首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
Temperature-sensitive dnaJ mutants of Escherichia coli showed a thermosensitive defect in the synthesis of beta-galactosidase. Synthesis of the lac mRNA was greatly reduced at the restrictive temperature. The mutants were also conditionally defective in the synthesis of a subset of membrane proteins such as succinate dehydrogenase, whereas the synthesis of anthranilate synthetase, encoded by trpED, as well as that of most cellular proteins, was unaffected at the restrictive temperature. The defect was specific for the dnaJ mutants among several dna mutants which are known to be involved in the initiation of DNA synthesis: dnaK, dnaA, and dnaB mutants synthesized each of these proteins normally even at the restrictive temperature. At the restrictive temperature, growth of the dnaJ mutants was arrested at a specific stage of the cell cycle.  相似文献   

6.
7.
8.
9.
10.
11.
Acetylated amino sugars, normally used in the biosynthesis of cell walls and cell membranes, were found to play a role as corepressors for catabolite repression of the lac operon in Escherichia coli. This conclusion was derived from studies conducted on mutants of E. coli that were able to assimilate an exogenous source of N-acetylglucosamine (AcGN) but were unable to dissimilate or grow on this compound. At concentrations less than 10(-4)m, AcGN caused severe catabolite repression of beta-galactosidase synthesis in cultures grown under either nonrepressed or partially repressed conditions. This repression occurred in the absence of any effect of AcGN on either the carbon and energy metabolism or the growth of the organism. In addition, this repression by AcGN occurred in a mutant strain that is constitutive for beta-galactosidase production, demonstrating that the AcGN effect does not involve the uptake of inducer. This model for the corepressor system of catabolite repression is discussed in relation to the existing theories on repression of the lac operon.  相似文献   

12.
The second operator of the lac operon, located within the 5'-coding region of the lacZ gene, was specifically destroyed by means of oligonucleotide-directed mutagenesis. Eight of its bases were exchanged without altering the wild-type amino acid sequence of beta-galactosidase. The mutation was transferred onto an F'lac+I+O+Z+pro+ episome. We observed a fivefold decrease in repression of beta-galactosidase expression compared to that in the wild-type.  相似文献   

13.
14.
Paradoxical effect of weak inducers on the lac operon of Escherichia coli   总被引:1,自引:1,他引:0  
Previously, we reported the existence of a group of compounds whose function in the regulation of the lac operon was "paradoxical" in that they acted as either inducers or repressors depending on the circumstances. We now show that this group of compounds does not repress the lac operon by catabolite repression, transient repression, or by preventing the uptake of inducers. A model is presented which shows that "paradoxical" behavior is to be expected if a weak inducer is present at a concentration that is high relative to its binding affinity for the regulatory macromolecule. This model depends on the assumptions that the regulatory macromolecule is an allosteric protein which undergoes a transition between two conformational states and that the rate of enzyme synthesis depends on the fraction of protein molecules in each state. The previous observations on the responses of lac regulatory mutants to weak inducers have been extended to a series of such mutants. Weak inducers repress beta-galactosidase synthesis in several i(-) mutants. When this happens, enzyme synthesis can be reinduced by using a strong inducer such as isopropyl-beta-d-thiogalactoside. These compounds induce operator constitutives and the i(t) mutant more easily than they induce a wild-type strain.  相似文献   

15.
16.
17.
18.
19.
The idea that Escherichia coli gained the lac operon via horizontal transfer, allowing it to invade a new niche and form a new species, has become a paradigmatic example of bacterial nonpathogenic adaptation and speciation catalyzed by horizontal transfer. Surprisingly, empirical evidence for this event is essentially nonexistent. To see whether horizontal transfer occurred, I compared a phylogeny of 14 Enterobacteriaceae based on two housekeeping genes to a phylogeny of a part of their lac operon. Although several species in this clade appear to have acquired some or all of the operon via horizontal transfer, there is no evidence of horizontal transfer into E. coli. It is not clear whether the horizontal transfer events for which there is evidence were adaptive because those species which have acquired the operon are not thought to live in high lactose environments. I propose that vertical transmission from the common ancestor of the Enterobacteriaceae, with subsequent loss of these genes in many species can explain much of the patchy distribution of lactose use in this clade. Finally, I argue that we need new, well-supported examples of horizontal transfer spurring niche expansion and speciation, particularly in nonpathogenic cases, before we can accept claims that horizontal transfer is a hallmark of bacterial adaptation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号