首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mouse monoclonal antibody 38C2 is the prototype of a new class of catalytic antibodies that were generated by reactive immunization. Through a reactive lysine, 38C2 catalyzes aldol and retro-aldol reactions using the enamine mechanism of natural aldolases. In addition to its remarkable versatility and efficacy in synthetic organic chemistry, 38C2 has been used for the selective activation of prodrugs in vitro and in vivo and thereby emerged as a promising tool for selective chemotherapy. Adding another application with relevance for cancer therapy, designated adaptor immunotherapy, we have recently shown that 38C2 can be chemically programmed to target tumors by formation of a covalent bond of defined stoichiometry with a beta-diketone derivative of an integrin alpha(v)beta(3) targeting RGD peptidomimetic. However, a major limitation for the transition from preclinical to clinical evaluation is the human anti-mouse antibody immune response that mouse 38C2 is likely to elicit in a majority of patients after single administration. Here, we report the humanization of mouse 38C2 based on rational design guided by molecular modeling. In essence, the catalytic center of mouse 38C2, which encompasses a deep hydrophobic pocket with a reactive lysine residue at the bottom, was grafted into a human antibody framework. Humanized 38C2 IgG1 was found to bind to beta-diketone haptens with conserved affinities and revealed strong catalytic activity with identical k(cat) and slightly higher K(M) values compared to the parental mouse antibody. Furthermore, humanized 38C2 IgG1 revealed efficiency in prodrug activation and chemical programming comparable to the parental mouse antibody.  相似文献   

2.
Recombinant fuculose 1-phosphate aldolase (FucA) from E. coli has been immobilized by multipoint covalent attachment to glyoxal-agarose gels. Experiments, varying the main parameters that control the immobilization process (surface density of aldehyde groups, temperature, pH), were carried out. An immobilization yield of 80–90% and FucA retained activity on immobilized derivative of 10–20% can be achieved when pH?10, 20°C and 200?µmoles?cm?3 of aldehyde groups was used. The observed activity loss in the immobilization process might be related to the fact that the complex quaternary structure of the enzyme could not be maintained. A short contact-time enzyme support is required to obtain high ratio of active to total immobilized enzyme.

A highly loaded derivative of immobilized FucA (65?AU?cm?3 of support) has been prepared to use in aldol condensation reactions. Reactions catalyzed by these aldolases involve the use of non-conventional media because of substrate solubility. For instance, the condensation of dihydroxyacetone phosphate (DHAP) and Z-amino-propanal, Z-(R)-alaninal and Z-(S)- alaninal in highly concentrated water-in-oil emulsions gave synthetic yields of 40, 25 and 29% respectively.  相似文献   

3.
The direct asymmetric aldol reactions of equivalent molar amounts of aldehydes and ketones were carried out at −20 °C over alkaline Al2O3 with 20 mol % of Pro‐Trp as catalyst and 20 mol % of N‐methylmorpholine or 1,4‐diazabicyclo[2.2.2]octane as additive. After simple and environmentally friendly work‐up, moderate to high isolated yields (up to 95%), good diastereoselectivities (>99:1), and enantioselectivities (up to 98% ee) have been achieved for the reactions of different kinds of ketones with various aldehydes. The catalytic system could be reused without decrease of activity by addition of 10 mol % catalyst and base in the catalytic system. Chirality 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
Recombinant fuculose 1-phosphate aldolase (FucA) from E. coli has been immobilized by multipoint covalent attachment to glyoxal-agarose gels. Experiments, varying the main parameters that control the immobilization process (surface density of aldehyde groups, temperature, pH), were carried out. An immobilization yield of 80-90% and FucA retained activity on immobilized derivative of 10-20% can be achieved when pH 10, 20°C and 200 µmoles cm-3 of aldehyde groups was used. The observed activity loss in the immobilization process might be related to the fact that the complex quaternary structure of the enzyme could not be maintained. A short contact-time enzyme support is required to obtain high ratio of active to total immobilized enzyme.


