首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Human erythroleukemia cells are a model system for studies of alpha 2-adrenergic receptors and their coupling to inhibition of adenylate cyclase (McKernan, R. M., Howard, M. J., Motulsky, H. J., and Insel, P. A. (1987) Mol. Pharmacol. 32, 258-265). Using Fura-2, we show that alpha 2-adrenergic receptor stimulation also increases intracellular Ca2+ in these cells by 80-250 nM. Although epinephrine only inhibited forskolin-stimulated cAMP generation when beta-adrenergic receptors were blocked, the Ca2+ increase was not affected by beta-adrenergic receptor blockade. The Ca2+ increase was not affected by forskolin or 8-bromo-cAMP. Thus, alpha 2-adrenergic receptors independently couple to elevation of intracellular Ca2+ and adenylate cyclase inhibition. Chelating all extracellular Ca2+ did not reduce the response, demonstrating mobilization of intracellular, rather than influx of extracellular Ca2+. The epinephrine-stimulated Ca2+ mobilization occurred prior to any detectable increase in inositol-(1,4,5)-trisphosphate. It was abolished by pretreatment with pertussis toxin (which blocks some G protein-mediated processes), but not by aspirin and indomethacin (which inhibit cyclooxygenase), nordihydroguaiaretic acid (which inhibits lipoxygenase), or Na+-free buffer (to block any Na+H+ exchange). We conclude, therefore, that alpha 2-adrenergic receptors on human erythroleukemia cells couple to mobilization of intracellular Ca2+ via a (pertussis toxin-sensitive) G protein-mediated mechanism that is independent of inhibition of adenylate cyclase.  相似文献   

3.
S vom Dahl  P Graf    H Sies 《The Biochemical journal》1988,251(3):843-848
A sustained increase in the hepatic release of 3H radioactivity was shown to occur upon hormonal stimulation of perfused rat liver 15-20 h after intraperitoneal injection of 100 microCi of myo-[2-3H]inositol. Hormone-released radioactive material was analysed by t.l.c. and was found to consist predominantly of [3H]inositol, without further metabolites. Vasopressin (14 nM), phenylephrine (1.7 microM), angiotensin II (15 nM), glucagon (0.5 nM) and dibutyryl cyclic AMP (5 microM) exert maximal effects on hepatic inositol efflux after 10-15 min of stimulation. Omission of Ca2+ from the perfusion medium abolishes the hormone-dependent inositol release. LiCl (10 mM) does not significantly affect the basal release of [3H]inositol, but suppresses vasopressin- and angiotensin-triggered inositol release. Inositol efflux induced by glucagon, dibutyryl cyclic AMP and phenylephrine, however, remains essentially unchanged by LiCl infusion. This establishes a further metabolic difference between these two groups of agonists in that stimuli that act through cyclic AMP produce a stimulated outflow of inositol, but apparently without a Li+-sensitive phosphatase being involved in the overall process.  相似文献   

4.
5.
Benzoate stimulates glutamate release from perfused rat liver.   总被引:1,自引:1,他引:0       下载免费PDF全文
In isolated perfused rat liver, benzoate addition to the influent perfusate led to a dose-dependent, rapid and reversible stimulation of glutamate output from the liver. This was accompanied by a decrease in glutamate and 2-oxoglutarate tissue levels and a net K+ release from the liver; withdrawal of benzoate was followed by re-uptake of K+. Benzoate-induced glutamate efflux from the liver was not dependent on the concentration (0-1 mM) of ammonia (NH3 + NH4+) in the influent perfusate, but was significantly increased after inhibition of glutamine synthetase by methionine sulphoximine or during the metabolism of added glutamine (5 mM). Maximal rates of benzoate-stimulated glutamate efflux were 0.8-0.9 mumol/min per g, and the effect of benzoate was half-maximal (K0.5) at 0.8 mM. Similar Vmax. values of glutamate efflux were obtained with 4-methyl-2-oxopentanoate, ketomethionine (4-methylthio-2-oxobutyrate) and phenylpyruvate; their respective K0.5 values were 1.2 mM, 3.0 mM and 3.8 mM. Benzoate decreased hepatic net ammonia uptake and synthesis of both urea and glutamine from added NH4Cl. Accordingly, the benzoate-induced shift of detoxication from urea and glutamine synthesis to glutamate formation and release was accompanied by a decreased hepatic ammonia uptake. The data show that benzoate exerts profound effects on hepatic glutamate and ammonia metabolism, providing a new insight into benzoate action in the treatment of hyperammonaemic syndromes.  相似文献   

