首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
C P Rossi  E Cash  C Aubert    A Coutinho 《Journal of virology》1991,65(7):3895-3899
Theiler's virus, a murine picornavirus, persists in the central nervous system of susceptible strains of mice, causing chronic inflammation and demyelination in the white matter of the spinal cord. Resistant strains, however, clear the virus and do not develop late disease. In this study, we compared the characteristics of T and B lymphocytes in C57BL/6 (resistant) and SJL/J (susceptible) mice 1 week after intracerebral infection. We detected a marked increase of the number of immunoglobulin M (IgM)-secreting cells in the spleens of C57BL/6 detected a marked increase of the number of immunoglobulin M (IgM)-secreting cells in the spleens of C57BL/6 mice (but not in those of SJL/J mice), which correlated with higher levels of serum IgM antiviral antibodies. The role of the humoral response in virus clearance and resistance was demonstrated by a marked decrease in the number of infected spinal cord cells in SJL/J mice after passive transfer of serum from infected C57BL/6 donors. The B-cell response was found to be partly T cell independent. These results suggest an important role of the early humoral immune response in resistance to Theiler's virus-induced disease.  相似文献   

3.
4.
The immune responses to influenza, a virus that exhibits strain variation, show complex dynamics where prior immunity shapes the response to the subsequent infecting strains. Original antigenic sin (OAS) describes the observation that antibodies to the first encountered influenza strain, specifically antibodies to the epitopes on the head of influenza''s main surface glycoprotein, haemagglutinin (HA), dominate following infection with new drifted strains. OAS suggests that responses to the original strain are preferentially boosted. Recent studies also show limited boosting of the antibodies to conserved epitopes on the stem of HA, which are attractive targets for a ‘universal vaccine’. We develop multi-epitope models to explore how pre-existing immunity modulates the immune response to new strains following immunization. Our models suggest that the masking of antigenic epitopes by antibodies may play an important role in describing the complex dynamics of OAS and limited boosting of antibodies to the stem of HA. Analysis of recently published data confirms model predictions for how pre-existing antibodies to an epitope on HA decrease the magnitude of boosting of the antibody response to this epitope following immunization. We explore strategies for boosting of antibodies to conserved epitopes and generating broadly protective immunity to multiple strains.  相似文献   

5.
Anti-idiotypic (anti-Id) antibodies were raised in rabbits against five monoclonal antibodies (MAbs) specific for different antigenic sites on the hemagglutinin (HA) of influenza virus Mem71H-BelN (H3N1) [A/Memphis/1/71 (H3N2) x A/Bel/42 (H1N1)]. Each of the anti-Id sera was directed predominantly towards a unique (private) idiotype of the immunizing MAb, none of the five idiotypes being detectable in pooled BALB/c antisera against Mem71H-BelN virus or on most other anti-HA MAbs tested. Partial idiotypic sharing was observed, however, between certain MAbs, from different mice, having the same or similar epitope specificity for HA. When used as immunogens in BALB/c mice, two of the five anti-Id preparations induced antibodies that reacted with Mem71H-BelN virus and displayed neutralizing activity. Mice of other inbred strains responded similarly, indicating that the response was not genetically restricted by the Igh locus. From their pattern of reactivity with mutants of Mem71H-BelN virus with known single amino acid substitutions in the HA molecule, the antiviral antibodies elicited by anti-Id antibodies were shown to be directed to the same antigenic site on A/Memphis/1/71 HA as the original immunizing MAb (site A or site E, respectively). However, several of these antisera were shown to contain additional distinct subpopulations of antibodies specific for heterologous influenza A virus strains, either of the H3 subtype or of a different HA subtype (H1 or H2). Since the induction of antibodies to HA of different subtypes is not a feature of the antibody response to influenza virus itself, their induction by anti-Id antibodies merits further investigation.  相似文献   

6.
7.
We have observed that respiratory virus infection of mice provokes an extremely persistent humoral immune reaction, due to a long-sustained population of antibody-secreting cells in the bone marrow. Theories of humoral immunity that strongly distinguish primary and secondary reactions thus may not adequately describe the immune response to respiratory viruses.  相似文献   

8.
Infant ferrets are born with nearly undetectable immunoglobulin levels, but by 9 days of age the infant ferret serum contains 77, 29, and 13% of adult mean serum levels of IgG, IgA, and IgM. Transmucosal uptake of IgG by the infant ferret occurred for the first 30 days of life. The specific anti-respiratory syncytial virus neutralizing titer of whole milk was 5.5 times higher than maternal serum despite a lower concentration of immunoglobulins in the milk.  相似文献   

