首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Bacteriolytic activity of seminalplasmin   总被引:1,自引:0,他引:1  
Seminalplasmin, an antimicrobial protein from bovine seminal plasma, lysed both Gram-positive and Gram-negative bacteria but not Candida albicans. The lytic activity was not lysozyme-like and was not affected by inhibitors of RNA or protein synthesis or by azide; it was strongly inhibited by divalent cations like Ca2+, Mn2+ and Mg2+ at millimolar concentrations. Maximum lysis of Escherichia coli was obtained at 37 degrees C; heat treatment of E. coli drastically reduced its susceptibility to lysis by seminalplasmin. E. coli cells in the stationary phase of growth were lysed much less than those in the exponential phase, and those grown in an enriched medium were lysed much more than those grown in a minimal medium. It appears that the lytic activity of seminalplasmin is due to the activation of an autolysin.  相似文献   

4.
Escherichia coli ribonuclease H was purified to near-homogeneity and identified as the only additional factor required for initiation of in vitro Co1E1 DNA replication from the unique origin by RNA polymerase and DNA polymerase I. Both ribonuclease H activity and stimulating activity for Co1E1 DNA synthesis comigrate with the single protein band in gel electrophoresis. These two activities coincide throughout the process of purification. Some DNA synthesis takes place on covalently closed-circular DNA molecules other than Co1E1 DNA with the three purified enzymes. This DNA synthesis is suppressed by an Escherichia coli single-strand DNA binding protein and/or a high concentration of ribonuclease H. Negative superhelicity of template DNA is required for efficient primer formation. No evidence that supports involvement of ribonuclease III in initiation of Co1E1 DNA replication or its regulation was found.  相似文献   

5.
The Escherichia coli dnaC protein is not absolutely required in vivo for bacteriophage phiX174 parental replicative-form synthesis (Kranias and Dumas, 1974). However, when rifampin is present at a concentration that inhibits DNA-dependent RNA polymerase, phiX174 parental replicative-form synthesis is dependent on the dnaC protein activity. We conclude that E. coli DNA-dependent RNA polymerase can substitute for the dnaC protein in phiX174 parental replicative-form DNA synthesis, presumably in its initiation. The implications of this result with respect to the in vitro synthesis of the complementary strand of phiX174 DNA are discussed.  相似文献   

6.
Two temperature-sensitive autolysis-defective mutants of Escherichia coli were isolated and shown to be resistant to lysis induced by seminalplasmin, an antimicrobial protein from bovine seminal plasma, as well as to lysis induced by ampicillin, D-cycloserine and nocardicin, at 37 or 42 degrees C but not at 30 degrees C. The mutants were, however, sensitive to inhibition of RNA synthesis by seminalplasmin even at the nonpermissive temperature. Temperature-resistant revertants of the mutants were sensitive to lysis induced by the various antibiotics at 37 or 42 degrees C. The mutations in both strains were mapped at 58 min on the E. coli linkage map. The lysis resistance of the mutants was phenotypically suppressed by the addition of NaCl. Partial suppression of the lysis-resistant phenotype was also observed in a relA genetic background.  相似文献   

7.
8.
Acyl carrier protein (ACP) is a key component of the fatty acid synthesis pathways of both type I and type II synthesis systems. A large number of structure-function studies of various type II ACPs have been reported, but all are in vitro studies that assayed function or interaction of mutant ACPs with various enzymes of fatty acid synthesis or transfer. Hence in these studies functional properties of various mutant ACPs were assayed with only a subset of the many ACP-interacting proteins, which may not give an accurate overall view of the function of these proteins in vivo. This is especially so because Escherichia coli ACP has been reported to interact with several proteins that have no known roles in lipid metabolism. We therefore tested a large number of mutant derivatives of E. coli ACP carrying single amino acid substitutions for their abilities to restore growth to an E. coli strain carrying a temperature-sensitive mutation in acpP, the gene that encodes ACP. Many of these mutant proteins had previously been tested in vitro thus providing data for comparison with our results. We found that several mutant ACPs containing substitutions of ACP residues reported previously to be required for ACP function in vitro support normal growth of the acpP mutant strain. However, several mutant proteins reported to be severely defective in vitro failed to support growth of the acpP strain in vivo (or supported only weak growth). A collection of ACPs from diverse bacteria and from three eukaryotic organelles was also tested. All of the bacterial ACPs tested restored growth to the E. coli acpP mutant strain except those from two related bacteria, Enterococcus faecalis and Lactococcus lactis. Only one of the three eukaryotic organellar ACPs allowed growth. Strikingly the ACP is that of the apicoplast of Plasmodium falciparum (the protozoan that causes malaria). The fact that an ACP from a such diverse organism can replace AcpP function in E. coli suggests that some of the protein-protein interactions detected for AcpP may be not be essential for growth of E. coli.  相似文献   

