首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Phospholipase D (PLD, EC 3.1.4.4.) has been implicated in a variety of plant processes, including signalling. In Arabidopsis thaliana a PLD gene family has been described and individual members classified into alpha-, beta- and gamma-classes. Here we describe a second PLD gene family in tomato (Lycopersicon esculentum) that includes three alpha- and two beta-classes. Different expression patterns in plant organs were observed for each PLD. In testing a variety of stress treatments on tomato cell suspensions, PLDbeta1 mRNA was found to rapidly and specifically accumulate in response to the fungal elicitor xylanase. The greatest increase was found 2 h after treatment with 100 microg m1(-1) xylanase (ninefold). In vivo PLD activity increased nearly threefold over a 1.5 h period of treatment. When the elicitor was injected into tomato leaves, PLDbeta1 mRNA accumulation peaked at 2 h (threefold increase), before decreasing to background levels within 72 h. Mutant, non-active xylanase was as effective as the active enzyme in eliciting a response, suggesting that xylanase itself, and not the products resulting from its activity, functioned as an elicitor. When chitotetraose was used as elicitor, no PLDbeta1 mRNA accumulation was observed, thus it is not a general response to elicitation. Together these data show that PLD genes are differentially regulated, reflecting potential differences in cellular function. The possibility that PLDbeta1 is a signalling enzyme is discussed.  相似文献   

3.
Phospholipid signaling is an important component in eukaryotic signal transduction pathways. In plants, it plays a key role in growth and development as well as in responses to environmental stresses, including pathogen attack. We investigated the involvement of both phospholipase C (PLC, EC 3.1.4.11) and D (PLD, EC 3.1.4.4) in early responses to the treatment of Brassica napus plants with the chemical inducers of systemic acquired resistance (SAR): salicylic acid (SA), benzothiadiazole (BTH), and with the inducer mediating the induced systemic resistance (ISR) pathway, methyl jasmonate (MeJA). Rapid activation (within 0.5-6 h treatment) of the in vitro activity level was found for phosphatidyl inositol 4,5 bisphosphate (PIP2)-specific PLC (PI-PLC) and three enzymatically different forms of PLD: conventional PLDalpha, PIP2-dependent PLD beta/gamma, and oleate-stimulated PLDdelta. The strongest response was found in case of cytosolic PIP2-dependent PLD beta/gamma after BTH treatment. PLDdelta was identified in B. napus leaves and was very rapidly activated after MeJA treatment with the highest degree of activation compared to the other PLD isoforms. Interestingly, an increase in the amount of protein was observed only for PLDgamma and/or delta after ISR induction, but later than the activation occurred. These results show that phospholipases are involved in very early processes leading to systemic responses in plants and that they are most probably initially first activated on post translational level.  相似文献   

4.
Multiple forms of phospholipase D (PLD) were activated in response to wounding, and the expressions of PLDalpha, PLDbeta, and PLDgamma differed in wounded Arabidopsis leaves. Antisense abrogation of the common plant PLD, PLDalpha, decreased the wound induction of phosphatidic acid, jasmonic acid (JA), and a JA-regulated gene for vegetative storage protein. Examination of the genes involved in the initial steps of oxylipin synthesis revealed that abrogation of the PLDalpha attenuated the wound-induced expression of lipoxygenase 2 (LOX2) but had no effect on allene oxide synthase (AOS) or hydroperoxide lyase in wounded leaves. The systemic induction of LOX2, AOS, and vegetative storage protein was lower in the PLDalpha-suppressed plants than in wild-type plants, with AOS exhibiting a distinct pattern. These results indicate that activation of PLD mediates wound induction of JA and that LOX2 is probably a downstream target through which PLD promotes the production of JA.  相似文献   

