberrant methylation in the two genes were associated with worse prognosis. 相似文献
8.
Coppé JP Rodier F Patil CK Freund A Desprez PY Campisi J 《The Journal of biological chemistry》2011,286(42):36396-36403
Cellular senescence suppresses cancer by preventing the proliferation of cells that experience potentially oncogenic stimuli. Senescent cells often express p16(INK4a), a cyclin-dependent kinase inhibitor, tumor suppressor, and biomarker of aging, which renders the senescence growth arrest irreversible. Senescent cells also acquire a complex phenotype that includes the secretion of many cytokines, growth factors, and proteases, termed a senescence-associated secretory phenotype (SASP). The SASP is proposed to underlie age-related pathologies, including, ironically, late life cancer. Here, we show that ectopic expression of p16(INK4a) and another cyclin-dependent kinase inhibitor, p21(CIP1/WAF1), induces senescence without a SASP, even though they induced other features of senescence, including a stable growth arrest. Additionally, human fibroblasts induced to senesce by ionizing radiation or oncogenic RAS developed a SASP regardless of whether they expressed p16(INK4a). Cells induced to senesce by ectopic p16(INK4a) expression lacked paracrine activity on epithelial cells, consistent with the absence of a functional SASP. Nonetheless, expression of p16(INK4a) by cells undergoing replicative senescence limited the accumulation of DNA damage and premature cytokine secretion, suggesting an indirect role for p16(INK4a) in suppressing the SASP. These findings suggest that p16(INK4a)-positive cells may not always harbor a SASP in vivo and, furthermore, that the SASP is not a consequence of p16(INK4a) activation or senescence per se, but rather is a damage response that is separable from the growth arrest. 相似文献
9.
10.
小鼠p16~(INK4a)基因位点的结构和功能研究 总被引:2,自引:0,他引:2
p1 6INK4a基因的失活与多种肿瘤的发生和发展有联系。通过筛选小鼠基因组文库 ,获得长度为 1 4.5kb的p1 6INK4a基因组DNA片段。对上述 1 4.5kbDNA测序后进行生物信息学分析表明 :该片段包含 3个外显子 ,编码 1个由 1 68个氨基酸残基组成的多肽 ,其相对分子质量的理论计算值为 1 7941 ,有 7个可能的磷酸化位点 ,说明p1 6INK4a蛋白的功能可能受到磷酸化的调控。该DNA片段的非编码区分布着大量短散布元件、长散布元件和简单重复序列 ,这样的结构为转座和同源重组提供了结构基础 ,提示了部分肿瘤细胞中p1 6INK4a基因缺失的可能原因。对第一外显子序列与已发表的相应序列比较发现其DNA序列和所编码的多肽存在多态性 相似文献
11.
12.
Kawamoto K Enokida H Gotanda T Kubo H Nishiyama K Kawahara M Nakagawa M 《Biochemical and biophysical research communications》2006,339(3):790-796
Promoter hypermethylation is one of the putative mechanisms underlying the inactivation of negative cell-cycle regulators. We examined whether the methylation status of p16(INK4a) and p14(ARF), genes located upstream of the RB and p53 pathway, is a useful biomarker for the staging, clinical outcome, and prognosis of human bladder cancer. Using methylation-specific PCR (MSP), we examined the methylation status of p16(INK4a) and p14(ARF) in 64 samples from 45 bladder cancer patients (34 males, 11 females). In 19 patients with recurrent bladder cancer, we examined paired tissue samples from their primary and recurrent tumors. The methylation status of representative samples was confirmed by bisulfite DNA sequencing analysis. The median follow-up duration was 34.3 months (range 27.0-100.1 months). The methylation rate for p16(INK4a) and p14(ARF) was 17.8% and 31.1%, respectively, in the 45 patients. The incidence of p16(INKa) and p14(ARF) methylation was significantly higher in patients with invasive (>or=pT2) than superficial bladder cancer (pT1) (p=0.006 and p=0.001, respectively). No MSP bands for p16(INK4a) and p14(ARF) were detected in the 8 patients with superficial, non-recurrent tumors. In 19 patients with tumor recurrence, the p16(INK4a) and p14(ARF) methylation status of the primary and recurrent tumors was similar. Of the 22 patients who had undergone cystectomy, 8 (36.4%) manifested p16(INKa) methylation; p16(INK4a) was not methylated in 23 patients without cystectomy (p=0.002). Kaplan-Meier analysis revealed that patients with p14(ARF) methylation had a significantly poorer prognosis than those without (p=0.029). This is the first study indicating that MSP analysis of p16(INK4a) and p14(ARF) genes is a useful biomarker for the pathological stage, clinical outcome, and prognosis of patients with bladder cancer. 相似文献
13.
