首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The protein constituents in the outer membrane (OM) of several serotypes of Escherichia coli and some other Enterobacteriaceae cross-reacted antigenically. Solubilized OM preparations of these bacteria were applied in interfacial precipitin tests to antisera elicited in rabbits against whole bacterial cells, absorbed with their appropriate lipopolysaccharide before testing. The resulting immunecomplexes were analysed on polyacrylamide gels. Protein profiles of the immunoprecipitates showed a considerable antigenic cross-reactivity of outer membrane proteins between most E. coli serotypes. Cross-reactivity, though substantially lower, was also found with OM from three other Enterobacteriaceae species, but was not detectable with Pseudomonas aeruginosa OM. When OM preparations were solubilized at room temperature, the peptidoglycan-bound proteins in the molecular weight range 37,000 to 41,000 predominated in the protein profiles of the immunecomplexes. In profiles of immunecomplexes obtained with boiled OM preparations, a heat-modifiable protein (mol. wt 33,000) predominated. The major OM proteins of the Gram-negative bacterium may therefore play a role as common surface antigens of the family of Enterobacteriaceae.  相似文献   

2.
Proteomes of pathogenic Leptospira interrogans and L. borgpetersenii and the saprophytic L. biflexa were filtered through computational tools to identify Outer Membrane Proteins (OMPs) that satisfy the required biophysical parameters for their presence on the outer membrane. A total of 133, 130, and 144 OMPs were identified in L. interrogans, L. borgpetersenii, and L. biflexa, respectively, which forms approximately 4% of proteomes. A holistic analysis of transporting and pathogenic characteristics of OMPs together with Clusters of Orthologous Groups (COGs) among the OMPs and their distribution across 3 species was made and put forward a set of 21 candidate OMPs specific to pathogenic leptospires. It is also found that proteins homologous to the candidate OMPs were also present in other pathogenic species of leptospires. Six OMPs from L. interrogans and 2 from L. borgpetersenii observed to have similar COGs while those were not found in any intermediate or saprophytic forms. These OMPs appears to have role in infection and pathogenesis and useful for anti‐leptospiral strategies.  相似文献   

3.
Brucella abortus is a pathogen infecting cattle, able to survive, traffic, and proliferate inside host cells. It belongs to the Alphaproteobacteria, a phylogenetic group comprising bacteria with free living, symbiotic, and pathogenic lifestyles. An essential regulator of cell cycle progression named CtrA was described in the model bacterium Caulobacter crescentus. This regulator is conserved in many alphaproteobacteria, but the evolution of its regulon remains elusive. Here we identified promoters that are CtrA targets using ChIP‐seq and we found that CtrA binds to promoters of genes involved in cell cycle progression, in addition to numerous genes encoding outer membrane components involved in export of membrane proteins and synthesis of lipopolysaccharide. Analysis of a conditional B. abortus ctrA loss of function mutant confirmed that CtrA controls cell division. Impairment of cell division generates elongated and branched morphologies, that are also detectable inside HeLa cells. Surprisingly, abnormal bacteria are able to traffic to the endoplasmic reticulum, the usual replication niche of B. abortus in host cells. We also found that CtrA depletion affected outer membrane composition, in particular the abundance and spatial distribution of Omp25. Control of the B. abortus envelope composition by CtrA indicates the plasticity of the CtrA regulon along evolution.  相似文献   

4.
Two mouse sera against outer membrane proteins from a pathogenic Neisseria meningitidis strain and a commensal N. lactamica strain and two human sera from patients recovering from meningococcal meningitis were used to identify antigens common to pathogenic and commensal Neisseria species. Two major antigens of 55 kDa and 32 kDa, present in all N. meningitidis and N. lactamica strains tested, were demonstrable with all the sera used; the 55-kDa protein was iron-regulated. Demonstration of other common antigens was dependent on the serum used: a 65-kDa antigen was visualised with the human and the mouse anti-N. lactamica sera; a 37-kDa antigen identified as the meningococcal ferric binding protein (FbpA) was only detected with the mouse sera, and two antigens of 83 kDa and 15 kDa were only shown with the mouse anti-N. meningitidis serum. The results demonstrate the existence of several outer membrane antigens common to N. lactamica and N. meningitidis strains, in agreement with the hypothesis that natural immunity against meningitis is partially acquired through colonisation by commensal species, and open new perspectives for the design of vaccine formulations and the development of strategies for vaccination against meningitis.  相似文献   