A highly loaded derivative of immobilized FucA (65 AU cm-3 of support) has been prepared to use in aldol condensation reactions. Reactions catalyzed by these aldolases involve the use of non-conventional media because of substrate solubility. For instance, the condensation of dihydroxyacetone phosphate (DHAP) and Z-amino-propanal, Z-(R)-alaninal and Z-(S)- alaninal in highly concentrated water-in-oil emulsions gave synthetic yields of 40, 25 and 29% respectively.  相似文献   

5.
Phenolic L‐prolinamide was allowed to participate in enzymatic polymerization with horseradish peroxidase as the catalyst, generating immobilized L‐prolinamide. The catalytic performance of the resultant polymer‐supported L‐prolinamide for direct asymmetric aldol reaction between aromatic aldehyde and cyclohexanone was studied. The results show that as prepared L‐prolinamide can catalyze the aldol reaction at room temperature in the presence of H2O. Relevant aldol addition products are obtained with good yields (up to 91%), high diastereoselectivities (up to 6:94 dr), and medium enantioselectivities (up to 87% ee). Moreover, the title polymer‐supported catalyst can be recovered and reused for at least five cycles while the activity remains almost unchanged. Chirality 26:209–213, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

6.
以凹凸棒石黏土为原料,制备γ-Fe2O3-凹土超顺磁性纳米复合材料(γ-Fe2O3-ATP)作为猪胰脂肪酶(PPL)固定化的载体,利用透射电子显微镜(TEM)、N2吸附脱附等温图(BET)、振动试样磁强计(VSM)等对材料进行表征,同时对固定化条件和固定化酶的相关性质进行了研究。结果表明:制备的γ-Fe2O3-ATP是介孔材料,比表面积为102.63 m2/g,平均孔径为10.862 nm,饱和磁化强度为8.915 emu/g,其作为载体能实现固定化酶与反应介质简单、快速分离回收和重复利用。在固定化时间为4 h及pH 6.0时制备的固定化酶效果最佳;经过6 h高温保存后固定化酶可保留初始酶活的52%,而游离酶仅保留初始酶活的19%,同时固定化酶在重复使用5次后酶活仍保留初始酶活的60%。  相似文献   

7.
The purpose of this study was to develop a multipurpose incubator, without the gas cylinders (bottles) which are required for H2 and CO2 supplementation. In our bottle-free multipurpose incubator, the H2 and CO2 were generated by chemical reactions induced within the chamber. The reaction between sodium borohydride and acetic acid at a molar ratio of 1:1 was used to generate H2, according to the following formula: 4NaBH4 + 2CH3COOH + 7H2O --> 2CH3COONa + Na2B4(O7) + 16H2, whereas the other reaction, citric acid and sodium bicarbonate at a 1:1 molar ratio, was used to generate CO2, according to the following formula: C6H8(O7) + 3NaHCO3 --> Na3(C6H5(O7)) + 3H2O + 3CO2. Five species of obligate anaerobic bacteria, one strain of capnophilic bacterium, and one strain of microaerophilic bacterium were successfully cultured in the presence of their respective suitable conditions, all of which were successfully generated by our bottle-free multipurpose incubator. We conclude that, due to its greater safety, versatility, and significantly lower operating costs, this bottle-free multipurpose incubator can be used for the production of fastidious bacterial cultures, and constitutes a favorable step above existing anaerobic incubators.  相似文献   

8.
Traces of iron, when complexed with either EDTA or diethylenetriaminepentaacetic acid (DTPA), catalyze an OH.-producing reaction between H2O2 and paraquat radical (PQ+.): H2O2 + PQ+.----PQ++ + OH. + OH-.[1]. Kinetic studies show that oxidation of formate induced by this reaction occurs by a Fenton-type mechanism, analagous to that assumed in the metal-catalyzed Haber-Weiss reaction, in which the rate determining step is H2O2 + Fe2+ (chelator)----Fe3+(chelator) + OH. + OH-,[7]; with k7 = 7 X 10(3) M-1 s-1 for EDTA and 8 X 10(2) M-1 s-1 for DTPA at pH 7.4. PQ+. rapidly reduces both Fe3+ (EDTA) and Fe3+ (DTPA), and hence allows both agents to catalyze [1] with comparable efficiency, in contrast to the much lower efficiency reported for the latter as a catalyst for the Haber-Weiss reaction. The catalytic properties of these chelating agents is attributed to their lowering of E0 (Fe3+/Fe2+) by 0.65 V, thus making [7] thermodynamically possible at pH 7. Approximately 2.5% of the OH. produced is consumed by internal or "cage" reactions, which decompose the chelator and produce CO2; however, the majority (97%) diffuses into the bulk solution and participates in competitive reactions with OH. scavengers.  相似文献   

