首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of fluorescence yield inChlorella pyrenoidosa and spinach chloroplasts were studied in the time range of 0.5 μs to several hundreds of microseconds in the presence of hydroxylamine. Fluorescence was excited with a just-saturating xenon flash with a halfwidth of 13 μs (λ = 420 nm). The fast rise of the fluorescence yield which was limited by the rate of light influx, was, in the presence of 10−3–10−2 M hydroxylamine, replaced by a slow component which had a half risetime of 25 μs in essence independent of light intensity. This slow fluorescence yield increase reflects a dark reaction on the watersplitting side of Photosystem II. Simultaneous oxygen evolution measurements suggested that a fast fluorescence component is only present in organisms with intact O2-evolving system, whereas a slow rise predominantly occurs in organisms with the watersplitting system irreversibly inhibited by hydroxylamine.

The results can be explained by the following hypotheses: (a) The primary donor of Photosystem II in its oxidized state, P+, is a fluorescence quencher. (b) Hydroxylamine prevents the secondary electron donor Z from reducing the oxidized reaction center pigment P+ rapidly. This inhibition is dependent on hydroxylamine concentration and is complete at a concentration of 10−2 M. (c) A second donor (not transporting electrons from water) transfers electrons to P+ with a half time of roughly 25 μs.  相似文献   


2.
P. Joliot  A. Joliot 《BBA》1977,462(3):559-574
1. The amplitudes of the fast (0–20 μs) and slow (20 μs–2 ms) fluorescence rise induced by a 2 μs flash have been measured as a function of the energy of the flash in chloroplasts inhibited by 3(3,4-dichlorophenyl)-1,1-dimethylurea. The saturation curve for the slow rise shows a characteristic lag which is not observed for the fast fluorescence rise. This lag indicates that Photosystem II centers undergo a double hit process which implies that (a), each photocenter includes two acceptors Q1 and Q2; (b), after the first hit, oxidized chlorophyll Chl+ is reduced by a secondary acceptor Y in a time short compared to the duration of the flash; (c), after the second hit, Chl+ is reduced by another secondary donor, D.

2. According to Den Haan et al. ((1974) Biochim. Biophys. Acta 368, 409–421), hydroxylamine destroys the secondary donor responsible for the fast reduction of Chl+. In the presence of 3 mM hydroxylamine, only the secondary donor D is functional and a flash induces mainly a single hit process.

3. The saturation curves for the fast and the slow rises have been studied in the presence of 3(3,4-dichlorophenyl)-1,1-dimethylurea for a second actinic flash given 2.5 s after a first saturating one. The large decrease in the half-saturating energy indicates the existence of efficient energy transfer occuring between photosynthetic units.

4. Two alternate hypotheses are discussed (a) in which D is an auxiliary donor and (b) in which D is included in the main electron transfer chain.  相似文献   


3.
Bernd Schmidt   《BBA》1976,449(3):516-524
In 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) poisoned chloroplasts, the restoration of the fluorescence induction is presumed to be due to a back reaction of the reduced primary acceptor (Q) and the oxidized primary donor (Z+) of Photosystem II. Carbonylcyanide m-chlorophenylhydrazone (CCCP) is known to inhibit this back reaction. The influence of reduced N-methylphenazonium methosulfate (PMS) in the absence of CCCP and of oxidized PMS in the presence of CCCP on the back reaction was investigated and the following results were obtained:

1. (1) Reduced PMS at the concentration of 1 μM inhibits the back reaction as effectively as hydroxylamine, suggesting an electron donating function of reduced PMS for System II.

2. (2) The inhibition of the back reaction by CCCP is regenerated to a high degree by oxidized PMS which led to assume a cyclic System II electron flow catalysed by PMS.

3. (3) At concentrations of reduced PMS higher than 1 μM it is shown that both the fast initial emission and more significantly the variable emission are quenched.

Abbreviations: PMS, N-methylphenazonium methosulfate; CCCP, carbonylcyanide m-chlorophenylhydrazone; FCCP, carbonylcyanide p-trifluoromethoxyphenylhydrazone; TMPD, N,N,N′,N′-tetramethyl-p-phenylendiamine; DCMU, 3-(3,4-dichlorophenyl)-1,1-dimethylurea  相似文献   


4.
David B. Knaff  Richard Malkin 《BBA》1974,347(3):395-403
The primary reaction of Photosystem II has been studied over the temperature range from −196 to −20 °C. The photooxidation of the reaction-center chlorophyll (P680) was followed by the free-radical electron paramagnetic resonance signal of P680+, and the photoreduction of the Photosystem II primary electron acceptor was monitored by the C-550 absorbance change.