5.
The outer membranes of Francisella tularensis were studied. The membranes were identified morphologically, immunologically and biochemically. They contained 12-20% of protein, 15-30% of carbohydrates, up to 40% of lipids. The main integral proteins of the outer membranes were the 47, 43, 17 and 12 kD proteins. The main protein 63 kD was not integral. The lipopolysaccharides isolated from the outer membranes and acetone-dried cells did not possess the protective properties in experimental tularemia. The preparations of outer membranes possessed the protective properties for mice infected with the virulent strain 503. Chitosan amplified the protective properties of outer membranes.  相似文献   

6.
Here, we describe a simple and efficient method for the purification of Escherichia coli outer membrane proteins. We have tested this protocol for the purification of Wza and Osmoporin C (OmpC) proteins. Both proteins were purified to homogeneity, in two steps, by anion exchange and size exclusion chromatography with a final yield of 92.5 mg for the Wza protein and 291.5 mg for the OmpC protein. The purity of the samples was judged by electrophoretic analysis, mass spectrometry, single particle analysis, three-dimensional (3D) crystallisation and X-ray diffraction.  相似文献   

7.
Mitochondria are surrounded by two distinct membranes: the outer and the inner membrane. The mitochondrial outer membrane mediates numerous interactions between the mitochondrial metabolic and genetic systems and the rest of the eukaryotic cell. Proteins of this membrane are nuclear-encoded and synthesized as precursor proteins in the cytosol. They are targeted to the mitochondria and inserted into their target membrane via various pathways. This review summarizes our current knowledge of the sorting signals for this specific targeting and describes the mechanisms by which the mitochondrial import machineries recognize precursor proteins, mediate their membrane integration and facilitate assembly into functional complexes.  相似文献   

8.
9.
10.
11.
The structure of bacterial outer membrane proteins   总被引:17,自引:0,他引:17  
Integral membrane proteins come in two types, alpha-helical and beta-barrel proteins. In both types, all hydrogen bonding donors and acceptors of the polypeptide backbone are completely compensated and buried while nonpolar side chains point to the membrane. The alpha-helical type is more abundant and occurs in cytoplasmic (or inner) membranes, whereas the beta-barrels are known from outer membranes of bacteria. The beta-barrel construction is described by the number of strands and the shear number, which is a measure for the inclination angle of the beta-strands against the barrel axis. The common right-handed beta-twist requires shear numbers slightly larger than the number of strands. Membrane protein beta-barrels contain between 8 and 22 beta-strands and have a simple topology that is probably enforced by the folding process. The smallest barrels form inverse micelles and work as enzymes or they bind to other macromolecules. The medium-range barrels form more or less specific pores for nutrient uptake, whereas the largest barrels occur in active Fe(2+) transporters. The beta-barrels are suitable objects for channel engineering, because the structures are simple and because many of these proteins can be produced into inclusion bodies and recovered therefrom in the exact native conformation.  相似文献   

12.
Integral membrane proteins come in two types, α-helical and β-barrel proteins. In both types, all hydrogen bonding donors and acceptors of the polypeptide backbone are completely compensated and buried while nonpolar side chains point to the membrane. The α-helical type is more abundant and occurs in cytoplasmic (or inner) membranes, whereas the β-barrels are known from outer membranes of bacteria. The β-barrel construction is described by the number of strands and the shear number, which is a measure for the inclination angle of the β-strands against the barrel axis. The common right-handed β-twist requires shear numbers slightly larger than the number of strands. Membrane protein β-barrels contain between 8 and 22 β-strands and have a simple topology that is probably enforced by the folding process. The smallest barrels form inverse micelles and work as enzymes or they bind to other macromolecules. The medium-range barrels form more or less specific pores for nutrient uptake, whereas the largest barrels occur in active Fe2+ transporters. The β-barrels are suitable objects for channel engineering, because the structures are simple and because many of these proteins can be produced into inclusion bodies and recovered therefrom in the exact native conformation.  相似文献   

