首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When Escherichia coli DNA polymerase I (Pol I) replicates a homopolymer, the excision/polymerization (exo/pol) ratio varies with enzyme and initiator concentration. The study of this effect in the case of poly(dA).oligo(dT) replication led us to propose a mnemonic model for Pol I, in which the 3' to 5' excision activity warms up when the enzyme is actively polymerizing, and cools down when it dissociates from the template. The model predicts that the exo/pol ratio must increase with processivity length and initiator concentration and decrease with enzyme concentration. It predicts also that contact of the enzyme with one template alters its excision efficiency towards another template. The exo/pol ratio and processivities of Pol I and its Klenow fragment were studied on four templates: poly(dA).(dT)10, poly(dT).(dA)10, poly(dC).(dG)10 and poly(dI).(dC)10. We show that the Klenow fragment is usually much less processive than Pol I and when this is the case it has a much lower exo/pol ratio. At equal processivity, the exo/pol ratios are nearly equal. Furthermore, many factors that influence processivity length (e.g. manganese versus magnesium, inorganic pyrophosphate, ionic strength) influence the exo/pol ratio in the same direction. The study of deaminated poly(dC) replication, where we followed incorporation and excision of both G and A residues, allowed us to assign the origin of the dNMP variations to changes in the 3' to 5' proof-reading activity of Pol I. Similarly, the lower dNMP turnover of the Klenow fragment observed with deaminated poly(dC) was specifically assigned to a decreased 3' to 5' exonuclease activity. The exo/pol ratio generally increased with initiator and decreased with enzyme concentration, in agreement with the model, except for poly(dI).oligo(dC), where it decreased with initiator concentration. However, by terminating chain elongation with dideoxy CTP, we showed directly that, even in this system, excision is relatively inefficient at the beginning of synthesis. Interaction of Pol I with poly(dA).(dT) or with poly(dC).(dG) modifies its exo/pol characteristics in the replication of poly(dI).(dC) and poly(dA).(dT), respectively. The Klenow enzyme is not sensitive to such influences and this correlates with its reduced processivity on the influencing templates. Our results reveal the existence of differences between Pol I and its Klenow fragment that are more profound than has been thought previously.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
The immunopurified yeast DNA-polymerase-I--DNA-primase complex synthesizes oligo(rA) and oligo(rG) molecules that are used as primer for replication of poly(dT) and poly(dC). Neither initiation nor DNA synthesis is observed with poly(dA) and poly(dI). Nitrocellulose-filter binding shows that the enzyme complex binds to deoxypyrimidine polymers, but not to deoxypurine polymers. Although the yeast complex initiates DNA synthesis on deoxypyrimidine homopolymers, it prefers to elongate pre-existing primer molecules rather than to initiate de novo DNA replication. The size of the oligo(rA) and oligo(rG) primer molecules has been determined by urea/polyacrylamide gel electrophoresis: longer oligoribonucleotides are synthesized when their utilization is prevented by omitting dNTP. An oligodeoxythymidylate template with a chain length as short as five residues can support oligo(rA) synthesis catalyzed by the yeast DNA-polymerase--DNA-primase complex and the size of the oligoribonucleotide products synthesized with oligodeoxythymidylate of differing chain length has also been determined. The mechanistic properties of the DNA-polymerase--DNA-primase complexes, purified from different eukaryotic organisms, appear to be very similar. The possible biological implication of the studies on the mechanism and specificity of initiation of DNA synthesis in a well-defined model template system has been discussed.  相似文献   

3.
The adenovirus-encoded 140-kDa DNA polymerase (Ad Pol) and the 59-kDa DNA binding protein (Ad DBP) are both required for the replication of viral DNA in vivo and in vitro. Previous studies demonstrated that, when poly(dT).oligo(dA) was used as a template-primer, both proteins were required for poly(dA) synthesis. In this report, the interaction between the Ad Pol and Ad DBP was further investigated using poly(dT).oligo(dA) as well as a linear duplex molecule containing 3' poly(dT) tails. DNA synthesis with the tailed template required Ad Pol, Ad DBP, and an oligo(dA) primer hydrogen bonded to the poly(dT) tails. Incorporation was stimulated 8-10-fold by ATP; however, no evidence of ATP hydrolysis to ADP was observed. Synthesis was initiated at either end of the tailed molecule and proceeded through the duplex region to the end of the molecule. This ability to translocate through duplex DNA and to synthesize long poly(dA) chains suggests that the Ad Pol.Ad DBP complex can act efficiently in the elongation reactions involved in the replication of Ad DNA (both type I and type II). During the replication reaction, substantial hydrolysis of deoxynucleoside triphosphates to the corresponding deoxynucleoside monophosphates occurred. This reaction required DNA synthesis and most likely reflects an idling reaction similar to that observed with other DNA polymerases containing 3'----5' exonuclease activity in which the polymerase first incorporates and then hydrolyzes a dNMP.  相似文献   