6.
Differences in energy metabolism during beta(1)- and beta(2)-adrenergic receptor (AR) stimulation have been shown to translate to differences in the elicited functional responses. It has been suggested that differential access to glycogen during beta(1)- compared with beta(2)-AR stimulation may influence the peak functional response and modulation of the response during sustained adrenergic stimulation. Interleaved (13)C- and (31)P-NMR spectroscopy was used during beta(1)- and beta(2)-AR stimulation at matched peak workload (2.5 times baseline) in the isolated perfused rat heart to monitor glycogen levels, phosphorylation potential, and intracellular pH. Simultaneous measurements of left ventricular (LV) function [LV developed pressure (LVDP)], heart rate (HR), and rate-pressure product (RPP = LVDP x HR) were also performed. The heart was perfused under both substrate-free (SF) conditions and with exogenous glucose (G). The greater glycogenolysis was observed during beta(1)- than beta(2)-AR stimulation with G (54% vs. 38% reduction, P = 0.006) and SF (92% vs. 79% reduction, P = 0.04) perfusions. The greater beta(1)-AR-mediated glycogenolysis was correlated with greater ability to sustain the initial contractile response. However, with SF perfusion, the duration of this ability was limited: excessive early glycogen depletion caused an earlier decline in LVDP and phosphorylation potential during beta(1)- than beta(2)-AR stimulation. Therefore, endogenous glycogen stores are depleted earlier and to a greater extent, despite a slightly weaker overall inotropic response, during beta(1)- than beta(2)-AR stimulation. These findings are consistent with beta(1)-AR-specific PKA-dependent glycogen phosphorylase kinase signaling.  相似文献   

7.
One hundred micromolar Ca2+ added to rat liver mitochondria induces a transient uptake of Ca2+ plus a rapid efflux of the mitochondrial Mg2+. Addition of a cytosolic molecule, cytosolic metabolic factor, to mitochondria prevents the efflux of the two divalent cations. ADP is required for this cytosolic metabolic factor action. This requirement for ADP is specific as it is shown by experiments with traps for nucleotides and inhibitors of the translocase. The implication of cytosolic metabolic factor in the mitochondrial regulation process is discussed.  相似文献   

8.
9.
Sympathetic nerves and catecholamines exert growth-promoting trophic influences on arterial smooth muscle in vivo, but the molecular signals mediating these trophic effects are unknown. We report here that the alpha-adrenergic agonist phenylephrine (PE) produced dose-dependent stimulation of platelet-derived growth factor A-chain (PDGF-A) gene expression in rat thoracic aorta via agonist occupancy of alpha 1-adrenergic receptors. Increases in aortic PDGF-A mRNA levels were rapid (maximal at 6 h, 10-fold) and transient. Among seven different tissues studied, PE evoked significant increases in PDGF-A mRNA levels only in the aorta. When periaortic fatty/connective tissues normally adherent to thoracic aorta were examined separately from the remaining aortic vessel wall (endothelium removed), stimulated PDGF-A gene expression was found only in vessel wall (presumably smooth muscle). The physiological alpha-adrenergic agonist norepinephrine also increased aortic PDGF-A mRNA levels. Angiotensin II or endothelin, despite producing blood pressure increases similar to PE, had little or no effect on PDGF-A mRNA abundance in rat aorta. PE-stimulated PDGF-A gene expression was accompanied by increased expression of other growth-related genes including c-fos, c-myc, and ornithine decarboxylase but not DNA synthesis. These results suggest a mechanism for previously described trophic effects of sympathetic nerves and catecholamines on arterial smooth muscle mass, i.e. regulation of growth-related gene expression via alpha 1-adrenergic receptors.  相似文献   