At temperatures below −100 °C, the primary reaction of Photosystem II is irreversible. However, at temperatures between −100 and −20 °C a back reaction that is insensitive to 3-(3′,4′-dichlorophenyl)-1,1′-dimethylurea (DCMU) occurs between P680+ and the reduced acceptor.

The amount of reduced acceptor and P680+ present under steady-state illumination at temperatures between −100 and −20 °C is small unless high light intensity is used to overcome the competing back reaction. The amount of reduced acceptor present at low light intensity can be increased by adjusting the oxidation-reduction potential so that P680+ is reduced by a secondary electron donor (cytochrome b559) before P680+ can reoxidize the reduced primary acceptor. The photooxidation of cytochrome b559 and the accompanying photoreduction of C-550 are inhibited by DCMU. The inhibition of C-550 photoreduction by DCMU, the dependence of P680 photooxidation and C-550 photoreduction on light intensity, and the effect of the availability of reduced cytochrome b559 on C-550 photoreduction are unique to the temperature range where the Photosystem II primary reaction is reversible and are not observed at lower temperatures.  相似文献   


5.
Pierre Stif  Paul Mathis  Tore Vnngrd 《BBA》1984,767(3):404-414
Electron transport has been studied by flash absorption and EPR spectroscopies at 10–30 K in Photosystem I particles prepared with digitonin under different redox conditions. In the presence of ascorbate, an irreversible charge separation is progressively induced at 10 K between P-700 and iron-sulfur center A by successive laser flashes, up to a maximum which corresponds to about two-thirds of the reaction centers. In these centers, heterogeneity of the rate for center A reduction is also shown. In the other third of reaction centers, the charge separation is reversible and relaxes with a t1/2 ≈ 120 μs. When the iron-sulfur centers A and B are prereduced, the 120 μs relaxation becomes the dominant process (70–80% of the reaction centers), while a slow component (t1/2 = 50–400 ms) reflecting the recombination between P-700+ and center X occurs in a minority of reaction centers (10–15%). Flash absorption and EPR experiments show that the partner of P-700+ in the 120 μs recombination is neither X nor a chlorophyll but more probably the acceptor A1 as defined by Bonnerjea and Evans (Bonnerjea, J. and Evans, M.C.W. (1982) FEBS Lett. 148, 313–316). The role of center X in low-temperature electron flow is also discussed.  相似文献   

6.
Hlne Conjeaud  Paul Mathis 《BBA》1980,590(3):353-359
The primary donor of Photosystem II (PS II), P-680, was photo-oxidized by a short flash and its rate of reduction was measured at different pH values by following the recovery of the absorption change at 820 nm in chloroplasts pretreated with a high concentration of Tris. The re-reduction is biphasic with a fast phase (dominant after the first flash) attributed to the donation by a donor, D1, and a slow phase (usually dominant after the second flash) attributed to a back-reaction with the primary acceptor.

It is found that pH has a strong influence on the donation from D1 (τ = 2 μs at pH 9, 44 μs at pH 4), but no influence on the back reaction (τ ≈ 200 μs). pH also influences the stability of the charge separation since the contribution of donation from D1 at the second flash increases at lower pH, getting close to 100% at pH 4.  相似文献   


7.
Anne Joliot 《BBA》1974,357(3):439-448
The fluorescence yield has been measured on spinach chloroplasts at low temperature (−30 to −60°C) for various dark times following a short saturating flash. A decrease in the fluorescence yield linked to the reoxidation of the Photosystem II electron acceptor Q is still observed at −60°C. Two reactions participate in this reoxidation: a back reaction or charge recombination and the transfer of an electron from Q to Pool A. The relative competition between these two reactions at low temperature depends upon the oxidation state of the donor side of the Photosystem II center:

1. (1) In dark-adapted chloroplasts (i.e. in States S0+S1 according to Kok, B., Forbush, B. and McGloin, M. (1970) Photochem. Photobiol. 11, 457–475), Q, reduced by a flash at low temperature, is reoxidized by a secondary acceptor and the positive charge is stabilized on the Photosystem II donor Z. Although this reaction is strongly temperature dependent, it still occurs very slowly at −60°C.

