首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Dysregulation of liver X receptor alpha (LXRalpha) activity has been linked to cardiovascular and metabolic diseases. Here, we show that LXRalpha target gene selectivity is achieved by modulation of LXRalpha phosphorylation. Under basal conditions, LXRalpha is phosphorylated at S198; phosphorylation is enhanced by LXR ligands and reduced both by casein kinase 2 (CK2) inhibitors and by activation of its heterodimeric partner RXR with 9-cis-retinoic acid (9cRA). Expression of some (AIM and LPL), but not other (ABCA1 or SREBPc1) established LXR target genes is increased in RAW 264.7 cells expressing the LXRalpha S198A phosphorylation-deficient mutant compared to those with WT receptors. Surprisingly, a gene normally not expressed in macrophages, the chemokine CCL24, is activated specifically in cells expressing LXRalpha S198A. Furthermore, inhibition of S198 phosphorylation by 9cRA or by a CK2 inhibitor similarly promotes CCL24 expression, thereby phenocopying the S198A mutation. Thus, our findings reveal a previously unrecognized role for phosphorylation in restricting the repertoire of LXRalpha-responsive genes.  相似文献   

3.
4.
The nuclear receptors liver X receptor (LXR) alpha and LXRbeta serve as oxysterol receptors and regulate the expression of genes involved in lipid metabolism. LXR activation induces the expression of ATP-binding cassette (ABC) transporters, such as ABCG5 and ABCG8, which inhibit intestinal absorption of cholesterol and phytosterols. Although several synthetic LXR agonists have been generated, these compounds have limited clinical application, because they cause hypertriglycemia by inducing the expression of lipogenic genes in the liver. We synthesized derivatives of phytosterols and found some of them to act as LXR agonists. Among them, YT-32 [(22E)-ergost-22-ene-1alpha,3beta-diol], which is related to ergosterol and brassicasterol, is the most potent LXR agonist. YT-32 directly bound to LXRalpha and LXRbeta and induced the interaction of LXRalpha with cofactors, such as steroid receptor coactivator-1, as effectively as the natural ligands, 22(R)-hydroxycholesterol and 24(S),25-epoxycholesterol. Although the nonsteroidal synthetic LXR agonist T0901317 induced the expression of intestinal ABC transporters and liver lipogenic genes, oral administration of YT-32 selectively activated intestinal ABC transporters in mice. Unlike T0901317 treatment, YT-32 inhibited intestinal cholesterol absorption without increasing plasma triglyceride levels. The phytosterol-derived LXR agonist YT-32 might selectively modulate intestinal cholesterol metabolism.  相似文献   

5.
Liver X receptor alpha (LXRalpha) is a member of the nuclear receptor superfamily that is activated by oxysterols, and plays a pivotal role in regulating the metabolism, transport and uptake of cholesterol. Here, we demonstrate that LXRalpha also regulates the low-density lipoprotein receptor (LDLR) gene, which mediates the endocytic uptake of LDL cholesterol in the liver. An LXR agonist induced the expression of LDLR in cultured hepatoblastoma cells. Moreover, the LDLR promoter contained an LXR response element that was recognized by LXRalpha/RXRalpha (retinoid X receptor alpha) heterodimers in hepatoblastoma cells. These results suggest a novel pathway whereby LXRalpha might modulate cholesterol metabolism.  相似文献   

