首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Denaturation of the Saccharomyces cerevisiae prion protein Ure2 was investigated using hydrostatic pressure. Pressures of up to 600 MPa caused only limited perturbation of the structure of the 40-kDa dimeric protein. However, nondenaturing concentrations of GdmCl in combination with high pressure resulted in complete unfolding of Ure2 as judged by intrinsic fluorescence. The free energy of unfolding measured by pressure denaturation or by GdmCl denaturation is the same, indicating that pressure does not induce dimer dissociation or population of intermediates in 2 M GdmCl. Pressure-induced changes in 5 M GdmCl suggest residual structure in the denatured state. Cold denaturation under pressure at 200 MPa showed that unfolding begins below -5 degrees C and Ure2 is more susceptible to cold denaturation at low ionic strength. Results obtained using two related protein constructs, which lack all or part of the N-terminal prion domain, were very similar.  相似文献   

2.
The denatured states of a small globular protein, apo-neocarzinostatin (NCS), have been characterized using several techniques. Structural properties were investigated by optical spectroscopy techniques and small-angle neutron scattering (SANS), as a function of guanidinium chloride (GdmCl) concentration. SANS experiments show that in heavy water, the protein keeps its native size at GdmCl concentrations below 2.5 M. A sharp transition occurs at about 3.6 M GdmCl, and NCS behaves like an excluded volume chain above 5 M. The same behavior is observed in deuterated buffer by fluorescence and circular dichroism measurements. For the H(2)O buffer, the transition occurs with lower concentration of denaturant, the shift being about 0.6 M. 8-Anilino-1-naphthalenesulfonate (ANS) was used as a hydrophobic fluorescent probe for studying the early stages of protein unfolding. Protein denaturation modifies the fluorescence intensity of ANS, a maximum of intensity being detected close to 2 M GdmCl in hydrogenated buffer, which shows the existence of at least one intermediate state populated at the beginning of the unfolding pathway. Differential scanning calorimetry (DSC) was used to obtain thermodynamic values for NCS denaturation. The melting curves recorded between 20 and 90 degrees C in the presence of various GdmCl concentrations (0-3 M) cannot be explained by a simple two-state model. Altogether, the data presented in this paper suggest that before unfolding the protein explores a distribution of states which is centered around compact states at denaturant concentrations below 2 M in H(2)O, and then shifts to less structured states by increasing denaturant concentrations.  相似文献   

3.
The equilibrium unfolding of the major Physa acuta glutathione transferase isoenzyme (P. acuta GST(3)) has been performed using guanidinium chloride (GdmCl), urea, and acid denaturation to investigate the unfolding intermediates. Protein transitions were monitored by intrinsic fluorescence. The results indicate that unfolding of P. acuta GST(3) using GdmCl (0-3.0M) is a multistep process, i.e., three intermediates coexist in equilibrium. The first intermediate, a partially dissociated dimer, exists at low GdmCl concentration (approximately at 0.7M). At 1.2M GdmCl, a dimeric intermediate with a compact structure was observed. This intermediate undergoes dissociation into structural monomers at 1.75M of GdmCl. The monomeric intermediate started to be completely unfolding at higher GdmCl concentrations (>1.8M). Unfolding using urea (0-7.0M) and acid-induced structures as well as the fluorescence of 8-anilino-1-naphthalenesulfonate in the presence of different GdmCl concentrations confirmed that the unfolding is a multistep process. At concentrations of GdmCl or urea less than the midpoints or at the midpoint pH (pH 4.2-4.6), the unfolding transition is protein concentration independent and involved a change in the subunit tertiary structure yielding a partially active dimeric intermediate. The binding of glutathione to the enzyme active site stabilizes the native dimeric state.  相似文献   