2. (2) When chloroplasts are placed in the S2+S3 states by a two-flash preillumination at room temperature, the reoxidation of Q after a flash at low temperature is mainly due to a temperature-independent back reaction which occurs with non-exponential kinetics.

3. (3) Long continuous illumination of a frozen sample at −30°C causes 6–7 reducing equivalents to be transferred to the pool. Thus, a sufficient number of oxidizing equivalents should have been generated to produce at least one O2 molecule.

4. (4) A study of the back reaction in the presence of 3(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) shows the superposition of two distinct non-exponential reactions one temperature dependent, the other temperature independent.

Abbreviations: DCMU; 3(3; 4-dichlorophenyl)-1; 1-dimethylurea  相似文献   


8.
Partition in an aqueous Dextran-polyethylene glycol two-phase system has been used for the separation of chloroplast membrane vesicles obtained by press treatment of a grana-enriched fraction after unstacking in a low salt buffer.

The fractions obtained were analysed with respect to chlorophyll, photochemical activities and ultrastructural characteristics. The results reveal that the material partitioning to the Dextran-rich bottom phase consisted of large membrane vesicles possessing mainly Photosystem II properties with very low contribution from Photosystem I. Measurements of the H2O to phenyl-p-benzoquinone and ascorbate-Cl2Ind to NADP+ electron transport rates indicate a ratio of around six between Photosystem II and I.

The total fractionation procedure could be completed within 2–3 h with high recovery of both the Photosystem II water-splitting activity and the Photosystem I reduction of NADP+.

These data demonstrate that press treatment of low-salt destabilized grana membranes yields a population of highly Photosystem-II enriched membrane vesicles which can be discriminated by the phase system. We suggest that such membrane vesicles originate from large regions in the native grana membrane which contain virtually only Photosystem II.  相似文献   


9.
J.Michael Gould  S. Izawa 《BBA》1974,333(3):509-524
1. By using dibromothymoquinone as the electron acceptor, it is possible to isolate functionally that segment of the chloroplast electron transport chain which includes only Photosystem II and only one of the two energy conservation sites coupled to the complete chain (Coupling Site II, observed P/e2 = 0.3–0.4). A light-dependent, reversible proton translocation reaction is associated with the electron transport pathway: H2O → Photosystem II → dibromothymoquinone. We have studied the characteristics of this proton uptake reaction and its relationship to the electron transport and ATP formation associated with Coupling Site II.

2. The initial phase of H+ uptake, analyzed by a flash-yield technique, exhibits linear kinetics (0–3 s) with no sign of transient phenomena such as the very rapid initial uptake (“pH gush”) encountered in the overall Hill reaction with methylviologen. Thus the initial rate of H+ uptake obtained by the flash-yield method is in good agreement with the initial rate estimated from a pH change tracing obtained under continuous illumination.

3. Dibromothymoquinone reduction, observed as O2 evolution by a similar flash-yield technique, is also linear for at least the first 5 s, the rate of O2 evolution agreeing well with the steady-state rate observed under continuous illumination.

4. Such measurements of the initial rates of O2 evolution and H+ uptake yield an H+/e ratio close to 0.5 for the Photosystem II partial reaction regardless of pH from 6 to 8. (Parallel experiments for the methylviologen Hill reaction yield an H+/e ratio of 1.7 at pH 7.6.)

5. When dibromothymoquinone is being reduced, concurrent phosphorylation (or arsenylation) markedly lowers the extent of H+ uptake (by 40–60%). These data, unlike earlier data obtained using the overall Hill reaction, lend themselves to an unequivocal interpretation since phosphorylation does not alter the rate of electron transport in the Photosystem II partial reaction. ADP, Pi and hexokinase, when added individually, have no effect on proton uptake in this system.