4.
Polynucleotide recognition by DNA alpha-polymerase.   总被引:4,自引:1,他引:3       下载免费PDF全文
In a survey of template-primer preference of a mouse myeloma DNA alpha-polymerase, the fastest rate of DNA synthesis was with poly(dT) as template and (rA)24 as primer. Such a preference for poly(dT).oligo(rA) was not observed with other DNA polymerases of mouse origin. DNA synthesis in this system resulted in formation of oligo(dA) chains, not template-length poly(dA); thus, the average enzyme molecule bound to a poly(dT).(rA)24 complex and initiated a new oligo(dA) chain many times during the incubation. Binding experiments revealed that the alpha-polymerase had high affinity for poly(dT). Although the alpha-polymerase did not bind to poly(dl) and failed to replicate it inreactions with a base pair complementary primer, poly(dl) was replicated after a (dT) block had been grafted to its 3'-end and the oligo(rA) primer had been added. In similar experiments, the (dT) block was found to be much more effective than other 3'-terminal blocks in promoting replication of denatured calf thymus DNA. The results indicate that specific base sequences may regulate initiation of DNA syntehsis by this alpha-polymerase.  相似文献   

5.
In the presence of DNA and a divalent cation, an enzyme activity in cell-free extracts of Escherichia coli readily hydrolyses dATP to dADP. dGTP is degraded to a smaller extent, dCTP and dTTP being hardly affected. The artificial template primers poly(dC) . oligo(dG) and poly(dT) . oligo(dA) are also effective cofactors for this triphosphatase activity. As a consequence, assays measuring the misincorporation, by cell-free extracts, of dATP and dGTP into these defined templates are difficult to interpret, since the triphosphate substrate is being rapidly degraded during the polymerase reaction. A partial characterization of the dATPase activity was performed, demonstrating that the optimal conditions for its activity resemble those commonly used for assaying polymerase activity. Thus in crude extracts both polymerase and dATPase compete for the same substrate. The inclusion of an ATP-generating system in the reaction mixture maintains the levels of deoxynucleoside triphosphates and changes the kinetics of misincorporation of dAMP into poly(dC) . oligo(dG). No reproducible difference in such misincorporation has been found between lysates prepared from tif-1 cells grown at either permissive or restrictive temperature.  相似文献   

6.
A model RNA template-primer system is described for the study of RNA-directed double-stranded DNA synthesis by purified avian myeloblastosis virus DNA polymerase and its associated RNase H. In the presence of complementary RNA primer, oligo(rI), and the deoxyribonucleoside triphosphates dGTP, dTTP, and dATP, 3'-(rC)30-40-poly(rA) directs the sequential synthesis of poly(dT) and poly(dA) from a specific site at the 3' end of the RNA template. With this model RNA template-primer, optimal conditions for double-stranded DNA synthesis are described. Analysis of the kinetics of DNA synthesis shows that initially there is rapid synthesis of poly(dT). After a brief time lag, poly(dA) synthesis and the DNA polymerase-associated RNase H activity are initiated. While poly(rA) is directing the synthesis of poly(dT), the requirements for DNA synthesis indicate that the newly synthesized poly(dT) is acting as template for poly(dA) synthesis. Furthermore, selective inhibitor studies using NaF show that activation of RNase H is not just a time-related event, but is required for synthesis of the anti-complementary strand of DNA. To determine the specific role of RNase H in this synthetic sequence, the primer for poly(dA) synthesis was investigated. By use of formamide--poly-acrylamide slab gel electrophoresis, it is shown that poly(dT) is not acting as both template and primer for poly(dA) synthesis since no poly(dT)-poly(dA) covalent linkages are observed in radioactive poly(dA) product. Identification of 2',3'-[32P]AMP on paper chromatograms of alkali-treated poly(dA) product synthesized with [alpha-32P]dATP as substrate demonstrates the presence of rAMP-dAMP phosphodiester linkages in the poly(dA) product. Therefore, a new functional role of RNase H is demonstrated in the RNA-directed synthesis of double-stranded DNA. Not only is RNase H responsible for the degradation of poly(rA) following formation of a poly(rA)-poly(dT) hybrid but also the poly(rA)fragments generated are serving as primers for initiation of synthesis of the second strand of the double-stranded DNA.  相似文献   

7.
Template-challenge experiments indicate no gross difference in processivity of the calf thymus DNA polymerase α A and C enzymes. Both enzymes appear to be distributive. Results showing the apparent processive nature of both enzymes on poly (dC). oligo (dG)10 when challenged with poly (dA). oligo (dT)10 are explicable by the failure of both enzymes to bind to the challenging template rather than by the presence of an initiation factor which preferentially binds to certain templates.  相似文献   