4.
Inactivation, dissociation, and unfolding of the homodimeric glutathione transferase (bbGSTP1-1) from Bufo bufo embryos were investigated at equilibrium, using guanidinium chloride (GdmCl) as denaturant. Protein transitions were monitored by enzyme activity, intrinsic fluorescence, far UV circular dichroism, glutaraldehyde cross-linking, and gel-filtration chromatography. At low denaturant concentrations (less than 0.5 M), reversible inactivation of the enzyme occurs. At denaturant concentrations between 0.5 and 1.5 M the enzyme progressively dissociates into structured monomers. At higher denaturant concentrations the monomers unfold completely. Refolding studies indicate that a total reactivation occurs only by starting from the enzyme denatured at concentrations below 0.5 M. The enzyme denatured at GdmCl concentrations higher than 0.5 M only partially refolds. Globally our results indicate that unfolding of the amphibian bbGSTP1-1 is a multistep process, i.e., inactivation of the structured dimer, dissociation into partially structured monomers, followed by complete unfolding.  相似文献   

5.
The Saccharomyces cerevisiae non-Mendelian factor [URE3] propagates by a prion-like mechanism, involving aggregation of the chromosomally encoded protein Ure2. The N-terminal prion domain (PrD) of Ure2 is required for prion activity in vivo and amyloid formation in vitro. However, the molecular mechanism of the prion-like activity remains obscure. Here we measure the kinetics of folding of Ure2 and two N-terminal variants that lack all or part of the PrD. The kinetic folding behaviour of the three proteins is identical, indicating that the PrD does not change the stability, rates of folding or folding pathway of Ure2. Both unfolding and refolding kinetics are multiphasic. An intermediate is populated during unfolding at high denaturant concentrations resulting in the appearance of an unfolding burst phase and "roll-over" in the denaturant dependence of the unfolding rate constants. During refolding the appearance of a burst phase indicates formation of an intermediate during the dead-time of stopped-flow mixing. A further fast phase shows second-order kinetics, indicating formation of a dimeric intermediate. Regain of native-like fluorescence displays a distinct lag due to population of this on-pathway dimeric intermediate. Double-jump experiments indicate that isomerisation of Pro166, which is cis in the native state, occurs late in refolding after regain of native-like fluorescence. During protein refolding there is kinetic partitioning between productive folding via the dimeric intermediate and a non-productive side reaction via an aggregation prone monomeric intermediate. In the light of this and other studies, schemes for folding, aggregation and prion formation are proposed.  相似文献   

6.
Akhtar MS  Ahmad A  Bhakuni V 《Biochemistry》2002,41(11):3819-3827
We have carried out a systematic study on the guanidinium chloride- and urea-induced unfolding of glucose oxidase from Aspergillus niger, an acidic dimeric enzyme, using various optical spectroscopic techniques, enzymatic activity measurements, glutaraldehyde cross-linking, and differential scanning calorimetry. The urea-induced unfolding of GOD was a two-state process with dissociation and unfolding of the native dimeric enzyme molecule occurring in a single step. On the contrary, the GdmCl-induced unfolding of GOD was a multiphasic process with stabilization of a conformation more compact than the native enzyme at low GdmCl concentrations and dissociation along with unfolding of enzyme at higher concentrations of GdmCl. The GdmCl-stabilized compact dimeric intermediate of GOD showed an enhanced stability against thermal and urea denaturation as compared to the native GOD dimer. Comparative studies on GOD using GdmCl and NaCl demonstrated that binding of the Gdm(+) cation to the enzyme results in stabilization of the compact dimeric intermediate of the enzyme at low GdmCl concentrations. An interesting observation was that a slight difference in the concentration of urea and GdmCl associated with the unfolding of GOD was observed, which is in violation of the 2-fold rule for urea and GdmCl denaturation of proteins. This is the first report where violation of the 2-fold rule has been observed for a multimeric protein.  相似文献   