5.
Phospholipase D (PLD) has been implicated in various processes, including signal transduction, membrane trafficking, and membrane degradation. Multiple forms of PLD with distinct biochemical properties have been described in the cell. In Arabidopsis, PLDalpha and PLDgamma, but not PLDbeta, were detected in guard cells, and antisense suppression resulted in a specific loss of PLDalpha. The abrogation of PLDalpha rendered plants less sensitive to abscisic acid and impaired stomatal closure induced by water deficits. PLDalpha-depleted plants exhibited accelerated transpirational water loss and a decreased ability to tolerate drought stress. Overexpression of PLDalpha enhanced the leaf's sensitivity to abscisic acid. These findings provide molecular and physiological evidence that PLDalpha plays a crucial role in regulating stomatal movement and plant-water status.  相似文献   

6.
7.
Qin C  Wang X 《Plant physiology》2002,128(3):1057-1068
Four types of phospholipase D (PLD), PLD alpha, beta, gamma, and delta, have been characterized in Arabidopsis, and they display different requirements for Ca(2+), phosphatidylinositol 4,5-bisphosphate (PIP(2)), substrate vesicle composition, and/or free fatty acids. However, all previously cloned plant PLDs contain a Ca(2+)-dependent phospholipid-binding C2 domain and require Ca(2+) for activity. This study documents a new type of PLD, PLD zeta 1, which is distinctively different from previously characterized PLDs. It contains at the N terminus a Phox homology domain and a pleckstrin homology domain, but not the C2 domain. A full-length cDNA for Arabidopsis PLD zeta 1 has been identified and used to express catalytically active PLD in Escherichia coli. PLD zeta 1 does not require Ca(2+) or any other divalent cation for activity. In addition, it selectively hydrolyzes phosphatidylcholine, whereas the other Arabidopsis PLDs use several phospholipids as substrates. PLD zeta 1 requires PIP(2) for activity, but unlike the PIP(2)-requiring PLD beta or gamma, phosphatidylethanolamine is not needed in substrate vesicles. These differences are described, together with a genomic analysis of 12 putative Arabidopsis PLD genes that are grouped into alpha, beta, delta, gamma, and zeta based on their gene architectures, sequence similarities, domain structures, and biochemical properties.  相似文献   

8.
Interactions between Arabidopsis thaliana and its native obligate oomycete pathogen Hyaloperonospora arabidopsidis (Hpa) represent a model system to study evolution of natural variation in a host/pathogen interaction. Both Arabidopsis and Hpa genomes are sequenced and collections of different sub-species are available. We analyzed ~400 interactions between different Arabidopsis accessions and five strains of Hpa. We examined the pathogen's overall ability to reproduce on a given host, and performed detailed cytological staining to assay for pathogen growth and hypersensitive cell death response in the host. We demonstrate that intermediate levels of resistance are prevalent among Arabidopsis populations and correlate strongly with host developmental stage. In addition to looking at plant responses to challenge by whole pathogen inoculations, we investigated the Arabidopsis resistance attributed to recognition of the individual Hpa effectors, ATR1 and ATR13. Our results suggest that recognition of these effectors is evolutionarily dynamic and does not form a single clade in overall Arabidopsis phylogeny for either effector. Furthermore, we show that the ultimate outcome of the interactions can be modified by the pathogen, despite a defined gene-for-gene resistance in the host. These data indicate that the outcome of disease and disease resistance depends on genome-for-genome interactions between the host and its pathogen, rather than single gene pairs as thought previously.  相似文献   