6.
7.
The nuclear liver X receptors (LXRalpha and beta) are regulators of lipid and cholesterol metabolism. Oxysterols are known LXR ligands, but the functional role of hydroxycholesterols is at present unknown. In human myotubes, chronic exposure to the LXR ligand T0901317 promoted formation of diacylglycerol (DAG) and triacylglycerol (TAG), 22-R-hydroxycholesterol (22-R-HC) had no effect, and 22-S-hydroxycholesterol (22-S-HC) reduced the formation. In accordance with this, 22-HC and T0901317 regulated the expression of fatty acid transporter CD36, stearoyl-CoA desaturase-1, acyl-CoA synthetase long chain family member 1 and fatty acid synthase (FAS) differently; all genes were increased by T0901317, 22-R-HC did not change their expression level, while 22-S-HC reduced it. Transfection studies confirmed that the FAS promoter was activated by T0901317 and repressed by 22-S-HC through an LXR response element in the promoter. Both 22-R-HC and T0901317 increased gene expression of LXRalpha, sterol regulatory element-binding protein 1c and ATP-binding cassette transporter A1, while 22-S-HC had little effect. In summary, 22-R-HC regulated lipid metabolism and mRNA expression of some LXR target genes in human myotubes differently than T0901317. Moreover, 22-S-HC did not behave like an inactive ligand; it reduced synthesis of complex lipids and repressed certain genes involved in lipogenesis and lipid handling.  相似文献   

8.
9.
10.
Liver X activated receptor alpha (LXRalpha) forms a functional dimeric nuclear receptor with RXR that regulates the metabolism of several important lipids, including cholesterol and bile acids. As compared with RXR, the LXRalpha protein level in the cell is low and the LXRalpha protein itself is very hard to detect. We have previously reported that the mRNA for LXRalpha is highly expressed in human cultured macrophages. In order to confirm the presence of the LXRalpha protein in the human macrophage, we have established a monoclonal antibody against LXRalpha, K-8607. The binding of mAb K-8607 to the human LXRalpha protein was confirmed by a wide variety of different techniques, including immunoblotting, immunohistochemistry, and electrophoretic mobility shift assay (EMSA). By immunoblotting with this antibody, the presence of native LXR protein in primary cultured human macrophage was demonstrated, as was its absence in human monocytes. This monoclonal anti-LXRalpha antibody should prove to be a useful tool in the analysis of the human LXRalpha protein.  相似文献   

11.
12.
13.
Autoregulation of the human liver X receptor alpha promoter   总被引:4,自引:0,他引:4       下载免费PDF全文
Previous work has implicated the nuclear receptors liver X receptor alpha (LXR alpha) and LXR beta in the regulation of macrophage gene expression in response to oxidized lipids. Macrophage lipid loading leads to ligand activation of LXRs and to induction of a pathway for cholesterol efflux involving the LXR target genes ABCA1 and apoE. We demonstrate here that autoregulation of the LXR alpha gene is an important component of this lipid-inducible efflux pathway in human macrophages. Oxidized low-density lipoprotein, oxysterols, and synthetic LXR ligands induce expression of LXR alpha mRNA in human monocyte-derived macrophages and human macrophage cell lines but not in murine peritoneal macrophages or cell lines. This is in contrast to peroxisome proliferator-activated receptor gamma (PPAR gamma)-specific ligands, which stimulate LXR alpha expression in both human and murine macrophages. We further demonstrate that LXR and PPAR gamma ligands cooperate to induce LXR alpha expression in human but not murine macrophages. Analysis of the human LXR alpha promoter led to the identification of multiple LXR response elements. Interestingly, the previously identified PPAR response element (PPRE) in the murine LXR alpha gene is not conserved in humans; however, a different PPRE is present in the human LXR 5'-flanking region. These results have implications for cholesterol metabolism in human macrophages and its potential to be regulated by synthetic LXR and/or PPAR gamma ligands. The ability of LXR alpha to regulate its own promoter is likely to be an integral part of the macrophage physiologic response to lipid loading.  相似文献   

14.
Song C  Hiipakka RA  Liao S 《Steroids》2000,65(8):423-427
We have found that certain natural 6alpha-hydroxylated bile acids are receptor-specific activators of nuclear liver X receptor alpha (LXRalpha) (NR1H3), a nuclear receptor regulating the expression of the cholesterol 7alpha-hydroxylase gene, coding for the rate-limiting enzyme in the major pathway of bile acid synthesis. The LXR homolog, ubiquitous nuclear receptor (UR/LXRbeta) (NR1H2), was also activated by these bile acids, but at higher concentrations than for LXRalpha. Synthetic 6alpha-hydroxylated bile acid analogs were synthesized with LXRalpha-selective agonistic activity, with potential to modulate cholesterol catabolism in hypercholesterolemia.  相似文献   