7.
The ultrasonic velocity, density and viscosity of two egg proteins, ovalbumin and ovotransferrin in phosphate buffer have been studied at the physiological pH values. The thermodynamic functions for unfolding, ellipticity, surface amino acid residues and compressibility have been obtained for thermal and chemical denaturation in these food proteins. The computed values of Huggin's constant and shape factor, at a fixed ionic strength 0.16 M are found to be in agreement with the reported values for globular proteins. The slow increase in free-energy of unfolding with temperature at a fixed pH 7 suggests uncoiling and in turn, disappearance of biological activity. It has been observed that the effects of temperature and chemical denaturant on the native protein may give rise to different conformational states. In the presence of urea and sodium dodecyl sulphate (SDS), the proteins gave the excessively denatured states at 25 degrees C and pH 7, in comparison to the thermal denatured state. The positive values of partial adiabatic compressibility (see symbol in text) beta s over the temperature range 45-75 degrees C suggest the possibility of large internal flexibility in ovotransferrin than in ovalbumin.  相似文献   

8.
The yeast prion protein Ure2 forms amyloid-like filaments in vivo and in vitro. This ability depends on the N-terminal prion domain, which contains Asn/Gln repeats, a motif thought to cause human disease by forming stable protein aggregates. The Asn/Gln region of the Ure2p prion domain extends to residue 89, but residues 15-42 represent an island of "normal" random sequence, which is highly conserved in related species and is relatively hydrophobic. We compare the time course of structural changes monitored by thioflavin T (ThT) binding fluorescence and atomic force microscopy for Ure2 and a series of prion domain mutants under a range of conditions. Atomic force microscopy height images at successive time points during a single growth experiment showed the sequential appearance of at least four fibril types that could be readily differentiated by height (5, 8, 12, or 9 nm), morphology (twisted or smooth), and/or time of appearance (early or late in the plateau phase of ThT binding). The Ure2 dimer (h = 2.6 +/- 0.5 nm) and granular particles corresponding to higher order oligomers (h = 4-12 nm) could also be detected. The mutants 15Ure2 and Delta 15-42Ure2 showed the same time-dependent variation in fibril types but with an increased lag time detected by ThT binding compared with wild-type Ure2. In addition, Delta 15-42Ure2 showed reduced binding to ThT. The results imply a role of the conserved region in both amyloid nucleation and formation of the binding surface recognized by ThT. Further, Ure2 amyloid formation is a multistep process via a series of fibrillar intermediates.  相似文献   

9.
Prions     
《朊病毒》2013,7(2):72-79
The prion hypothesis1-3 states that the prion and non-prion form of a protein differ only in their 3D conformation and that different strains of a prion differ by their 3D structure.4, 5 Recent technical developments have enabled solid-state NMR to address the atomic-resolution structures of full-length prions, and a first comparative study of two of them, HET-s and Ure2p, in fibrillar form, has recently appeared as a pair of companion papers.6, 7 Interestingly, the two structures are rather different: HET-s features an exceedingly well-ordered prion domain and a partially disordered globular domain. Ure2p in contrast features a very well ordered globular domain with a conserved fold, and – most probably - a partially ordered prion domain.6 For HET-s, the structure of the prion domain is characterized at atomic-resolution. For Ure2p, structure determination is under way, but the highly resolved spectra clearly show that information at atomic resolution should be achievable.  相似文献   

10.
Equilibrium studies of guanidine hydrochloride (GdnHCl)-induced unfolding of dimeric arginine kinase (AK) from sea cucumber have been performed by monitoring by enzyme activity, intrinsic protein fluorescence, circular dichroism (CD), 1-anilinonaphthalene-8sulfonate (ANS) binding, size-exclusion chromatography and glutaraldehyde cross-linking. The unfolding is a multiphasic process involving at least two dimeric intermediates. The first intermediate, I1, which exists at 0-0.4 M GdnHCl, is a compact inactive dimer lacking partial global structure, while the second dimeric intermediate, I2, formed at 0.5-2.0 M GdnHCl, possesses characteristics similar to the globular folding intermediates described in the literature. The whole unfolding process can be described as follows: (1) inactivation and the appearance of the dimeric intermediate I1; (2) sudden unwinding of I1 to another dimeric intermediate, I2; (3) dissociation of dimeric intermediate I2 to monomers U. The refolding processes initiated by rapid dilution in renaturation buffers indicate that denaturation at low GdnHCl concentrations (below 0.4 M GdnHCl) is reversible and that there seems to be an energy barrier between the two intermediates (0.4-0.5 M GdnHCl), which makes it difficult for AK denatured at high GdnHCl concentrations (above 0.5 M) to reconstitute and regain its catalytic activity completely.  相似文献   