10.
Isolated hepatocytes release 2–3 nmol Mg2+/mg protein or ~10% of the total cellular Mg2+ content within 2 minutes from the addition of agonists that increase cellular cAMP, for example, isoproterenol (ISO). During Mg2+ release, a quantitatively similar amount of Ca2+ enters the hepatocyte, thus suggesting a stoichiometric exchange ratio of 1 Mg2+:1Ca2+. Calcium induced Mg2+ extrusion is also observed in apical liver plasma membranes (aLPM), in which the process presents the same 1 Mg2+:1Ca2+ exchange ratio. The uptake of Ca2+ for the release of Mg2+ occurs in the absence of significant changes in Δψ as evidenced by electroneutral exchange measurements with a tetraphenylphosphonium (TPP+) electrode or 3H-TPP+. Collapsing the Δψ by high concentrations of TPP+ or protonophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) does not inhibit the Ca2+-induced Mg2+ extrusion in cells or aLPM. Further, the process is strictly unidirectional, serving only in Ca2+ uptake and Mg2+ release. These data demonstrate the operation of an electroneutral Ca2+/Mg2+ exchanger which represents a novel pathway for Ca2+ accumulation in liver cells following adrenergic receptor stimulation. This work was supported by National Institutes of Health Grant HL 18708.  相似文献   

11.
The addition of norepinephrine, epinephrine, or forskolin to collagenase-dispersed rat liver hepatocytes increase cAMP and result in a 15% loss in total cell Mg2+ within 5 min. Conversely, carbachol and vasopressin induce a 10-15% increase of total cell Mg2+. Permeabilized hepatocytes also mobilize a large pool of Mg2+ when stimulated by ADP or cAMP. This stimulation is completely inhibited by atractyloside and bongkrekic acid, two different specific inhibitors of the mitochondrial adenine nucleotide translocase. cAMP directly mobilizes Mg2+ efflux from isolated rat liver mitochondria. 50 nM cAMP or 250 microM ADP induces in 5 min a mitochondrial loss of about 6 nmol of Mg2+/mg of protein and a stimulation of ATP efflux. The effect of cAMP is specific, is not reproduced by other cyclic or noncyclic nucleotides, and is inhibited by inhibitors of the adenine nucleotide translocase. These data indicate that cAMP is a messenger for a major mobilization of Mg2+ in hepatocytes. A major target for the effect of cAMP are mitochondria, which lose up to 20-25% of their total Mg2+ in 5 min, both within the cell and after isolation. Evidence is presented suggesting that the adenine nucleotide translocase is the target of the cAMP-dependent Mg2+ efflux and that cAMP may change the operation of the translocase. This, in turn, could change within the matrix the substrate of choice of the translocase from ATP to ATP.Mg.  相似文献   

12.
The rat thyroid cell line, FRTL-5, expresses an alpha 1-adrenergic receptor when exposed to thyrotropin. We have found that occupation of this alpha 1-adrenergic receptor by norepinephrine stimulated the release of [3H]arachidonic acid from prelabeled cells. Arachidonic acid was metabolized primarily to prostaglandin E2 and to much smaller amounts of 11-hydroxy-5,8,11,13-eicosatetraenoic acid, 15-hydroxy-5,8,11,13-eicosatetraenoic acid, prostaglandin D2, and thromboxane B2. Synthesis of all these metabolites was inhibited by the cyclooxygenase inhibitor indomethacin. When FRTL-5 cells were starved of thyrotropin for 24 h, norepinephrine nearly doubled [3H]thymidine uptake into DNA. Cyclooxygenase inhibitors inhibited norepinephrine-stimulated thymidine uptake by 60-70%. Of several arachidonic acid metabolites tested, none was able to stimulate thymidine uptake directly in the presence of indomethacin. Prostaglandin E2, however, was able to restore [3H]thymidine uptake when added together with norepinephrine in the presence of indomethacin. Thus, occupation of an alpha 1-adrenergic receptor in a functional rat thyroid cell line leads to arachidonic acid release. Subsequent metabolism of the arachidonic acid by the cyclooxygenase pathway leads to synthesis of prostaglandin E2, which mediates a norepinephrine-stimulated activity related to cell replication.  相似文献   