9.
Lihua Dong  Yongjun Liu 《Proteins》2017,85(6):1146-1158
Chorismatase is an important enzyme involved in Shikimate pathway, which catalyzes the conversion of chorismate into pyruvate and (dihydro)‐benzoic acid derivatives. According to the outcomes of catalytic reactions, chorismatases can be divided into three subfamilies: CH‐Fkbo, CH‐Hyg5 and CH‐XanB2. Recently, the crystal structures of CH‐Fkbo and CH‐Hyg5 from Streptomyces hygroscopicus have been successfully obtained, allowing us to perform QM/MM calculations to explore the reaction details. Our calculation results support the proposal that CH‐Fkbo and CH‐Hyg5 employ different catalytic mechanisms and gave the mechanistic details. Fkbo follows a typical hydrolytic mechanism, which contains three consecutive steps, including the protonation step of the methylene group of substrate, the nucleophilic attack of the resulted carbocation by activated water and cleavage of C2′‐O8 bond of tetrahedral intermediate (hemiketal). The protonation of methylene group and the C2′‐O8 cleavage correspond to similar energy barriers (26.5 and 24.8 kcal/mol), suggesting both steps to be rate‐limiting. Whereas Hyg5 employs an intramolecular mechanism, in which the oxygen from C4 migrates to C3 via an arene oxide intermediate. The first step of Hyg5, which corresponds to the concerted protonation of methylene group and the cleavage of C3‐O8, is calculated to be rate‐limiting with an energy barrier of 26.3 kcal/mol. The nonconserved active site residue G240Hyg5 (or A244Fkb°) is suggested to be responsible for leading to different reaction mechanism in CH‐Fkbo and CH‐Hyg5. During the catalytic reaction, residue C327 plays an important role in directing the product selectivity in Hyg5 enzyme. Proteins 2017; 85:1146–1158. © 2017 Wiley Periodicals, Inc.  相似文献   

10.
A series of dipeptides of l-proline-l-amino acid and l-proline-d-amino acid were synthesized to evaluate the catalytic effect for asymmetric direct aldol reactions. In the direct aldol reaction, a catalyst of l-proline-l-amino acid achieves better enantioselectivity than the corresponding l-proline-d-amino acid catalyst. Solubility of the dipeptide catalysts in the solvents is a key point for achieving a better yield of the direct aldol reaction, while hydrogen bonding of solvent does not play an important role in attaining better enantioselectivity and yield. Yield and enantioselectivity of the direct aldol reaction in water were improved by NMM and SDS additives, but the results that were done in plain DMSO were even better.  相似文献   

11.
采用浸渍法制备K2CO3/γ-Al2O3负载型固体碱催化剂,用X线衍射(XRD)和热质量分析法(DSC-TGA)表征催化剂的物化性质,考察催化剂在棕榈油和甲醇酯交换制备生物柴油中的反应性能。结果表明:活性组分已成功负载到载体γ-Al2O3上,且在高温焙烧过程中K2CO3和γ-Al2O3之间产生了相互作用;在K2CO3负载量22.6%、醇油摩尔比12∶1、反应时间3h、催化剂质量分数3%、反应温度65℃的条件下,甲酯产率最高可达91.6%。  相似文献   

12.
The ecofriendly ternary blend polymer film was prepared from the chitosan (CH), polylactic acid (PLA) and polyvinyl alcohol (PVA). Immobilization of Candida cylindracea lipase (CCL) was carried out on ternary blend polymer via entrapment methodology. The ternary blend polymer and immobilized biocatalyst were characterized by using N2 adsorption–desorption isotherm, SEM, FTIR, DSC, and (%) water content analysis through Karl Fischer technique. Biocatalyst was then subjected for the determination of practical immobilization yield, protein loading and specific activity. Immobilized biocatalyst was further applied for the determination of biocatalytic activity for N-acylation reactions. Various reaction parameters were studied such as effect of immobilization support (ratio of PLA:PVA:CH), molar ratio (dibutylamine:vinyl acetate), solvent, biocatalyst loading, time, temperature, and orbital speed rotation. The developed protocol was then applied for the N-acylation reactions to synthesize several industrially important acetamides with excellent yields. Interestingly, immobilized lipase showed fivefold higher catalytic activity and better thermal stability than the crude extract lipase CCL. Furthermore various kinetic and thermodynamic parameters were studied and the biocatalyst was efficiently recycled for four successive reuses. It is noteworthy to mention that immobilized biocatalyst was stable for period of 300 days.  相似文献   