11.
The dimeric yeast protein Ure2 shows prion-like behaviour in vivo and forms amyloid fibrils in vitro. A dimeric intermediate is populated transiently during refolding and is apparently stabilized at lower pH, conditions suggested to favour Ure2 fibril formation. Here we present a quantitative analysis of the effect of pH on the thermodynamic stability of Ure2 in Tris and phosphate buffers over a 100-fold protein concentration range. We find that equilibrium denaturation is best described by a three-state model via a dimeric intermediate, even under conditions where the transition appears two-state by multiple structural probes. The free energy for complete unfolding and dissociation of Ure2 is up to 50 kcal mol(-1). Of this, at least 20 kcal mol(-1) is contributed by inter-subunit interactions. Hence the native dimer and dimeric intermediate are significantly more stable than either of their monomeric counterparts. The previously observed kinetic unfolding intermediate is suggested to represent the dissociated native-like monomer. The native state is stabilized with respect to the dimeric intermediate at higher pH and in Tris buffer, without significantly affecting the dissociation equilibrium. The effects of pH, buffer, protein concentration and temperature on the kinetics of amyloid formation were quantified by monitoring thioflavin T fluorescence. The lag time decreases with increasing protein concentration and fibril formation shows pseudo-first order kinetics, consistent with a nucleated assembly mechanism. In Tris buffer the lag time is increased, suggesting that stabilization of the native state disfavours amyloid nucleation.  相似文献   

12.
Numerous experimental techniques and computational studies, proposed in recent times, have revolutionized the understanding of protein-folding paradigm. The complete understanding of protein folding and intermediates are of medical relevance, as the aggregation of misfolding proteins underlies various diseases, including some neurodegenerative disorders. Here, we describe the unfolding of M-crystallin, a βγ-crystallin homologue protein from archaea, from its native state to its denatured state using multidimensional NMR and other biophysical techniques. The protein, which was earlier characterized to be a predominantly β-sheet protein in its native state, shows different structural propensities (α and β), under different denaturing conditions. In 2 M GdmCl, the protein starts showing two distinct sets of peaks, with one arising from a partially unfolded state and the other from a completely folded state. The native secondary structural elements start disappearing as the denaturant concentration approaches 4 M. Subsequently, the protein is completely unfolded when the denaturant concentration is 6 M. The 15N relaxation data (T1/T2), heteronuclear 1H-15N Overhauser effects (nOes), NOESY data, and other biophysical data taken together indicate that the protein shows a consistent, gradual change in its structural and motional preferences with increasing GdmCl concentration.  相似文献   

13.
Inactivation, dissociation, and unfolding of tetrameric alcohol dehydrogenase I from Kluyveromyces lactis (KlADH I) were investigated using guanidinium chloride (GdmCl) as denaturant. Protein transitions were monitored by enzyme activity, intrinsic fluorescence and gel filtration chromatography. At low denaturant concentrations (less than 0.3 M), reversible transformation of enzyme into tetrameric inactive form occurs. At denaturant concentrations between 0.3 and 0.5 M, the enzyme progressively dissociates into structured monomers through an irreversible reaction. At higher denaturant concentrations, the monomers unfold completely. Refolding studies indicate that a total reactivation occurs only with the enzyme denatured between 0 and 0.3 M GdmCl concentrations. The enzyme denatured at GdmCl concentrations higher than 0.3 M refolds only partially. All together, our results indicate that unfolding of the KlADH I is a multistep process, i.e., inactivation of the structured tetramer, dissociation into partially structured monomers, followed by complete unfolding.  相似文献   