6. The involvement of a proton uptake reaction with an H+/e ratio of 0.5 in the Photosystem II partial reaction H2O → Photosystem II → dibromothymoquinone strongly suggests that at least 50% of the protons produced by the oxidation of water are released to the inside of the thylakoid, thereby leading to an internal acidification. It is pointed out that the observed efficiencies for ATP formation (P/e2) and proton uptake (H+/e) associated with Coupling Site II can be most easily explained by the chemiosmotic hypothesis of energy coupling.  相似文献   


10.
The kinetics of flash-induced electron transport were investigated in oxygen-evolving Photosystem II preparations, depleted of the 23 and 17 kDa polypeptides by washing with 2 M NaCl. After dark-adaptation and addition of the electron acceptor 2,5-dichloro-p-benzoquinone, in such preparations approx. 75% of the reaction centers still exhibited a period 4 oscillation in the absorbance changes of the oxygen-evolving complex at 350 nm. In comparison to the control preparations, three main effects of NaCl-washing could be observed: the half-time of the oxygen-evolving reaction was slowed down to about 5 ms, the misses and double hits parameters of the period 4 oscillation had changed, and the two-electron gating mechanism of the acceptor side could not be detected anymore. EPR-measurements on the oxidized secondary donor Z+ confirmed the slower kinetics of the oxygen-releasing reaction. These phenomena could not be restored by readdition of the released polypeptides nor by the addition of CaCl2, and are ascribed to deleterious action of the highly concentrated NaCl. Otherwise, the functional coupling of Photosystem II and the oxygen-evolving complex was intact in the majority of the reaction centers. Repetitive flash measurements, however, revealed P+Q recombination and a slow Z+ decay in a considerable fraction of the centers. The flash-number dependency of the recombination indicated that this reaction only appeared after prolonged illumination, and disappeared again after the addition of 20 mM CaCl2. These results are interpreted as a light-induced release of strongly bound Ca2+ in the salt-washed preparations, resulting in uncoupling of the oxygen-evolving system and the Photosystem II reaction center, which can be reversed by the addition of a relatively high concentration of Ca2+.  相似文献   

11.
J.-M. Briantais  C. Vernotte  I. Moya 《BBA》1973,325(3):530-538
The following arguments in favor of exciton transfer between the two photosystems are presented:

1. (1) MgCl2 (1–10 mM range) decreases the intersystem transfer but does not modify the partition of absorbed photons between the photosystems. MgCl2 addition causes a simultaneous increase of excitation life time (τ) and of fluorescence intensity (F). The same linear relationship is obtained with or without added Mg2+.

2. (2) The deactivation of Photosystem II by the Photosystem II to Photosystem I transfer increases with the level of reduced Photosystem II traps. When all Photosystem II traps are closed, half of Photosystem II excitons are deactivated by transfer to Photosystem I.

3. (3) From the relative values of the 685-nm fluorescence yield and System II electron transport rate in limiting light, measured with and without MgCl2, the values of rate constants of Photosystem II deactivation were calculated.

4. (4) The intersystem transfer determines a 715-nm variable fluorescence, which is lowered by MgCl2 addition. When this transfer is decreased by MgCl2 the efficiency of the transfer between Photosystem II-connected units is enhanced, and a more sigmoidal fluorescence rise is obtained.

A double-layer model of the thylakoid membrane where each photosystem is restricted to one leaflet is proposed to explain the decrease of the intersystem transfer after adding cations. It is suggested that MgCl2 decreases the thickness of the Photosystem I polar region, increasing the distance between the pigments of the two photosystems.  相似文献   


12.
Oxygen-evolving Photosystem II (PS II) particles were prepared from the thylakoid membranes of a chlorophyll b-less rice mutant, which totally lacks light-harvesting chlorophyll a/b proteins, after solubilization with β-octylglucoside. The preparation was essentially free of Photosystem I as judged from its low-temperature fluorescence spectrum and polypeptide composition. The PS II particles contained all the major subunit polypeptides of the PS II reaction center core complexes and the three extrinsic proteins related to oxygen evolution. The relative abundances of the 33, 21 and 15 kDa proteins were 100, 64 and 20%, respectively, of the corresponding proteins in the mutant thylakoids. The chlorophyll-to-QA ratio was 53 and there was only one bound Ca2+ per QA. Thus, one of the two bound Ca2+ present in the oxygen-evolving PS II membrane preparations from wild-type rice (Shen J.-R., Satoh, K. and Katoh, S. (1988) Biochim. Biophys. Acta 933, 358–364) is missing. The mutant PS II particles were highly active in oxygen evolution in the absence of exogenously added Ca2+, although addition of 5 mM Ca2+ enhanced the activity by 30%. When the 21 and 15 kDa proteins were supplemented to the particles, the Ca2+-effect disappeared and the rate of oxygen evolution increased to a level exceeding 1000 μmol O2 per mg chlorophyll per h. The results indicate that the number of Ca2+ needed to promote a high rate of oxygen evolution is one per PS II in higher plants.  相似文献   