9.
Aspects of the Mechanism of Action of Some Cephalosporins   总被引:2,自引:0,他引:2       下载免费PDF全文
Cephaloridine and cephalexin had no effect on ribonucleic acid (RNA), deoxyribonucleic acid (DNA), or protein synthesis in Escherichia coli. However, cephalosporin 7/30 [7-(S-benzylthioacetamido)-cephem-3-ylmethyl-N -dimethyldithiocarbamate-4-carboxylic acid] and dimethyldithiocarbamate (DMDT), which occupies the side chain at position 3 in the 7/30 molecule, inhibited protein synthesis (and, to a lesser extent, RNA and DNA syntheses) in E. coli and had an inhibitory effect on the growth of Saccharomyces carlsbergensis. A bioautograph technique showed that two inhibitory spots were obtained with 7/30 but only one such spot with cephaloridine. Release of DMDT onto or in the bacterial cell may be responsible for "unusual" mode of action of cephalosporin 7/30.  相似文献   

10.
The correlation between ribosome content and growth rate found in many bacterial species has proved useful for estimating the growth activity of individual cells by quantitative in situ rRNA hybridization. However, in dynamic environments, the stability of mature ribosomal RNA causes problems in using cellular rRNA contents for direct monitoring of bacterial growth activity in situ . In a recent paper, Cangelosi and Brabant suggested monitoring the content of precursors in rRNA synthesis (pre-rRNAs) as an alternative approach. These are rapidly broken down after the cessation of bacterial growth. We have applied fluorescence in situ hybridization of pre-16S rRNA to Escherichia coli cells growing in vitro in extracts from two different compartments of the mouse intestine: the caecal mucus layer, where E. coli grew rapidly, and the contents of the caecum, which supported much slower bacterial growth. The amounts of 23S rRNA and pre-16S rRNA measured for E. coli growing in intestinal mucus corresponded to that expected for bacteria with the observed growth rate. In contrast, the slow-growing E. coli cells present in intestinal contents turned out to have an approximately ninefold higher content of pre-16S rRNA than cultures of the same strain growing rapidly in rich media. We present results suggesting that the mouse intestinal contents contain an agent that inhibits the growth of E. coli by disturbing its ability to process pre-16S rRNA.  相似文献   

11.
The endoribonuclease RNase E plays an important role in RNA processing and degradation in Escherichia coli. The construction of an E. coli strain in which the cellular concentration of RNase E can be precisely controlled has made it possible to examine and quantify the effect of RNase E scarcity on RNA decay, gene regulation and cell growth. These studies show that RNase E participates in a step in the degradation of its RNA substrates that is partially or fully rate-determining. Our data also indicate that E. coli growth requires a cellular RNase E concentration at least 10-20% of normal and that the feedback mechanism that limits overproduction of RNase E is also able to increase its synthesis when its concentration drops below normal. The magnitude of the in-crease in RNA longevity under conditions of RNase E scarcity may be limited by an alternative pathway for RNA degradation. Additional experiments show that RNase E is a stable protein in E. coli. No other E. coli gene product, when either mutated or cloned on a multicopy plasmid, seems to be capable of compensating for an inadequate supply of this essential protein.  相似文献   

12.
Transcription in bacteria at different DNA concentrations   总被引:12,自引:6,他引:6       下载免费PDF全文
  相似文献   

13.
The effects of extra, plasmid-borne rRNA genes on the synthesis rate of rRNA in Escherichia coli were examined by measuring the fraction of total RNA synthesis that is rRNA and tRNA (rs/rt), the cytoplasmic concentration of guanosine tetraphosphate (ppGpp), and the absolute rates of RNA and protein synthesis. Experiments were carried out in different growth media and with two different strains of E. coli, B/r and K-12. The results indicated: 1) increased rrn gene dosage from either intact or defective rrn genes reduced bacterial growth rates and ribosome activity (protein synthesis rate/average ribosome), and increased rs/rt. 2) Extra intact, but not extra defective, plasmid-borne rrn genes caused the level of ppGpp to be increased in comparison to the pBR322-carrying control strain. 3) As a function of ppGpp, rs/rt was increased with either intact or defective rrn genes. 4) The rRNA synthesis rate/rrn gene was reduced in the presence of extra rrn genes; this reduction in gene activity was greater with intact than with defective rrn genes. An analysis of these results showed that they are consistent with the ppGpp hypothesis of rRNA control but not with a feedback effector role of translating ribosomes.  相似文献   