8.
9.
E. coli DNA topoisomerase I catalyzes DNA topoisomerization by transiently breaking and rejoining single DNA strands (1). When an enzyme-DNA incubation mixture is treated with alkaline or detergent, DNA strand cleavage occurs, and the enzyme becomes covalently linked to the 5'-phosphoryl end of the cleaved DNA (2). Using oligonucleotides of defined length and sequence composition, this cleavage reaction is utilized to study the mechanism of E. coli DNA topoisomerase I. dA7 is the shortest oligonucleotide tested that can be cleaved by the enzyme. dT8 is the shortest oligo(dT) that can be cleaved. The site of cleavage in both cases is four nucleotides from the 3' end of the oligonucleotide. No cleavage can be observed for oligo(dC) and oligo(dG) of length up to eleven bases long. dC15 and dC16 are cleaved at one tenth or less the efficiency of oligo(dA) and oligo(dT) of comparable length.  相似文献   

10.
11.
A Levy  P Weisman-Shomer  M Fry 《Biochemistry》1989,28(18):7262-7267
Distamycin A, a polypeptide antibiotic, binds to dA.dT-rich regions in the minor groove of B-DNA. By virtue of its nonintercalating binding, distamycin acts as a potent inhibitor of the synthesis of DNA both in vivo and in vitro. Here we report that distamycin paradoxically stimulates Escherichia coli DNA polymerase I (pol I), its large (Klenow) fragment, and bacteriophage T4 DNA polymerase to copy oligo(dA).poly(dT) in vitro. It is found that distamycin increases the maximum velocity (Vmax) of the extension of the oligo(dA) primer by pol I without affecting the Michaelis constant (Km) of the primer. Gel electrophoresis of the extended primer indicates that the antibiotic specifically increases the rate of addition of the first three dAMP residues. Lastly, in the presence of both distamycin and the oligo(dT)-binding protein factor D, which increases the processivity of pol I, a synergistic stimulation of polymerization is attained. Taken together, these results suggest that distamycin stimulates synthesis by increasing the rate of initiation of oligo(dA) extension. The stimulatory effect of distamycin is inversely related to the stability of the primer-template complex. Thus, maximum stimulation is exerted at elevated temperatures and with shorter oligo(dA) primers. That distamycin increases the thermal stability of [32P](dA)9.poly(dT) is directly demonstrated by electrophoretic separation of the hybrid from dissociated [32P](dA)9 primer. It is proposed that by binding to the short primer-template duplex, distamycin stabilizes the oligo(dA).poly(dT) complex and, therefore, increases the rate of productive initiations of synthesis at the primer terminus.  相似文献   

12.
13.
A complementation experiment was developed to identify the protein component that is essential for the in vitro replication of a cloned template containing a chloroplast DNA replication origin of Chlamydomonas reinhardtii. Using this method, we have identified a DNA primase activity that copurified with DNA polymerase from the crude protein mixture. The primase catalyzed the synthesis of short RNA primers on single-stranded DNA templates. Among the synthetic templates, the order of preference was poly(dA), poly(dT), and poly(dC). The primer size range for these templates was 11-18, 5-12, and 3-11 nucleotides, respectively. On a single-stranded template containing the chloroplast DNA replication origin, the primer length range reached 19 to 27 nucleotides, indicating a better processtivity. Several initiation sites were mapped on both strands of the cloned replication origin. Some preferential initiation sites were located on A tracks spaced at one helical turn apart within the bending locus. Primase improved the template specificity of the in vitro DNA replication system and enhanced the incorporation of radioactive dATP into the supercoiled template containing the core sequences of the chloroplast DNA replication origin.  相似文献   

14.
Class III DNA-dependent RNA polymerase (EC 2.7.7.6) was highly purified from cauliflower (Brassica oleracea, var. bortytis) by using polyethyleneimine precipitation. The specific activity of the enzyme was comparable to that reported for mammalian enzymes. Glycerol gradient sedimentation analysis indicated that the sedimantation coefficient (23 S) was slightly higher than that of enzyme II from cauliflower. The class III enzyme was inhibited by alpha-amanitin at high concentrations (50% inhibition at 200 microgram/ml). The Km value for nucleoside triphosphate was determined. Template specificities for single synthetic polymers showed that the enzyme read pyrimidine homopolymers as templates and preferred poly(dT) to poly(dC). The enzyme transcribed both strands of homopolymer pairs of poly(dI). poly(dC) and poly(dA).poly(dT). The synthetic polyribonucleotides were not effectively read. Competition experiments with these synthetic polymers indicated that the enzyme had different binding specificities which were not the same as their template specificities. The different binding affinities and template specificites for synthetic templates of the three classes of enzyme suggest that the enzyme can discriminate among different template sequences.  相似文献   