13.
J. Haveman  P. Mathis 《BBA》1976,440(2):346-355
A comparative study is made, at 15 °C, of flash-induced absorption changes around 820 nm (attributed to the primary donors of Photosystems I and II) and 705 nm (Photosystem I only), in normal chloroplasts and in chloroplasts where O2 evolution was inhibited by low pH or by Tris-treatment.At pH 7.5, with untreated chloroplasts, the absorption changes around 820 nm are shown to be due to P-700 alone. Any contribution of the primary donor of Photosystem II should be in times shorter than 60 μs.When chloroplasts are inhibited at the donor side of Photosystem II by low pH, an additional absorption change at 820 nm appears with an amplitude which, at pH 4.0, is slightly higher than the signal due to oxidized P-700. This additional signal is attributed to the primary donor of Photosystem II. It decays (t12 about 180 μs) mainly by back reaction with the primary acceptor and partly by reduction by another electron donor. Acid-washed chloroplasts resuspended at pH 7.5 still present the signal due to Photosystem II (t12 about 120 μs). This shows that the acid inhibition of the first secondary donor of Photosystem II is irreversible.In Tris-treated chloroplasts, absorption changes at 820 nm due to the primary donor of Photosystem II are also observed, but to a lesser extent and only after some charge accumulation at the donor side. They decay with a half-time of 120 μs.  相似文献   

14.
Eosin isothiocyanate was covalently bound to isolated ferredoxin-NADP+ reductase under protection of the NADP-binding domain. The bound label did not impair the functional reconstitution of the enzyme into depleted thylakoid membranes. Laser spectrophotometric experiments were carried out on thylakoids which were reconstituted with labeled ferredoxin-NADP+ reductase. Bound eosin isothiocyanate was used as a spectroscopic probe for conformational changes of ferredoxin-NADP+ reductase in either of two ways: We studied the rotational diffusion of labeled ferredoxin-NADP+ reductase in the membrane by the photoselection technique, and we studied the triplet lifetime of bound eosin, which measures polypeptide chain flexibility (via access of oxygen) around the binding site. The latter technique was complemented by measurements of the librational motion of bound dye. We observed: (1) When ferredoxin is absent, ferredoxin-NADP+ reductase undergoes very rapid rotational diffusion in the thylakoid membrane (correlation time less than 1 μs at 10°C). This is drastically slowed down (40 μs) upon addition of water-soluble ferredoxin. We propose that ferredoxin mediates the formation of a ternary complex with ferredoxin-NADP+ reductase and the Photosystem I complex. According to our data, this complex would live longer than required for the photoreduction of ferredoxin-NADP+ reductase by Photosystem I via ferredoxin. (2) Under the given incubation conditions, the binding sites for eosin isothiocyanate were located in the FAD domain of ferredoxin-NADP+ reductase. We found increased chain flexibility in this domain upon addition of NADP. This suggests induced fit for the binding of NADP and allosteric control of the FAD domain by the remote NADP domain. (3) Acidification of the internal phase of thylakoids decreased the chain flexibility in the FAD domain. This is of particular interest, since ferredoxin-NADP+ reductase is a peripheral external membrane protein. It suggests the existence of a binding protein for the oxidoreductase which spans the membrane and senses the internal pH  相似文献   

15.
Reactions occurring on the oxidizing side of Photosystem II have been studied in Tris-washed chloroplasts by monitoring the decay kinetics of EPR signal IIf, arising from the photoinduced oxidation of Z, an intermediate in the electron transport chain between P-680 and the water-splitting enzyme. Upon addition of electron donors, signal IIf follows pseudo-first order decay kinetics with rates dependent on the chemical nature of the donor. Negatively charged donors (I, Fe(CN)4−6, W(CN)4−8) are poor reducing agents for Z+· whereas neutral donors (benzidine, hydroquinone, diphenylcarbazide) are more efficient, their effectiveness paralleling their lipophilicity. The slow signal IIf reduction observed with the charged donors is consistent with the non-polar nature of the thylakoid membrane and a location for Z toward the inner membrane surface. It most probably exists in a hydrophobic site as indicated by the positive correlation between rate constant and lipophilicity for the neutral donors.