14.
K. Evangelou J. Bramis I. Peros P. Zacharatos D. Dasiou-Plakida N. Kalogeropoulos PJ Asimacopoulos C. Kittas E. Marinos VG Gorgoulis 《Biotechnic & histochemistry》2004,79(1):5-10
It is well established that p16INK4A protein acts as a cell cycle inhibitor in the nucleus. Therefore, cytoplasmic localization of p16 INK4A usually is disregarded by investigators as nonspecific. Three recent studies reported findings that differ from the current view concerning p16INK4A immunohistochemical localization. All three demonstrated that breast and colon cancers expressing cytoplasmic p16INK4 represent distinct biological subsets. We previously detected in a percentage of non-small cell lung carcinomas simultaneous nuclear and cytoplasmic p16INK4A staining. In view of the reports concerning breast and colon carcinomas, we conducted an ultrastructural re-evaluation of our cases to clarify the specificity of p16INK4A cytoplasmic expression. We observed p16 INK4A immunolocalization in both the nucleus and the cytoplasm of a proportion of tumor cells. Diffuse dense nuclear staining was detected in the nucleoplasm, whereas weaker granular immunoreactivity was observed in the cytoplasm near the rough endoplasmic reticulum. Negative tumor cells also were visible. In the tumor-associated stromal, cells p16INK4A immunoreactivity was detected only in the nuclei. We have demonstrated that p16INK4A cytoplasmic staining is specific and suggest that it represents a mechanism of p16INK4A inactivation similar to that observed in other tumor suppressor genes. 相似文献
15.
Expression and characterization of Syrian golden hamster p16, a homologue of human tumor suppressor p16 INK4A 总被引:3,自引:0,他引:3
Li J Qin D Knobloch TJ Tsai MD Weghorst CM Melvin WS Muscarella P 《Biochemical and biophysical research communications》2003,304(2):241-247
The p16(INK4A)/CDKN2A tumor suppressor gene is known to be inactivated in up to 98% of human pancreatic cancer specimens and represents a potential target for novel therapeutic intervention. Chemically induced pancreatic tumors in Syrian golden hamsters have been demonstrated to share many morphologic and biological similarities with human pancreatic tumors and this model may be appropriate for studying therapies targeting p16(INK4A)/CDKN2A. The purpose of this study was to investigate the fundamental biochemistry of hamster P16 protein. Using both in vivo and in vitro approaches, the CDK4 binding affinity, kinase inhibitory activity, and thermodynamic stability of hamster and human P16 proteins were evaluated. Furthermore, a structural model of hamster P16 protein was generated. These studies demonstrate that hamster P16 protein is biochemically indistinguishable from human P16 protein. From a biochemical perspective, these data strongly support the study of p16-related pancreatic oncogenesis and cancer therapies in the hamster model. 相似文献
16.
17.
Bond J Jones C Haughton M DeMicco C Kipling D Wynford-Thomas D 《Experimental cell research》2004,292(1):151-156
The selective pressure for disruption of the cyclin-dependent kinase inhibitor p16(INK4a) in human cancer has been postulated to reflect its role in mediating growth arrest, both in response to telomere erosion (replicative senescence) and to oncogene-induced and other "stress" signals. Given the known species-specific differences in regulation of senescence, we have tested this hypothesis in human, as opposed to rodent, cells by designing a small interfering RNA (siRNA) to knock down p16(INK4a) expression. Transfection of this siRNA into late-passage normal human diploid fibroblasts allowed at least temporary escape from entry into replicative senescence. Furthermore, in our in vitro model of early-stage, RAS-induced thyroid tumorigenesis, sequential transfections with this siRNA allowed outgrowth of small clusters of proliferating epithelial cells, consistent with escape from the spontaneous "senescence", which normally curtails their proliferative response to mutant RAS. These data provide the first direct evidence that p16(INK4a) is necessary for the initiation of both telomere-dependent and telomere-independent senescence in human cells. 相似文献
18.