14.
Ure2, the protein determinant of the Saccharomyces cerevisiae prion [URE3], has a natively disordered N-terminal domain that is important for prion formation in vivo and amyloid formation in vitro; the globular C-domain has a glutathione transferase-like fold. In the present study, we swapped the position of the N- and C-terminal regions, with or without an intervening peptide linker, to create the Ure2 variants CLN-Ure2 and CN-Ure2 respectively. The native structural content and stability of the variants were the same as wild-type Ure2, as indicated by enzymatic activity, far-UV CD analysis and equilibrium denaturation. CLN-Ure2 was able to form amyloid-like fibrils, but with a significantly longer lag time than wild-type Ure2; and the two proteins were unable to cross-seed. Under the same conditions, CN-Ure2 showed limited ability to form fibrils, but this was improved after addition of 0.03?M guanidinium chloride. As for wild-type Ure2, allosteric enzyme activity was observed in fibrils of CLN-Ure2 and CN-Ure2, consistent with retention of the native-like dimeric structure of the C-domains within the fibrils. Proteolytically digested fibrils of CLN-Ure2 and CN-Ure2 showed the same residual fibril core morphology as wild-type Ure2. The results suggest that the position of the prion domain affects the ability of Ure2 to form fibrils primarily due to effects on its flexibility.  相似文献   

15.
Karmodiya K  Surolia N 《Proteins》2008,70(2):528-538
The urea and guanidinium chloride (GdmCl) induced unfolding of FabG, a beta-ketoacyl-ACP reductase of Plasmodium falciparum, was examined in detail using intrinsic fluorescence of FabG, UV-circular dichroism (CD), spectrophotometric enzyme activity measurements, glutaraldehyde cross-linking, and size exclusion chromatography. The equilibrium unfolding of FabG by urea is a multistep process as compared with a two-state process by GdmCl. FabG is fully unfolded at 6.0M urea and 4.0M GdmCl. Approximately 90% of the enzyme activity could be recovered on dialyzing the denaturants, showing that denaturation by both urea and GdmCl is reversible. We found two states in the reversible unfolding process of FabG in presence of NADPH; one is an activity-enhanced state and the other, an inactive state in case of equilibrium unfolding with urea. On the contrary, in presence of NADPH, there is no stabilization of FabG in case of equilibrium unfolding with GdmCl. We hypothesize that the hydrogen-bonding network may be reorganized by the denaturant in the activity-enhanced state formed in presence of 1.0M urea, by interrupting the association between dimer-dimer interface and help in accommodating the larger substrate in the substrate binding tunnel thus, increasing the activity. Furthermore, binding of the active site organizer, NADPH leads to compaction of the FabG in presence of urea, as evident by acrylamide quenching. We have shown here for the first time, the detailed inactivation kinetics of FabG, which have not been evaluated in the past from any of the FabG family of enzymes from any of the other sources. These findings provide impetus for exploring the influences of ligands on the structure-activity relationship of Plasmodium beta-ketoacyl-ACP reductase.  相似文献   