13.
Incubation of Ca2(+)-loaded rat liver mitochondria with N-acetyl-p-benzoquinone imine (NAPQI) or its two dimethylated analogues resulted in a concentration dependent Ca2+ release, with the following order of potency: 2,6-(Me)2-NAPQI greater than NAPQI greater than 3,5-(Me)2-NAPQI. The quinone imine-induced Ca2+ release was associated with NAD(P)H oxidation and was prevented when NAD(P)+ reduction was stimulated by the addition of 3-hydroxybutyrate. Mitochondrial glutathione was completely depleted within 0.5 min by all three quinone imines, even at low concentrations that did not result in Ca2+ release. Depletion of mitochondrial GSH by pretreatment with 1-chloro-2,4-dinitrobenzene enhanced quinone imine-induced NAD(P)H oxidation and Ca2+ release. However, 3-hydroxybutyrate protected from quinone imine-induced Ca2+ release in GSH-depleted mitochondria. Mitochondrial membrane potential was lost after the addition of quinone imines at concentrations that caused rapid Ca2+ release; however, subsequent addition of EGTA led to the complete recovery of the transmembrane potential. In the absence of Ca2+, the quinone imines caused only a small and transient loss of the transmembrane potential. Taken together, our results suggests that the quinone imine-induced Ca2+ release from mitochondria is a consequence of NAD(P)H oxidation rather than GSH depletion, GSSG formation, or mitochondrial inner membrane damage.  相似文献   

14.
A P Dawson 《FEBS letters》1985,185(1):147-150
Low concentrations of GTP (10-50 microM) greatly enhance the inositol 1,4,5-trisphosphate stimulated Ca2+ release from rat liver microsomal vesicles. The effect of GTP depends on the presence of low concentrations of polyethylene glycol in the incubation medium. Guanylyl imidodiphosphate is ineffective at mimicking the GTP effect and inhibits the action of GTP added subsequently.  相似文献   

15.
Ba2+ ions inhibit the release of Ca2+ ions from rat liver mitochondria   总被引:1,自引:0,他引:1  
The release of Ca2+ from respiring rat liver mitochondria following the addition of either ruthenium red or an uncoupler was measured by a Ca2+-selective electrode or by 45Ca2+ technique. Ba2+ ions are asymmetric inhibitors of both Ca2+ release processes. Ba2+ ions in a concentration of 75 microM inhibited the ruthenium red and the uncoupler induced Ca2+ release by 80% and 50%, respectively. For the inhibition, it was necessary that Ba2+ ions entered the matrix space: Ba2+ ions did not cause any inhibition of Ca2+ release if addition of either ruthenium red or the uncoupler preceded that of Ba2+. The time required for the development of the inhibition of the Ca2+ release and the time course of 140Ba2+ uptake ran in parallel. Ba2+ accumulation is mediated through the Ca2+ uniporter as 140Ba2+ uptake was competitively inhibited by extramitochondrial Ca2+ and prevented by ruthenium red. Due to the inhibition of the ruthenium red insensitive Ca2+ release, Ba2+ shifted the steady-state extramitochondrial Ca2+ concentration to a lower value. Ba2+ is potentially a useful tool to study mitochondrial Ca2+ transport.  相似文献   

16.
D S Lapointe  M S Olson 《Cell calcium》1991,12(10):743-753
The kinetics of calcium movements in the isolated perfused rat liver were examined using compartmental analysis of the efflux profiles of 45Ca2+ from 45Ca(2+)-equilibrated livers under a variety of calcium concentrations and hormonal treatments. From the 45Ca2+ efflux profiles, we determined that a three compartment model was appropriate to describe the movements of calcium in the liver on the time scale of the experiments. Hormonal treatment with the alpha-adrenergic agonist, phenylephrine, or the vasoactive peptide, vasopressin, during the efflux period lowered significantly the rate of transfer of Ca2+ between the internal compartments at all of the calcium concentrations employed. Also, phenylephrine treatment leads to increased transfer of Ca2+ into the liver from the perfusate. The temporal characteristics of the phenylephrine and vasopressin sensitive Ca2+ pools were examined by pulsing livers, loaded for variable periods of time with 45Ca2+, with the two hormones during the efflux of 45Ca2+ to measure the kinetics of Ca2+ exchange in the hormone-sensitive pools. Results from these experiments indicate that the rate of unstimulated Ca2+ efflux, k2, for the phenylephrine and vasopressin sensitive Ca2+ pools, modeled as a one compartment system, are the same, 0.074 and 0.078 min-1 for phenylephrine and vasopressin respectively, corresponding to half times for turnover of the pool(s) of 9.3 and 8.9 min, respectively.  相似文献   