Huang X Shi Z Wang W Bai J Chen Z Xu J Zhang D Fu S 《Biochemical and biophysical research communications》2007,361(2):287-293
p16(INK4a) is a multiple tumor suppressor, playing an important role in proliferation and tumorigenesis. To screen the p16(INK4a)-associated proteins, we performed a yeast two-hybrid assay and identified a novel protein isochorismatase domain containing 2 (ISOC2). ISOC2 conserves in different species, and encodes 205 and 210 amino acids in human and mouse, respectively. The expression of ISOC2 in mouse is universal but predominantly in uterus, stomach, and urinary tract system. Interaction between ISOC2 and p16(INK4a) was verified using in vitro pull-down assays and in vivo co-immunoprecipitation. Confocal microscopy studies using green and cyan fluorescent fusion proteins determined that ISOC2 co-localizes with p16(INK4a). Over-expressed ISOC2 is able to inhibit p16(INK4a) in dose-dependent manner. Our data indicated that ISOC2 is a novel functional protein, which is able to bind and co-localize with a tumor suppressor gene p16(INK4a). Over-expressed ISOC2 inhibits the expression of p16(INK4a), suggesting that this novel gene may play a role during the tumor development by interacting with p16(INK4a). 相似文献
19.
Design and characterization of a hyperstable p16INK4a that restores Cdk4 binding activity when combined with oncogenic mutations 总被引:3,自引:0,他引:3
Cyclin-dependent kinase inhibitor p16(INK4a) is the founding member of the INK4 family of tumor suppressors capable of arresting mammalian cell division. Missense mutations in the p16(INK4a) gene (INK4a/CDKN2A/MTS1) are strongly linked to several types of human cancer. These mutations are evenly distributed throughout this small, ankyrin repeat protein and the majority of them disrupt the native secondary and/or tertiary structure, leading to protein unfolding, aggregation and loss of function. We report here the use of multiple stabilizing substitutions to increase the stability of p16(INK4a) and furthermore, to restore Cdk4 binding activity of several defective, cancer-related mutant proteins. Stabilizing substitutions were predicted using four different techniques. The three most effective substitutions were combined to create a hyperstable p16(INK4a) variant that is 1.4 kcal/mol more stable than wild-type. This engineered construct is monomeric in solution with wild-type-like secondary and tertiary structure and cyclin-dependent kinase 4 binding activity. Interestingly, these hyperstable substitutions, when combined with oncogenic mutations R24P, P81L or V126D, can significantly restore Cdk4 binding activity, despite the divergent features of each destabilizing mutation. Extensive biophysical studies indicate that the hyperstable substitutions enhance the binding activity of mutant p16 through several different mechanisms, including an increased amount of secondary structure and thermostability, reduction in exposed hydrophobic surface(s) and/or a reduced tendency to aggregate. This apparent global suppressor effect suggests that increasing the thermodynamic stability of p16 can be used as a general strategy to restore the biological activity to defective mutants of this important tumor suppressor protein. 相似文献
20.
Inactivation of p16INK4a in Primary Tumors and Cell Lines of Head and Neck Squamous Cell Carcinoma 总被引:3,自引:0,他引:3
Inactivation of the p16INK4a gene by mutation and deletion is common in head and neck squamous cell carcinoma (HNSCC). The present study demonstrates that hypermethylation of the 5 CpG islands can serve as an alternative mechanism for the inactivation of the p16INK4a gene in this tumor. We studied 11 HNSCC cell lines and 17 oral squamous cell carcinoma (OSCC) primary tumors for p16INK4a gene status by protein/mRNA and DNA genetic/epigenetic analyses to determine the incidence of its inactivation. Our study indicates that: (1) inactivation of p16 protein is frequent in HNSCC cell lines (6/11, 54.5%) and OSCC primary tumors (15/17, 88.2%), (2) inactivation of p16INK4a protein is commonly associated with the presence of gene alteration such as mutation, homozygous deletion and especially aberrant methylation, and (3) genomic sequencing of bisulfite-modified DNA shows that the carcinoma develops a heterogeneous pattern of hypermethylation. 相似文献