9.
Li G  Lin F  Xue HW 《Cell research》2007,17(10):881-894
Phospholipase D (PLD) plays a critical role in plant growth and development, as well as in hormone and stress responses. PLD encoding genes constitute a large gene family that are present in higher plants. There are 12 members of the PLD family in Arabidopsis thaliana and several of them have been functionally characterized; however, the members of the PLD family in Oryza sativa remain to be fully described. Through genome-wide analysis, 17 PLD members found in different chromosomes have been identified in rice. Protein domain structural analysis reveals a novel subfamily, besides the C2-PLDs and PXPH-PLDs, that is present in rice - the SP-PLD. SP-PLD harbors a signal peptide instead of the C2 or PXPH domains at the N-terminus. Expression pattern analysis indicates that most PLD-encoding genes are differentially expressed in various tissues, or are induced by hormones or stress conditions, suggesting the involvement of PLD in multiple developmental processes. Transgenic studies have shown that the suppressed expression office PLDβ1 results in reduced sensitivity to exogenous ABA during seed germination. Further analysis of the expression of ABA signaling-related genes has revealed that PLDβ1 stimulates ABA signaling by activating SAPK, thus repressing GAmyb exoression and inhibiting seed germination.  相似文献   

10.
Of the isoforms of plant phospholipase D (PLD) that have been cloned and characterized, PLDalpha requires millimolar levels of Ca(2+) for optimal activity, whereas PLDbeta is most active at micromolar concentrations of Ca(2+). Multiple amino acid sequence alignments suggest that PLDalpha and PLDbeta both contain a Ca(2+)-dependent phospholipid-binding C2 domain near their N termini. In the present study, we expressed and characterized the putative C2 domains of PLDalpha and PLDbeta, designated PLDalpha C2 and PLDbeta C2, by CD spectroscopy, isothermal titration calorimetry, and phospholipid binding assay. Both PLD C2 domains displayed CD spectra consistent with anticipated major beta-sheet structures but underwent spectral changes upon binding Ca(2+); the magnitude was larger for PLDbeta C2. These conformational changes, not shown by any of the previously characterized C2 domains of animal origin, occurred at micromolar Ca(2+) concentrations for PLDbeta C2 but at millimolar levels of the cation for PLDalpha C2. PLDbeta C2 exhibited three Ca(2+)-binding sites: one with a dissociation constant (K(d)) of 0.8 microm and the other two with a K(d) of 24 micrometer. In contrast, isothermal titration calorimetry data of PLDalpha C2 were consistent with 1-3 low affinity Ca(2+)-binding sites with K(d) in the range of 590-470 micrometer. The thermodynamics of Ca(2+) binding markedly differed for the two C2 domains. Likewise, PLDbeta C2 bound phosphatidylcholine (PC), the substrate of PLD, in the presence of submillimolar Ca(2+) concentrations, whereas PLDalpha C2 did so only in the presence of millimolar levels of the metal ion. Both C2 domains bound phosphatidylinoistol 4,5-bisphosphate, a regulator of PC hydrolysis by PLD. However, added Ca(2+) displaced the bound phosphatidylinoistol 4,5-bisphosphate. Ca(2+) and PC binding properties of PLDalpha C2 and PLDbeta C2 follow a trend similar to the Ca(2+) requirements of the whole enzymes, PLDalpha and PLDbeta, for PC hydrolysis. Taken together, the results suggest that the C2 domains of PLDalpha and PLDbeta have novel structural features and serve as handles by which Ca(2+) differentially regulates the activities of the isoforms.  相似文献   

11.
In contrast to gene-for-gene disease resistance, nonhost resistance governs defense responses to a broad range of potential pathogen species. To identify specific genes involved in the signal transduction cascade associated with nonhost disease resistance, we used a virus-induced gene-silencing screen in Nicotiana benthamiana, and identified the peroxisomal enzyme glycolate oxidase (GOX) as an essential component of nonhost resistance. GOX-silenced N. benthamiana and Arabidopsis thaliana GOX T-DNA insertion mutants are compromised for nonhost resistance. Moreover, Arabidopsis gox mutants have lower H(2)O(2) accumulation, reduced callose deposition, and reduced electrolyte leakage upon inoculation with hypersensitive response-causing nonhost pathogens. Arabidopsis gox mutants were not affected in NADPH oxidase activity, and silencing of a gene encoding NADPH oxidase (Respiratory burst oxidase homolog) in the gox mutants did not further increase susceptibility to nonhost pathogens, suggesting that GOX functions independently from NADPH oxidase. In the two gox mutants examined (haox2 and gox3), the expression of several defense-related genes upon nonhost pathogen inoculation was decreased compared with wild-type plants. Here we show that GOX is an alternative source for the production of H(2)O(2) during both gene-for-gene and nonhost resistance responses.  相似文献   