9.
One of the deadly hallmarks of cancer is its ability to prosper within the constraints of the host immune system. Recent advances in immunoproteomics and high-throughput technologies have lead to profiling of the antibody repertoire in cancer patients. This in turn has lead to the identification of tumour associated antigens/autoantibodies. Autoantibodies are extremely attractive and promising biomarker entities, however there has been relatively little discussion on how to interpret the humoral immune response. It may be that autoantibody profiles hold the key to ultimately uncovering neoplastic associated pathways and through the process of immunosculpting the tumour may have yielded an immune response in the early stages of malignant tumour development. The aim of this review is to discuss the utility of the autoantibody response that is elicited as a result of malignancy and discuss the advantages and limitations of autoantibody profiling. This article is part of a Special Issue entitled: Translational Proteomics.  相似文献   

10.
11.
The immune system makes use of two distinct mechanisms to mount an efficient response against almost every foreign macromolecular substance. First, antibodies with their robust immunoglobulin domain architecture provide a rigid scaffold to support six hypervariable loops, capable of forming highly diverse binding sites. Second, an efficient genetic mechanism has evolved to create sequence diversity at the somatic level in a step-wise process, whereby random recombination of an inherited set of gene segments is followed by hypermutation events. Insight into the corresponding molecular mechanisms is developing rapidly and enables adaptation of the emerging principles to the creation of artificial binding proteins in vitro, using the techniques of combinatorial biotechnology. Thus, novel types of receptor molecules have been constructed from alternative scaffolds, including alpha-helical bundle and beta-barrel proteins. These may provide superior tools for the recognition, targeting or separation of a wide range of biomolecular structures or substances in biological research, technology, and even medicine.  相似文献   

12.
The tetraspanins represent a large superfamily of four-transmembrane proteins that are expressed on all nucleated cells. Tetraspanins play a prominent role in the organization of the plasma membrane by co-ordinating the spatial localization of transmembrane proteins and signalling molecules into 'tetraspanin microdomains'. In immune cells, tetraspanins interact with key leucocyte receptors [including MHC molecules, integrins, CD4/CD8 and the BCR (B-cell receptor) complex] and as such can modulate leucocyte receptor activation and downstream signalling pathways. There is now ample evidence that tetraspanins on B-lymphocytes are important in controlling antibody production. The tetraspanin CD81 interacts with the BCR complex and is critical for CD19 expression and IgG production, whereas the tetraspanin CD37 inhibits IgA production and is important for IgG production. By contrast, the tetraspanins CD9, Tssc6 and CD151 appear dispensable for humoral immune responses. Thus individual tetraspanin family members have specific functions in B-cell biology, which is evidenced by recent studies in tetraspanin-deficient mice and humans. The present review focuses on tetraspanins expressed by B-lymphocytes and discusses novel insights into the function of tetraspanins in the humoral immune response.  相似文献   

13.
Following influenza infection, natural killer (NK) cells function as interim effectors by suppressing viral replication until CD8 T cells are activated, proliferate, and are mobilized within the respiratory tract. Thus, NK cells are an important first line of defense against influenza virus. Here, in a murine model of influenza, we show that virally-induced IL-15 facilitates the trafficking of NK cells into the lung airways. Blocking IL-15 delays NK cell entry to the site of infection and results in a disregulated control of early viral replication. By the same principle, viral control by NK cells can be therapeutically enhanced via intranasal administration of exogenous IL-15 in the early days post influenza infection. In addition to controlling early viral replication, this IL-15-induced mobilization of NK cells to the lung airways has important downstream consequences on adaptive responses. Primarily, depletion of responding NK1.1+ NK cells is associated with reduced immigration of influenza-specific CD8 T cells to the site of infection. Together this work suggests that local deposits of IL-15 in the lung airways regulate the coordinated innate and adaptive immune responses to influenza infection and may represent an important point of immune intervention.  相似文献   

14.
Given that highly active antiretroviral therapy (HAART) has been demonstrated useful to restore immune competence in type-1 human immunodeficiency virus (HIV-1)-infected subjects, we evaluated the specific antibody response to influenza vaccine in a cohort of HIV-1-infected children on HAART so as to analyze the quality of this immune response in patients under antiretroviral therapy. Sixteen HIV-1-infected children and 10 HIV-1 seronegative controls were immunized with a commercially available trivalent inactivated influenza vaccine containing the strains A/H1N1, A/H3N2, and B. Serum hemagglutinin inhibition (HI) antibody titers were determined for the three viral strains at the time of vaccination and 1 month later. Immunization induced a significantly increased humoral response against the three influenza virus strains in controls, and only against A/H3N2 in HIV-1-infected children. The comparison of post-vaccination HI titers between HIV-1+ patients and HIV-1 negative controls showed significantly higher HI titers against the three strains in controls. In addition, post vaccination protective HI titers (defined as equal to or higher than 1:40) against the strains A/H3N2 and B were observed in a lower proportion of HIV-1+ children than in controls, while a similar proportion of individuals from each group achieved protective HI titers against the A/H1N1 strain. The CD4+ T cell count, CD4/CD8 T cells ratio, and serum viral load were not affected by influenza virus vaccination when pre- vs post-vaccination values were compared. These findings suggest that despite the fact that HAART is efficient in controlling HIV-1 replication and in increasing CD4+ T cell count in HIV-1-infected children, restoration of immune competence and response to cognate antigens remain incomplete, indicating that additional therapeutic strategies are required to achieve a full reconstitution of immune functions.  相似文献   