15.
The nuclear receptors liver X receptor alpha (LXRalpha) (NR1H3) and LXRbeta (NR1H2) are important regulators of genes involved in lipid metabolism, including ABCA1, ABCG1, and sterol regulatory element-binding protein-1c (SREBP-1c). Although it has been demonstrated that oxysterols are LXR ligands, little is known about the identity of the physiological activators of these receptors. Here we confirm earlier studies demonstrating a dose-dependent induction of ABCA1 and ABCG1 in human monocyte-derived macrophages by cholesterol loading. In addition, we show that formation of 27-hydroxycholesterol and cholestenoic acid, products of CYP27 action on cholesterol, is dependent on the dose of cholesterol used to load the cells. Other proposed LXR ligands, including 20(S)-hydroxycholesterol, 22(R)-hydroxycholesterol, and 24(S),25-epoxycholesterol, could not be detected under these conditions. A role for CYP27 in regulation of cholesterol-induced genes was demonstrated by the following findings. 1) Introduction of CYP27 into HEK-293 cells conferred an induction of ABCG1 and SREBP-1c; 2) upon cholesterol loading, CYP27-expressing cells induce these genes to a greater extent than in control cells; 3) in CYP27-deficient human skin fibroblasts, the induction of ABCA1 in response to cholesterol loading was ablated; and 4) in a coactivator association assay, 27-hydroxycholesterol functionally activated LXR. We conclude that 27-hydroxylation of cholesterol is an important pathway for LXR activation in response to cholesterol overload.  相似文献   

16.
17.
18.
The liver X receptors (LXRs) are members of the nuclear receptor superfamily that are activated by oxysterols. In response to ligand binding, LXRs regulate a variety of genes involved in the catabolism, transport, and uptake of cholesterol and its metabolites. Here we demonstrate that LXRs also regulate plasma lipoprotein metabolism through control of the phospholipid transfer protein (PLTP) gene. LXR ligands induce the expression of PLTP in cultured HepG2 cells and mouse liver in vivo in a coordinate manner with known LXR target genes. Moreover, plasma phospholipid transfer activity is increased in mice treated with the synthetic LXR ligand GW3965. Unexpectedly, PLTP expression was also highly inducible by LXR in macrophages, a cell type not previously recognized to express this enzyme. The ability of synthetic and oxysterol ligands to regulate PLTP mRNA in macrophages and liver is lost in animals lacking both LXRalpha and LXRbeta, confirming the critical role of these receptors. We further demonstrate that the PLTP promoter contains a high-affinity LXR response element that is bound by LXR/RXR heterodimers in vitro and is activated by LXR/RXR in transient-transfection studies. Finally, immunohistochemistry studies reveal that PLTP is highly expressed by macrophages within human atherosclerotic lesions, suggesting a potential role for this enzyme in lipid-loaded macrophages. These studies outline a novel pathway whereby LXR and its ligands may modulate lipoprotein metabolism.  相似文献   

19.
20.
The liver X receptor (LXR) is a nuclear receptor that acts as a sterol sensor and metabolic regulator of cholesterol and lipid homeostasis. Using a novel LXRalpha-specific antibody for immunohistochemistry, we evaluated cellular expression of LXRalpha in fetal rat tissues. In the fetal liver, LXRalpha-positive macrophages appeared at 12 days and their number peaked at 18 days of gestation. In contrast, hepatocytes expressed LXRalpha during the later stage of gestation, suggesting the functional development of the liver during ontogeny. Later, macrophages in spleen and thymus expressed LXRalpha, and some mononuclear cells in the vascular lumen compatible to primitive/fetal macrophages in the fetal circulation were found to express LXRalpha. In vitro, rat monocytes did not express LXRalpha, but monocyte-derived macrophages cultured in the presence of macrophage-colony stimulating factor revealed the distinct expression of LXRalpha in nucleoli. These findings suggest that LXRalpha plays a role in the differentiation of fetal macrophages, particularly hepatic macrophages, in rat development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号