17.
The effects of Mg2+ on rat liver microsomal Ca2+ sequestration   总被引:1,自引:0,他引:1  
The effects of Mg2+ on the hepatic microsomal Ca2(+)-sequestering system was tested. Ca2(+)-ATPase activity and Ca2+ uptake were both dependent on the concentration of free Mg2+, reaching maximum levels at 2 mM. The effects of Mg-ATP were also influenced by the concentration of free Mg2+, being maximally effective at a ratio of 1:1. The results suggest that Mg2+ influences Ca2+ sequestration at various steps, namely in addition to forming the substrate of the Ca2(+)-ATPase reaction, Mg-ATP, Mg2+ stimulates the reaction at an additional step, as indicated by its stimulatory effect on the Ca2(+)-ATPase reaction and on Ca2+ uptake, even at optimal Mg-ATP levels. The stimulatory effect of Mg2+ was evident at various pH levels tested, and it was nucleotide specific. The stimulatory effect of Mg2+ might be exerted at the dephosphorylation step of the enzymatic reaction or at an other, yet undefined, site. The results demonstrate a plural effect of Mg2+ on the hepatic microsomal sequestration system. This indicates that, depending on its magnitude, changes in Mg2+ distribution might influence cytosolic Ca2+ levels.  相似文献   

18.
Regulation of cellular Ca2+ movements by alpha 1-adrenergic receptors has been studied using 45Ca2+ flux techniques in monolayer cultures of intact BC3H-1 cells. Unidirectional 45Ca2+ efflux from BC3H-1 cells reveals multiphasic kinetics, with a major fraction of cellular Ca2+ residing in a slowly exchanging intracellular compartment. Stimulation of alpha 1-adrenergic receptors by the agonist phenylephrine substantially increases 45Ca2+ unidirectional efflux, accompanied by a far smaller increase in 45Ca2+ influx. The selective enhancement of 45Ca2+ unidirectional efflux upon alpha 1-adrenergic receptor activation results in a net 30-40% decline in total cell Ca2+ content, measured either by radioisotopic equilibrium techniques or by atomic absorption spectroscopy. The relatively large pool of Ca2+ responsive to alpha-adrenergic stimulation is not displaced by La3+ but can be depleted with the Ca2+ ionophore A-23187. These results indicate that alpha 1-adrenergic receptor activation predominantly mobilizes Ca2+ from intracellular stores, together with a much smaller increase in transmembrane Ca2+ permeability. This interpretation is supported by comparative 45Ca2+ flux studies using a sister clone of BC3H-1 cells possessing surface nicotinic acetylcholine receptors but no alpha 1-adrenergic receptors. Agonist stimulation of the cholinergic receptor opens a well characterized transmembrane ion permeability gate. Cholinergic receptor activation greatly enhances the observed 45Ca2+ unidirectional influx relative to efflux, leading to net elevation of cellular Ca2+ content as Ca2+ moves down its inwardly directed concentration gradient.  相似文献   

19.
Magnesium has been shown to modulate the Na+-stimulated release of Ca2+ (Na/Ca exchange) from brain mitochondria. The presence of 5 mM MgCl2 extramitochondrially inhibits the Na/Ca exchange as much as 70%. Additionally, Na+-stimulated Ca2+ release is enhanced by the presence of divalent chelators, this stimulation also being inhibited by the addition of excess Mg2+. The inhibitory effect of Mg2+ and the enhancement by chelating agents were both reversible. Heart mitochondria exhibit a similar enhancement of Na/Ca exchange by chelators and inhibition by MgCl2, though not as pronounced.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号