12.
13.
Lysophospholipids are intermediates of phospholipid metabolism resulting from stress and lysophospholipases detoxify lysophosphatidylcholine (lysoPC). Many lysophospholipases have been characterized in mammals and bacteria, but few have been reported from plants. Arabidopsis thaliana lysophospholipase 2 (lysoPL2) (At1g52760) was identified as a protein interactor of acyl‐CoA‐binding protein 2 (ACBP2) in yeast two‐hybrid analysis and co‐immunoprecipitation assays. BLASTP analysis indicated that lysoPL2 showed ~35% amino acid identity to the lysoPL1 family. Co‐localization of autofluorescence‐tagged lysoPL2 and ACBP2 by confocal microscopy in agroinfiltrated tobacco suggests the plasma membrane as a site for their subcellular interaction. LysoPL2 mRNA was induced by zinc (Zn) and hydrogen peroxide (H2O2), and lysoPL2 knockout mutants showed enhanced sensitivity to Zn and H2O2 in comparison to wild type. LysoPL2‐overexpressing Arabidopsis was more tolerant to H2O2 and cadmium (Cd) than wild type, suggesting involvement of lysoPL2 in phospholipid repair following lipid peroxidation arising from metal‐induced stress. Lipid hydroperoxide (LOOH) contents in ACBP2‐overexpressors and lysoPL2‐overexpressors after Cd‐treatment were lower than wild type, indicating that ACBP2 and lysoPL2 confer protection during oxidative stress. A role for lysoPL2 in lysoPC detoxification was demonstrated when recombinant lysoPL2 was observed to degrade lysoPC in vitro. Filter‐binding assays and Lipidex competition assays showed that (His)6‐ACBP2 binds lysoPC in vitro. Binding was disrupted in a (His)6‐ACBP2 derivative lacking the acyl‐CoA‐binding domain, confirming that this domain confers lysoPC binding. These results suggest that ACBP2 can bind both lysoPC and lysoPL2 to promote the degradation of lysoPC in response to Cd‐induced oxidative stress.  相似文献   

14.
Differentiation of P19 EC cells along different pathways into derivatives resembling cells of the three embryonic germ layers is accompanied by characteristic differences in modulation of expression of each of the three retinoic acid receptor genes, RAR alpha, -beta and -gamma. Differentiation induced by addition of RA to P19 EC cells cultured in monolayer is accompanied by a rapid increase in expression of both RAR alpha and -beta. Induction of RAR beta occurs in a characteristic biphasic manner, suggesting that multiple factors and/or different mechanisms are involved in controlling its expression. RAR beta mRNA is induced to a far higher level during early aggregation in the presence of RA than during early differentiation in monolayer, suggesting that the direction of differentiation depends on the number and/or ratio of alpha and beta type of RA receptors. Aggregation of P19 EC cells in the presence of RA, but not DMSO, is accompanied by repression of RAR gamma, suggesting that the expression of RAR beta and RAR gamma during neuroectodermal differentiation is mutually exclusive. The effects of RA on RAR expression are significantly greater in G1 than in S-phase of the cell cycle. These results extend previous observations that commitment to differentiation is cell cycle dependent and indicates that critical target gene regulation in response to RA has to take place in G1 for differentiation to occur.  相似文献   