16.
The structural stability of the protease inhibitor antithrombin from bovine plasma was examined as a function of the concentration of guanidinium chloride (GdmCl). A biphasic unfolding curve at pH 7.4, with midpoints for the two phases at 0.8 and 2.8 M GdmCl, was measured by far-ultraviolet circular dichroism. Spectroscopic and hydrodynamic analyses suggest that the intermediate state which exists at 1.5 M GdmCl involves a partial unfolding of the antithrombin molecule that exposes regions of the polypeptide chain through which slow, intermolecular association subsequently takes place. The partially unfolded molecule can be reversed to its fully functional state only before the aggregation occurs. Upon return of the aggregated state to dilute buffer, the partially unfolded antithrombin remains aggregated and does not regain the spectroscopic properties, thrombin-inhibitory activity, or heparin affinity of the native inhibitor. This behavior indicates that the loss of the functional properties of the proteins is caused by the macromolecular association. Comparative experiments gave similar results for the human inhibitor. Analyses of bovine antithrombin in 6 M GdmCl indicated that the second transition reflects the total unfolding of the protein to a disulfide-cross-linked random coil. This transition is spectroscopically reversible; however, on further reversal to dilute buffer, the molecules apparently are trapped in the partially unfolded, aggregated, intermediate state. The results are consistent with the existence of two separate domains in antithrombin which unfold at different concentrations of GdmCl but do not support the contention that the thrombin-binding and heparin-binding regions of the protein are located in different domains [Villanueva, G. B., & Allen, N. (1983) J. Biol. Chem. 258, 14048-14053].  相似文献   

17.
MazG is a homodimeric α-helical protein that belongs to the superfamily of all-α NTP pyrophosphatases. Its function has been connected to the regulation of the toxin-antitoxin module mazEF, implicated in programmed growth arrest/cell death of Escherichia coli cells under conditions of amino acid starvation. The goal of the first detailed biophysical study of a member of the all-α NTP pyrophosphatase superfamily, presented here, is to improve molecular understanding of the unfolding of this type of proteins. Thermal unfolding of MazG monitored by differential scanning calorimetry, circular dichroism spectroscopy, and fluorimetry at neutral pH in the presence of a reducing agent (dithiothreitol) can be successfully described as a reversible four-state transition between a dimeric native state, two dimeric intermediate states, and a monomeric denatured state. The first intermediate state appears to have a structure similar to that of the native state while the final thermally denatured monomeric state is not fully unfolded and contains a significant fraction of residual α-helical structure. In the absence of dithiothreitol, disulfide cross-linking causes misfolding of MazG that appears to be responsible for the formation of multimeric aggregates. MazG is most stable at pH 7-8, while at pH < 6, it exists in a molten-globule-like state. The thermodynamic parameters characterizing each step of MazG denaturation transition obtained by global fitting of the four-state model to differential scanning calorimetry, circular dichroism, and fluorimetry temperature profiles are in agreement with the observed structural characteristics of the MazG conformational states and their assumed functional role.  相似文献   

18.
The serine hydroxymethyltransferase from Bacillus subtilis (bsSHMT) and B. stearothermophilus (bstSHMT) are both homodimers and share approximately 77% sequence identity; however, they show very different thermal stabilities and unfolding pathways. For investigating the role of N- and C-terminal domains in stability and unfolding of dimeric SHMTs, we have swapped the structural domains between bs- and bstSHMT and generated the two novel chimeric proteins bsbstc and bstbsc, respectively. The chimeras had secondary structure, tyrosine, and pyridoxal-5'-phosphate microenvironment similar to that of the wild-type proteins. The chimeras showed enzymatic activity slightly higher than that of the wild-type proteins. Interestingly, the guanidium chloride (GdmCl)-induced unfolding showed that unlike the wild-type bsSHMT, which undergoes dissociation of native dimer into monomers at low guanidium chloride (GdmCl) concentration, resulting in a non-cooperative unfolding of enzyme, its chimera bsbstc, having the C-terminal domain of bstSHMT was resistant to low GdmCl concentration and showed a GdmCl-induced cooperative unfolding from native dimer to unfolded monomer. In contrast, the wild-type dimeric bstSHMT was resistant to low GdmCl concentration and showed a GdmCl-induced cooperative unfolding, whereas its chimera bstbsc, having the C- terminal domain of bsSHMT, showed dissociation of native dimer into monomer at low GdmCl concentration and a GdmCl-induced non-cooperative unfolding. These results clearly demonstrate that the C-terminal domain of dimeric SHMT plays a vital role in stabilization of the oligomeric structure of the native enzyme hence modulating its unfolding pathway.  相似文献   