A detailed study of the mechanism of Photosystem II reduction by ascorbic acid has been carried out. The pH dependence of the decay kinetics of signal IIf in the presence of this donor is consistent with a model in which both the neutral acid and the ascorbate mono-anion serve as reducing agents to Z+·. The second-order rate constant for reduction by the mono-anion is less than that of the neutral acid and is found to vary with the suspension pH. This observation is interpreted to indicate the occurrence of negative charge on the inner membrane surface in the vicinity of Z. Additional experiments, which assessed the effect of mono- and divalent cations and of cationic detergents on the signal IIf reaction rate constants, support both the presence of negative surface charge and its location on the membrane inner surface.  相似文献   


16.
B.L. Epel  J. Neumann 《BBA》1973,325(3):520-529

1. 1. The mechanism of the photooxidation of ascorbate and of Mn2+ by isolated chloroplasts was reinvestigated.

2. 2. Our results suggest that ascorbate or Mn2+ oxidation is the result of the Photosystem I-mediated production of the radical superoxide, and that neither ascorbate nor Mn2+ compete with water as electron donors to Photosystem II nor affect the rate of electron transport through the two photosystems: The radical superoxide is formed as a result of the autooxidation of the reduced forms of low potential electron acceptors, such as methylviologen, diquat, napthaquinone, or ferredoxin.

3. 3. In the absence of ascorbate or Mn2+ the superoxide formed dismutases either spontaneously or enzymatically producing O2 and H2O2. In the presence of ascorbate or Mn2+, however, the superoxide is reduced to H2O2 with no formation of O2. Consequently, in the absence of reducing compounds, in the reaction H2O to low potential acceptor one O2 (net) is taken up per four electrons transported where as in the presence of ascorbate, Mn2+ or other suitable reductants up to three molecules O2 can be taken up per four electrons transported.

4. 4. This interpretation is supported by the following observations: (a) in a chloroplast-free model system containing NADPH and ferredoxin-NADP reductase, methylviologen can be reduced to a free radical which is autooxidizable in the presence of O2; the addition of ascorbate or Mn2+ to this system results in a two fold stimulation of O2 uptake, with no stimulation of NADPH oxidation. The stimulation of O2 uptake is inhibited by the enzyme superoxide dismutase; (b) the stimulation of light-dependent O2 uptake in the system H2O → methylviologen in chloroplasts is likewise inhibited by the enzyme superoxide dismutase.

5. 5. In Class II chloroplasts in the system H2O → NADP upon the addition of ascorbate or Mn2+ an apparent inhibition of O2 evolution is observed. This is explained by the interaction of these reductants with the superoxide formed by the autooxidation of ferredoxin, a reaction which proceeds simultaneously with the photoreduction of NADP. Such an effect usually does not occur in Class I chloroplasts in which the enzyme superoxide dismutase is presumably more active than in Class II chloroplasts.

6. 6. It is proposed that since in the Photosystem I-mediated reaction from reduced 2,4-dichlorophenolindophenol to such low potential electron acceptor as methylviologen, superoxide is formed and results in the oxidation of the ascorbate present in the system, the ratio ATP/2e in this system (when the rate of electron flow is based on the rate of O2 uptake) should be revised in the upward direction.

Abbreviations: DCMU, 3-(3′,4′-dichlorophenyl)-1,1-dimethylurea; HEPES, hydroxyethyl-piperazineethanesulfonic acid; MES, (N-morpholino)ethanesulfonic acid; DCIP, 2,4-dichlorophenol-indophenol  相似文献   


17.
Charge-transfer reactions to secondary electron donors (Z, M) and acceptors (QA, QB) in Photosystem II particles isolated from a thermophilic cyanobacterium Synechococcus sp. (Schatz, G.H. and Witt H.T. (1984) Photobiochem. Photobiophys. 7, 1–14) were analyzed by measurements of fluorescence yield and absorbance changes in the millisecond time domain induced by repetitive flashes. (1) The electron-transfer reaction QAQB → QAQB was found to occur with kinetic phases of 0.2 ± 0.1 ms and 1.5 ± 0.5 ms half-time. At 10 ms after flashes an equilibrium distribution of QAQB/QAQB of about 15/85 in oxygen-evolving and of about 25/75 in Tris-treated PS II particles was reached. (2) The absorbance difference spectra were determined for (QA - QA), (QB - QB), (Z+ - Z) and for (S4 - S0), the transition associated with oxygen evolution. In the ultraviolet region they show that these electron-acceptors and -donors are the same as in spinach PS II. In the visible region all the difference spectra contain major contributions by electrochromic bandshifts due to electrostatic interaction of the reduced acceptors or oxidized donors with nearby reaction center pigments. Upon electron transfer from QA to QB electrochromic bandshifts due to interaction with pheophytin a disappeared almost completely. Bandshifts observed in the (Z+ - Z) and (S4 - S0) spectra were attributed to chlorophyll a.  相似文献   