15.
A good secondary IgG response to the hemagglutinin (HA) of influenza virus has been obtained in vitro in Marbrook-type cultures of influenza-primed mouse spleen cell suspensions stimulated with inactivated influenza virus. Anti-HA antibody was quantitated by a solid phase radioimmunoassay (RIA) by using purified HA as substrate. The T dependence of this secondary response was shown by depletion of T cells and reconstitution with a source of primed or unprimed T cells. The help given by T cells primed to the homologous virus was many times greater than that given by unprimed T cells, although the latter was significant. The system described will allow investigation of the specificity requirements of helper T cells engaged in the anti-HA response.  相似文献   

16.
17.
18.
We present a simplified dynamical model of immune response to uncomplicated influenza A virus (IAV) infection, which focuses on the control of the infection by the innate and adaptive immunity. Innate immunity is represented by interferon-induced resistance to infection of respiratory epithelial cells and by removal of infected cells by effector cells (cytotoxic T-cells and natural killer cells). Adaptive immunity is represented by virus-specific antibodies. Similar in spirit to the recent model of Bocharov and Romanyukha [1994. Mathematical model of antiviral immune response. III. Influenza A virus infection. J. Theor. Biol. 167, 323-360], the model is constructed as a system of 10 ordinary differential equations with 27 parameters characterizing the rates of various processes contributing to the course of disease. The parameters are derived from published experimental data or estimated so as to reproduce available data about the time course of IAV infection in a na?ve host. We explore the effect of initial viral load on the severity and duration of the disease, construct a phase diagram that sheds insight into the dynamics of the disease, and perform sensitivity analysis on the model parameters to explore which ones influence the most the onset, duration and severity of infection. To account for the variability and speed of adaptation of the adaptive response to a particular virus strain, we introduce a variable that quantifies the antigenic compatibility between the virus and the antibodies currently produced by the organism. We find that for small initial viral load the disease progresses through an asymptomatic course, for intermediate value it takes a typical course with constant duration and severity of infection but variable onset, and for large initial viral load the disease becomes severe. This behavior is robust to a wide range of parameter values. The absence of antibody response leads to recurrence of disease and appearance of a chronic state with nontrivial constant viral load.  相似文献   

19.
Influenza A viruses (IAV) have been the cause of several influenza pandemics in history and are a significant threat for the next global pandemic. Hospitalized influenza patients often have excess interferon production and a dysregulated immune response to the IAV infection. Obtaining a better understanding of the mechanisms of IAV infection that induce these harmful effects would help drug developers and health professionals create more effective treatments for IAV infection and improve patient outcomes. IAV stimulates viral sensors and receptors expressed by alveolar epithelial cells, like RIG-I and toll-like receptor 3 (TLR3). These two pathways coordinate with one another to induce expression of type III interferons to combat the infection. Presented here is a queuing theory-based model of these pathways that was designed to analyze the timing and amount of interferons produced in response to IAV single stranded RNA and double-stranded RNA detection. The model accurately represents biological data showing the necessary coordination of the RIG-I and TLR3 pathways for effective interferon production. This model can serve as the framework for future studies of IAV infection and identify new targets for potential treatments.  相似文献   

20.
The effect of the anaphylatoxin C5a on the primary humoral immune response to SRBC was studied in culture of spleen cells from C3H mice. The addition of human C5a to antigen-stimulated cultures resulted in a significant, dose-dependent augmentation of the primary PFC response to antigen. The specificity of this effect was affirmed by the ability of C5ades Arg, but not of the structurally analogous C3a anaphylatoxin, to act in a parallel fashion. Enhancement could be observed over a range of doses of antigen. Brief preincubation of macrophages, but not of lymphoid cells, with C5a was sufficient to cause subsequent enhancement of the primary humoral immune responses. The duration of preincubation required for this effect closely paralleled that for binding of C5a to peritoneal cells. Immunopotentiation by C5a appears to involve the function of C5a receptor-bearing, Ia- accessory cells as well as Ia+ antigen-presenting cells. Immunopotentiation could be observed when the addition of C5a was delayed for up to 24 hr after initiation of culture. Additionally, augmentation of tritiated thymidine uptake in mixed lymphocyte reactions was enhanced by the addition of C5a in a fashion parallel to that for the primary response to SRBC. These observations support a role for C5a as a modulator of cellular immunity in addition to its role in acute inflammation. Possible cellular mechanisms and implications for immunomodulation of immune responses are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号