15.
16.
17.
18.
Phospholipase D (PLD; EC 3.1.4.4) plays an important role in membrane lipid hydrolysis and in mediation of plant responses to a wide range of stresses. PLDalpha1 abrogation through antisense suppression in Arabidopsis thaliana resulted in a significant increase in freezing tolerance of both non-acclimated and cold-acclimated plants. Although non-acclimated PLDalpha1-deficient plants did not show the activation of cold-responsive C-repeat/dehydration-responsive element binding factors (CBFs) and their target genes (COR47 and COR78), they did accumulate osmolytes to much higher levels than did the non-acclimated wild-type plants. However, a stronger expression of COR47 and COR78 in response to cold acclimation and to especially freezing was observed in PLDalpha1-deficient plants. Furthermore, a slower activation of CBF1 was observed in response to cold acclimation in these plants compared to the wild-type plants. Typically, cold acclimation resulted in a higher accumulation of osmolytes in PLDalpha1-deficient plants than in wild-type plants. Inhibition of PLD activity by using lysophosphatidylethanolamine (LPE) also increased freezing tolerance of Arabidopsis, albeit to a lesser extent than did the PLD antisense suppression. Exogenous LPE induced expression of COR15a and COR47 in the absence of cold stimulus. These results suggest that PLDalpha1 plays a key role in freezing tolerance of Arabidopsis by modulating the cold-responsive genes and accumulation of osmolytes.  相似文献   

19.
Leucine-rich repeat proteins (LRRs) function in a number of signal transduction pathways via protein–protein interactions. The gene encoding a small protein of pepper, CaLRR1 , is specifically induced upon pathogen challenge and treatment with pathogen-associated molecular patterns (PAMPs). We identified a pepper hypersensitive induced reaction (CaHIR1) protein that interacts with the LRR domain of the CaLRR1 protein using yeast two-hybrid screening. Ectopic expression of the pepper CaHIR1 gene induces cell death in tobacco and Arabidopsis, indicating that the CaHIR1 protein may be a positive regulator of HR-like cell death. Because transformation is very difficult in pepper plants, we over-expressed CaLRR1 and CaHIR1 in Arabidopsis to determine cellular functions of the two genes. The over-expression of the CaHIR1 gene, but not the CaLRR1 gene, in transgenic Arabidopsis confers disease resistance in response to Pseudomonas syringae infection, accompanied by the strong expression of PR genes, the accumulation of both salicylic acid and H2O2, and K+ efflux in plant cells. In Arabidopsis and tobacco plants over-expressing both CaHIR1 and CaLRR1 , the CaLRR1 protein suppresses not only CaHIR1 -induced cell death, but also PR gene expression elicited by CaHIR1 via its association with HIR protein. We propose that the CaLRR1 protein functions as a novel negative regulator of CaHIR1-mediated cell death responses in plants.  相似文献   

20.
Most types of plant phospholipase D (PLD) require Ca(2+) for activity, but how Ca(2+) affects PLD activity is not well understood. We reported previously that Ca(2+) binds to the regulatory C2 domain that occurs in the N terminus of the Ca(2+)-requiring PLDs. Using Arabidopsis thaliana PLDbeta and C2-deleted PLDbeta (PLDbetacat), we now show that Ca(2+) also interacts with the catalytic regions of PLD. PLDbetacat exhibited Ca(2+)-dependent activity, was much less active, and required a higher level of Ca(2+) than the full-length PLDbeta. Ca(2+) binding of the proteins was stimulated by phospholipids; phosphatidylserine was the most effective among those tested. Scatchard plot analysis of Ca(2+) binding data yielded an estimate of 3.6 high affinity (K(d) = 29 mum) binding sites on PLDbeta. The Ca(2+)-PLDbetacat interaction increased the affinity of the protein for the activator, phosphatidylinositol 4,5-bisphosphate, but not for the substrate, phosphatidylcholine. This is in contrast to the effect of Ca(2+) binding to the C2 domain, which stimulates phosphatidylcholine binding but inhibits phosphatidylinositol 4,5-bisphosphate binding of the domain. These results demonstrate the contrasting and complementary effects of the Ca(2+)- and lipid-binding properties of the C2 and catalytic domains of plant PLD and provide insight into the mechanism by which Ca(2+) regulates PLD activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号