19.
Attempts to increase protein stability by insertion of novel disulfide bonds have not always been successful. According to the two current models, cross-links enhance stability mainly through denatured state effects. We have investigated the effects of removal and addition of disulfide cross-links, protein flexibility in the vicinity of a cross-link, and disulfide loop size on the stability of Cucurbita maxima trypsin inhibitor-V (CMTI-V; 7 kD) by differential scanning calorimetry. CMTI-V offers the advantage of a large, flexible, and solvent-exposed loop not involved in extensive intra-molecular interactions. We have uncovered a negative correlation between retention time in hydrophobic column chromatography, a measure of protein hydrophobicity, and melting temperature (T(m)), an indicator of native state stabilization, for CMTI-V and its variants. In conjunction with the complete set of thermodynamic parameters of denaturation, this has led to the following deductions: (1) In the less stable, disulfide-removed C3S/C48S (Delta Delta G(d)(50 degrees C) = -4 kcal/mole; Delta T(m) = -22 degrees C), the native state is destabilized more than the denatured state; this also applies to the less-stable CMTI-V* (Delta Delta G(d)(50 degrees C) = -3 kcal/mole; Delta T(m) = -11 degrees C), in which the disulfide-containing loop is opened by specific hydrolysis of the Lys(44)-Asp(45) peptide bond; (2) In the less stable, disulfide-inserted E38C/W54C (Delta Delta G(d)(50 degrees C) = -1 kcal/mole; Delta T(m) = +2 degrees C), the denatured state is more stabilized than the native state; and (3) In the more stable, disulfide-engineered V42C/R52C (Delta Delta G(d)(50 degrees C) = +1 kcal/mole; Delta T(m) = +17 degrees C), the native state is more stabilized than the denatured state. These results show that a cross-link stabilizes both native and denatured states, and differential stabilization of the two states causes either loss or gain in protein stability. Removal of hydrogen bonds in the same flexible region of CMTI-V resulted in less destabilization despite larger changes in the enthalpy and entropy of denaturation. The effect of a cross-link on the denatured state of CMTI-V was estimated directly by means of a four-state thermodynamic cycle consisting of native and denatured states of CMTI-V and CMTI-V*. Overall, the results show that an enthalpy-entropy compensation accompanies disulfide bond effects and protein stabilization is profoundly modulated by altered hydrophobicity of both native and denatured states, altered flexibility near the cross-link, and residual structure in the denatured state.  相似文献   

20.
Finke JM  Jennings PA 《Biochemistry》2002,41(50):15056-15067
The thermodynamic stability and folding kinetics of the all beta-sheet protein interleukin-1beta were measured between 0 and 4 M GdmCl concentrations and pH 5-7. Native interleukin-1beta undergoes a 3.5 kcal/mol decrease in thermodynamic stability, Delta, as pH is increased from 5 to 7. The native state parameter m(NU), measuring protein destabilization/[GdmCl], remains constant between pH 5 and 7, indicating that the solvent-exposed surface area difference between the native state and unfolded ensemble is unchanged across this pH range. Similarly, pH changes between 5 and 7 decrease only the thermodynamic stability, DeltaG(H)2(O), and not the m-values, of the kinetic intermediate and transition states. This finding is shown to be consistent with transition state configurations which continue to be the high-energy configurations of the transition state in the face of changing stability conditions. A three-state folding mechanism U right arrow over left arrow I right arrow over left arrow N is shown to be sufficient in characterizing IL-1beta folding under all conditions studied. The m-values of refolding transitions are much larger than the m-values of unfolding transitions, indicating that that the fast, T(2) (U right arrow over left arrow I), and slow, T(1) (I right arrow over left arrow N), transition states are highly similar to the intermediate I and native state N, respectively. Many of the folding properties of interleukin-1beta are shared among other members of the beta-trefoil protein family, although clear differences can exist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号