13.
Li C  Zhou YJ  Wang N  Feng XW  Li K  Yu XQ 《Journal of biotechnology》2010,150(4):539-545
Several proteases, especially pepsin, were observed to directly catalyze asymmetric aldol reactions. Pepsin, which displays well-documented proteolytic activity under acidic conditions, exhibited distinct catalytic activity in a crossed aldol reaction between acetone and 4-nitrobenzaldehyde with high yield and moderate enantioselectivity. Fluorescence experiments indicated that under neutral pH conditions, pepsin maintains its native conformation and that the natural structure plays an important role in biocatalytic promiscuity. Moreover, no significant loss of enantioselectivity was found even after four cycles of catalyst recycling, showing the high stability of pepsin under the selected aqueous reaction conditions. This case of biocatalytic promiscuity not only expands the application of proteases to new chemical transformations, but also could be developed into a potentially valuable method for green organic synthesis.  相似文献   

14.
Wang Y  Li Y  Wu Y  Yan H 《The FEBS journal》2007,274(9):2240-2252
Dihydroneopterin aldolase (DHNA) catalyzes both the cleavage of 7,8-dihydro-D-neopterin (DHNP) to form 6-hydroxymethyl-7,8-dihydropterin (HP) and glycolaldehyde and the epimerization of DHNP to form 7,8-dihydro-L-monapterin (DHMP). Whether the epimerization reaction uses the same reaction intermediate as the aldol reaction or the deprotonation and reprotonation of C2' of DHNP has been investigated by NMR analysis of the reaction products in a D2O solvent. No deuteration of C2' was observed for the newly formed DHMP. This result strongly suggests that the epimerization reaction uses the same reaction intermediate as the aldol reaction. In contrast with an earlier observation, the DHNA-catalyzed reaction is reversible, which also supports a nonstereospecific retroaldol/aldol mechanism for the epimerization reaction. The binding and catalytic properties of DHNAs from both Staphylococcus aureus (SaDHNA) and Escherichia coli (EcDHNA) were determined by equilibrium binding and transient kinetic studies. A complete set of kinetic constants for both the aldol and epimerization reactions according to a unified kinetic mechanism was determined for both SaDHNA and EcDHNA. The results show that the two enzymes have significantly different binding and catalytic properties, in accordance with the significant sequence differences between them.  相似文献   

15.
Peptide-17O chemical shifts of linear dipeptides with and without protecting groups in H2O, CH3OH, CH2Cl2, CHCl3, CCl4, CH3CN and DMSO were between 256-350 ppm downfield from external water. Increasing solvent H-bond donating ability correlated with shifts to higher field. The 17O resonance of several cyclic dipeptides appeared at higher field relative to comparable linear dipeptides (303-317 p.p.m. vs. 327-337 p.p.m.). Separate signals were simultaneously observed by 13C and 17O n.m.r. for cis and trans N-tert.-butyl-formamide in binary mixtures with H2O, (CH3)2CO, and CCl4. The differences in the 17O nuclear screening of the amide isomers and most probably for cis and trans peptides were independent of contributions from H-bonding at the amide or peptide linkage, apparently reflecting differences between geometric isomers in electron distribution and through space effects. Peptide-17O of Gly-Ala, Gly-Leu and Gly-Glu in aqueous solution experienced upfield shifts of 6-12 p.p.m. and 12-16 p.p.m. upon deprotonation of the C-terminal COOH and of the N-terminal NH3+ groups respectively. These observations were rationalized in terms of the attendant changes in substituent effects, especially on the pi electron donating ability of the N atom at the peptide linkage and increased partial negative charge on the peptide oxygen. Temperature studies of peptide-17O of Gly-Ala between pH 1.5-9.0 revealed a chemical shift coefficient of 0.08 p.p.m./degree K and similar behavior of T1 and T2 relaxation times. Ea for molecular rotation was 5 kcal/mol between 301-331 degrees K. Rotational correlation times, tau c, were within the range expected from the Stokes-Einstein relation.  相似文献   