15.
The synthesis of polydeoxyribose polymers by Escherichia coli DNA polymerase I has been investigated with control and gamma-irradiated DNA-like polymer templates containing only two bases. The results show that irradiation of a poly(dA) strand leads to the incorporation of dG, whereas irradiation of poly(dC) and poly(dG) strands both lead to the incorporation of dA. Irradiation of poly(dT) does not lead to the incorporation of any wrong base. The wrong bases are incorporated into the complementary strand of the newly synthesised DNA.  相似文献   

16.
We have undertaken a search for mammalian DNA-binding proteins that enhance the activity of DNA polymerases in a template sequence-specific fashion. In this paper, we report the extensive purification and characterization of a new DNA-binding protein from rabbit liver that selectively stimulates DNA polymerases to copy synthetic poly[d(G-C)] and the poly(dC) strand of poly(dC).poly(dG) as well as single-stranded natural DNA that contains stretches of oligo(dC). The enhancing protein, a polypeptide of 65 kDa designated factor C, stimulates the copying of the two synthetic templates by Escherichia coli DNA polymerase I, Micrococcus luteus polymerase, and eukaryotic DNA polymerases alpha and beta, but not by avian myeloblastosis virus polymerase. Factor C, however, does not affect utilization by these polymerases of the poly(dG) strand of poly(dC).poly(dG), of poly(dC) primed by oligo(dG), or of poly(dA).poly(dT) and poly[d(A-T)]. With polymerase I, Michaelis constants (Km) of poly[d(G-C)] and of the poly(dC) strand of poly(dC).poly(dG) are decreased by factor C 37- and 4.7-fold, respectively, whereas maximum velocity (Vmax) remains unchanged. By contrast, neither the Km value of the poly(dG) strand of poly(dC).poly(dG) nor the Vmax value with this template is altered by factor C. Rates of copying of activated DNA, denatured DNA, or singly primed M13 DNA are not affected significantly by factor C. However, primer extension analysis of the copying of recombinant M13N4 DNA that contains runs of oligo(dC) within an inserted thymidine kinase gene shows that factor C increases processivity by specifically augmenting the efficiency at which polymerase I traverses the oligo(dC) stretches. Direct binding of factor C to denatured DNA is indicated by retention of the protein-DNA complex on columns of DEAE-cellulose. Binding of factor C to poly[d(G-C)] is demonstrated by the specific adsorption of the enhancing protein to columns of poly[d(G-C)]-Sepharose. We propose that by binding to poly[d(G-C)] and to poly(dC).poly(dG), factor C enables tighter binding of some DNA polymerases to these templates and facilitates enzymatic activity.  相似文献   

17.
On activated DNA aphidicolin competitively inhibits the incorporation of dCMP by both calf thymus DNA polymerase alpha A2 and C enzymes and inhibits the incorporation of the other three deoxynucleoside monophosphates apparently non-competitively. However, aphidicolin does not inhibit the incorporation of dAMP into poly(dT) . oligo(A)10 nor does it inhibit the incorporation of dGMP into poly(dC) . oligo(dG)10, but, it does competitively inhibit the incorporation of dTMP into poly(dA) . oligo(dT)10.  相似文献   

18.
19.
Pyrimidine 5-methyl groups influence the magnitude of DNA curvature   总被引:2,自引:0,他引:2  
P J Hagerman 《Biochemistry》1990,29(8):1980-1983
DNA containing short sequences of the form (dA)n.(dT)n can exhibit pronounced degrees of stable curvature of the helix axis, provided that these homooligomeric stretches are approximately in phase with the helix repeat. However, the precise origin of this effect is unknown. We have observed that pyrimidine 5-methyl groups can have a significant effect on the degree of curvature, depending on their locations within the homooligomeric sequences. Such effects are observed in both (dA)n.(dT/dU)n and (dI)n.(dC/d5meC)n sequence motifs, arguing for a general structural perturbation due to the methyl group. The current observations suggest that pyrimidine methyl groups could influence protein-DNA interactions not only through direct protein-methyl group contacts but also by methyl group induced alterations in local DNA structure.  相似文献   

20.
Three types of DNA: approximately 2700 bp polydeoxyguanylic olydeoxycytidylic acid [poly(dG)-poly(dC)], approximately 2700 bp polydeoxyadenylic polydeoxythymidylic acid [poly(dA)-poly(dT)] and 2686 bp linear plasmid pUC19 were deposited on a mica surface and imaged by atomic force microscopy. Contour length measurements show that the average length of poly(dG)-poly(dC) is approximately 30% shorter than that of poly(dA)-poly(dT) and the plasmid. This led us to suggest that individual poly(dG)-poly(dC) molecules are immobilized on mica under ambient conditions in a form which is likely related to the A-form of DNA in contrast to poly(dA)-poly(dT) and random sequence DNA which are immobilized in a form that is related to the DNA B-form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号