18.
After a 500 mus laser flash a 120 mus phase in the decay of delayed fluorescence is visible under a variety of circumstances in spinach chloroplasts and subchloroplast particles enriched in Photosystem II prepared by means of digitonin. The level of this phase is high in the case of inhibition of oxygen evolution at the donor side of Photosystem II. Comparison with the results of Babcock and Sauer (1975) Biochim. Bio-phys. Acta 376, 329-344, indicates that their EPR signal IIf which they suppose to be due to Z+, the oxidized first secondary donor of Photosystem II, is well correlated with a large amplitude of our 120 mus phase. We explain our 120 mus phase by the intrinsic back reaction of the excited reaction center in the presence of Z+, as predicted by Van Gorkom and Donze (1973) Photochem. Photobiol. 17, 333-342. The redox state of Z+ is dependent on the internal pH of the thylakoids. The results on the effect of pH in the mus region are compared with those obtained in the ms region.  相似文献   

19.
M.-E. Koller  I. Romslo  T. Flatmark 《BBA》1976,449(3):480-490
The mitochondrial ferrochelatase activity has been studied in coupled rat liver mitochondria using deuteroporphyrin IX (incorporated into liposomes of lecithin) and Fe(III) or Co(II) as the substrates.

1. 1. It was found that respiring mitochondria catalyze the insertion of Fe(II) and Co(II) into deuteroporphyrin. When Fe(III) was used as the metal donor, the reaction revealed an absolute requirement for a supply of reducing equivalents supported by the respiratory chain.

2. 2. A close correlation was found between the disappearance of porphyrin and the formation of heme which allows an accurate estimate of the extinction coefficient for the porphyrin to heme conversion. The value Δ (mM−1 · cm−1) = 3.5 for the wavelength pair 498 509 nm, is considerably lower than previously reported.

3. 3. The maximal rate of deuteroheme synthesis was found to be approx. 1 nM · min−1 · mg−1 of protein at 37 °C, pH 7.4 and optimal substrate concentrations, i.e. 75 μM Fe(III) and 50 μM deuteroporphyrin.

4. 4. Provided the mitochondria are supplemented with an oxidizable substrate, the presence of oxygen has no effect on the rate of deuteroheme synthesis.

Abbreviations: EPPS, (4-(2-hydroxyethyl)-1-piperazine propane sulphonic acid); HEPES, N-2-hydroxyethylpiperazine-N′-2-ethanesulphonic acid; PIPES, piperazine-N,N′-2-bis(2-ethanesulphonic acid)  相似文献   


20.
The mechanism by which Cl activates the oxygen-evolving complex (OEC) of Photosystem II (PS II) in spinach was studied by 35Cl-NMR spectroscopy and steady-state measurements of oxygen evolution. Measurements of the excess 35Cl-NMR linewidth in dark-adapted, Cl-depleted thylakoid and Photosystem II membranes show an overall hyperbolic decrease which is interrupted by sharp increases in linewidth (linewidth maxima) at approx. 0.3 mM, 0.75 mM, 3.25 mM (2.0 mM in PS II membranes), and 7.0 mM Cl. The rate of the Hill reaction (H2O → 2,6-dichlorophenolindophenol) at low light intensities (5% of saturation) as a function of [Cl] in thylakoids shows three intermediary plateaus in the concentration range between 0.1 and 10 mM Cl indicating kinetic cooperativity with respect to Cl. The presence of linewidth maxima in the 35Cl-NMR binding curve indicates that Cl addition exposes four types of Cl binding site that were previously inaccessible to exchange with Cl in the bulk solution. These results are best explained by proposing that Cl binds to four sequestered (salt-bridged) domains within the oxygen-evolving complex. Binding of Cl is facilitated by the presence of H+ and vice versa. The pH dependence of the excess 35Cl-NMR linewidth at 0.75 mM Cl shows that Cl binding has a maximum at pH 6.0 and two smaller maxima at pH 5.4 and 6.5 which may suggest that as many as three groups (perhaps histidine) with pKa values in the region may control the binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号