14.
Bacterial primases are essential for DNA replication due to their role in polymerizing the formation of short RNA primers repeatedly on the lagging-strand template and at least once on the leading-strand template. The ability of recombinant Staphylococcus aureus DnaG primase to utilize different single-stranded DNA templates was tested using oligonucleotides of the sequence 5'-CAGA (CA)5 XYZ (CA)3-3', where XYZ represented the variable trinucleotide. These experiments demonstrated that S. aureus primase synthesized RNA primers predominately on templates containing 5'-d(CTA)-3' or TTA and to a much lesser degree on GTA-containing templates, in contrast to results seen with the Escherichia coli DnaG primase recognition sequence 5'-d(CTG)-3'. Primer synthesis was initiated complementarily to the middle nucleotide of the recognition sequence, while the third nucleotide, an adenosine, was required to support primer synthesis but was not copied into the RNA primer. The replicative helicases from both S. aureus and E. coli were tested for their ability to stimulate either S. aureus or E. coli primase. Results showed that each bacterial helicase could only stimulate the cognate bacterial primase. In addition, S. aureus helicase stimulated the production of full-length primers, whereas E. coli helicase increased the synthesis of only short RNA polymers. These studies identified important differences between E. coli and S. aureus related to DNA replication and suggest that each bacterial primase and helicase may have adapted unique properties optimized for replication.  相似文献   

15.
More than 40 protein species including RNA polymerase were found to be phosphorylated in Escherichia coli on analyses of 32P-labeled cell lysates by single and two-dimensional gel electrophoresis and autoradiography. The protein species and the level of phosphorylation varied depending on the cell growth phase. With [gamma-32P]ATP as a substrate, cell lysates phosphorylated endogenous proteins in vitro which were predominantly phosphorylated in vivo. Both serine and threonine were the major phosphate acceptors in whole cell lysates. Starting from a partially purified RNA polymerase preparation with the protein phosphorylation activity and using an E. coli protein with an apparent Mr = 90K (K represents X 1000) as the substrate, we purified a protein kinase with a native Mr approximately 120K to apparent homogeneity. The protein kinase is either a heterodimer of 61K and 66K polypeptides or a homodimer of one of these polypeptides. We also isolated a 100K protein with self-phosphorylation activity.  相似文献   

16.
Pantothenate transport in Escherichia coli.   总被引:8,自引:5,他引:3       下载免费PDF全文
The function of the stable 6S RNA of Escherichia coli is not known. Recently, it was proposed that the 6S RNA is a component of a bacterial signal recognition particle required for protein secretion. To test this proposal, we isolated a mutant that lacks the 6S RNA. Studies of the mutant show that the 6S RNA is not essential for growth or for protein secretion. The gene for the 6S RNA (ssr) maps near serA at 63 min on the E. coli genetic map.  相似文献   

17.
18.
The functions of acetylpolyamines were examined with respect to stimulation of protein synthesis and cell growth. Unlike polyamines, acetylpolyamines could not lower the optimal Mg2+ concentration of protein synthesis, and the degree of stimulation of protein synthesis by acetylpolyamines was small. The addition of N1-acetylspermine did not stimulate cell growth of a polyamine-requiring mutant of Escherichia coli MA261, although acetylspermine was accumulated in the cells. Acetylspermine did not interfere with polyamine stimulation of protein synthesis and cell growth of E. coli MA261. The binding of acetylpolyamines to RNA was very weak, and the binding of polyamines to RNA was not disturbed significantly by the presence of acetylpolyamines. When the growth of E. coli MA261 was stimulated by addition of polyamines, significant amounts of acetylpolyamines were also formed in the cells. These results suggest that acetylation of polyamines, together with polyamine excretion, may regulate the intracellular level of the parent polyamines when excess amounts of polyamines accumulate intracellularly.  相似文献   

19.
20.
Ribosomes and polyribosomes from Clostridium pasteurianum were isolated and their activities were compared with those of ribosomes from Escherichia coli in protein synthesis in vitro. C. pasteurianum ribosomes exhibited a high level of activity due to endogenous messenger ribonucleic acid (RNA). For translation of polyuridylic acid [poly(U)], C. pasteurianum ribosomes required a higher concentration of Mg(2+) and a much higher level of poly(U) than did E. coli ribosomes. Phage f2 RNA added to the system with C. pasteurianum ribosomes gave no significant stimulation of protein synthesis in a homologous system or with E. coli initiation factors. The 30S and 50S subunits prepared from C. pasteurianum ribosomes reassociated less readily than subunits from E. coli. The ability of the C. pasteurianum subunits to reassociated was found to be dependent upon the presence of a reducing agent during preparation and during analysis of the reassociation products. In heterologous combinations, E. coli 30S subunits associated readily with C. pasteurianum 50S subunits to form 70S particles, but C. pasteurianum 30S subunits and E. coli 50S subunits did not associate. In poly(U) translation, E. coli 30S subunits were active in combination with 50S subunits from either E. coli or C. pasteurianum, but C. pasteurianum 30S subunits were not active in combination with either type of 50S subunits. Polyribosomes prepared from C. pasteurianum were very active in protein synthesis, and well-defined ribosomal aggregates as large as heptamers could be seen on sucrose gradients. An attempt was made to demonstrate synthesis in vitro of ferredoxin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号