16.
Yan J  Wang L 《Chirality》2009,21(4):413-420
A series of silica-supported proline-based peptides were synthesized and applied as catalysts for direct asymmetric intermolecular aldol reactions. Among these, a peptide with two L-proline units was found to be the most efficient one for the asymmetric aldol reactions between acetone and aromatic aldehydes. The reactions generated the corresponding products with satisfactory isolated yields (up to 97%) and enantiomeric excesses (up to 96%) in the presence of this catalyst (5 mol %). Furthermore, the silica-supported organocatalyst could be recovered and recycled by a simple filtration of the reaction solution and used for five consecutive trials without loss of its reactivity.  相似文献   

17.
Efficient catalytic conversion of microcrystalline cellulose (MCC) to 5-hydroxymethyl furfural (HMF), is achieved using acidic ionic liquids (ILs) as the catalysts and metal salts as co-catalysts in the solvent of 1-ethyl-3-methylimidazo-lium acetate ([emim][Ac]). A series of acidic ILs has been synthesized and tested in conversion of MCC to HMF. The effect of reaction conditions, such as reaction time, temperature, catalyst dosage, metal salts, water dosage, Cu(2+) concentration and various acidic ILs are investigated in detail. The results show that CuCl(2) in 1-(4-sulfonic acid) butyl-3-methylimidazolium methyl sulfate ([C(4)SO(3)Hmim][CH(3)SO(3)]), is found to be an efficient catalyst for catalytic conversion of MCC to HMF, and 69.7% yield of HMF is obtained. A mechanism to explain the high activity of CuCl(2) in [C(4)SO(3)Hmim][CH(3)SO(3)] is proposed. To the best of our knowledge, this report first proposes that the Cu(2+) and [C(4)SO(3)Hmim][CH(3)SO(3)] show better catalytic performance in catalytic conversion of MCC to HMF.  相似文献   

18.
为提高目标产物异山梨醇的产率,考察多种固体酸催化剂催化山梨醇脱水的反应性能。结果表明:催化剂酸性与其催化性能之间有密切联系,酸性较强的H3PO4/Nb2O5催化剂显示出比其他催化剂更优异的催化性能。对磷酸负载量进行优化后,在n(P)/n(Nb)为0.8的H3PO4/Nb2O5催化剂上得到了100%的山梨醇转化率和63%的异山梨醇选择性。  相似文献   

19.
Twenty-one substituted 1,4-naphthoquinones and five 8-quinolinols and copper(II) chelates were tested for antifungal activity against Candida albicans and Trichophyton mentagrophytes. Compounds containing electron-releasing or weak electron-withdrawing groups in the 2 and 3 positions of the 1,4-naphthoquinone ring were the most active against C. albicans at pH 7.0 in the presence of beef serum in the following order: 2-CH3O = 2,3-(CH3O)2 greater than 2-CH3 greater than 2-CH3S greater than 2-NH2 greater than 2,6-(CH3)2. For T. mentagrophytes under the same conditions the inhibitory 1,4-naphthoquinones contained the substituents 2-CH3O greater than 2,3-(CH3O)2 greater than 2-CH2S greater than 2-CH3 greater than 2-CH3(NaHSO3) greater than 2-NH2 greater than 2-C2H5S, 3-CH3 greater than 2,6-(CH3)2 greater than 2,3-CL2 greater than 5,8-(OH)2.  相似文献   

20.
DL-Standishinal (1), an aromatase inhibitor isolated from Thuja standishii, was synthesized in 15 steps from p-formylanisole via aldol reaction of 12-hydroxy-6,7-secoabieta-8,11,13-trien-6,7-dial (2). In the present study, we found that the aldol condensation of 2 proceeded in excellent yield with the protonic catalyst such as d-camphorsulfonic acid in CH(2)Cl(2). Moreover, structure-activity relationship of 1 and its related compounds was studied and it was revealed that the isomers having cis-configuration on the A/B-ring generally exhibited more potent inhibitory activities against aromatase than those with trans-configuration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号