13.
《Free radical research》2013,47(1):16-28
Abstract

The mitochondrial outer membrane surrounds the entire organelle. It is composed of a phospholipid bilayer with proteins either embedded into or anchored to the bilayer and mediates the interactions between mitochondria and the rest of the cell. Most of the proteins present in the mitochondrial outer membrane are highly hydrophobic with one or more transmembrane segments. These proteins in conjunction with proteins localized in the inner membrane catalyse energy exchange reactions, the flux of small molecules such as ions, the activation and uptake of long chain fatty acids, import of proteins into the mitochondria, and elimination of biogenic amines among others. In addition, some outer membrane proteins serve as docking sites for non-resident enzymes such as hexokinase and other kinases of signal transduction. All these processes require an intact outer membrane and are highly regulated. One level of regulation with physiological/pathophysiological relevance involves post-translational modification of outer membrane proteins, either by phosphorylation, acetylation or other type of reversible covalent modification. Post-translational modification such as nitration and carbonylation becomes significant under disease states that are associated with increased oxidative stress, i.e. inflammation and ischemia. This review examines the different post-translational modifications of mitochondrial outer membrane proteins and discusses the physiological relevance of these modifications.  相似文献   

14.
The mitochondrial outer membrane surrounds the entire organelle. It is composed of a phospholipid bilayer with proteins either embedded into or anchored to the bilayer and mediates the interactions between mitochondria and the rest of the cell. Most of the proteins present in the mitochondrial outer membrane are highly hydrophobic with one or more transmembrane segments. These proteins in conjunction with proteins localized in the inner membrane catalyse energy exchange reactions, the flux of small molecules such as ions, the activation and uptake of long chain fatty acids, import of proteins into the mitochondria, and elimination of biogenic amines among others. In addition, some outer membrane proteins serve as docking sites for non-resident enzymes such as hexokinase and other kinases of signal transduction. All these processes require an intact outer membrane and are highly regulated. One level of regulation with physiological/pathophysiological relevance involves post-translational modification of outer membrane proteins, either by phosphorylation, acetylation or other type of reversible covalent modification. Post-translational modification such as nitration and carbonylation becomes significant under disease states that are associated with increased oxidative stress, i.e. inflammation and ischemia. This review examines the different post-translational modifications of mitochondrial outer membrane proteins and discusses the physiological relevance of these modifications.  相似文献   

15.
Integral membrane proteins are central to many cellular processes and constitute approximately 50% of potential targets for novel drugs. However, the number of outer membrane proteins (OMPs) present in the public structure database is very limited due to the difficulties in determining structure with experimental methods. Therefore, discriminating OMPs from non-OMPs with computational methods is of medical importance as well as genome sequencing necessity. In this study, some sequence-derived structural and physicochemical features of proteins were incorporated with amino acid composition to discriminate OMPs from non-OMPs using support vector machines. The discrimination performance of the proposed method is evaluated on a benchmark dataset of 208 OMPs, 673 globular proteins, and 206 α-helical membrane proteins. A high overall accuracy of 97.8% was observed in the 5-fold cross-validation test. In addition, the current method distinguished OMPs from globular proteins and α-helical membrane proteins with overall accuracies of 98.2 and 96.4%, respectively. The prediction performance is superior to the state-of-the-art methods in the literature. It is anticipated that the current method might be a powerful tool for the discrimination of OMPs.  相似文献   

16.
Gram-negative bacteria shed outer membrane vesicles composed of outer membrane and periplasmic components. Since vesicles from pathogenic bacteria contain virulence factors and have been shown to interact with eukaryotic cells, it has been proposed that vesicles behave as delivery vehicles. We wanted to determine whether heterologously expressed proteins would be incorporated into the membrane and lumen of vesicles and whether these altered vesicles would associate with host cells. Ail, an outer membrane adhesin/invasin from Yersinia enterocolitica, was detected in purified outer membrane and in vesicles from Escherichia coli strains DH5alpha, HB101, and MC4100 transformed with plasmid-encoded Ail. In vesicle-host cell co-incubation assays we found that vesicles containing Ail were internalized by eukaryotic cells, unlike vesicles without Ail. To determine whether lumenal vesicle contents could be modified and delivered to host cells, we used periplasmically expressed green fluorescent protein (GFP). GFP fused with the Tat signal sequence was secreted into the periplasm via the twin arginine transporter (Tat) in both the laboratory E. coli strain DH5alpha and the pathogenic enterotoxigenic E. coli ATCC strain 43886. Pronase-resistant fluorescence was detectable in vesicles from Tat-GFP-transformed strains, demonstrating that GFP was inside intact vesicles. Inclusion of GFP cargo increased vesicle density but did not result in morphological changes in vesicles. These studies are the first to demonstrate the incorporation of heterologously expressed outer membrane and periplasmic proteins into bacterial vesicles.  相似文献   

17.
Francisella tularensis is a gram-negative coccobacillus that is capable of causing severe, fatal disease in a number of mammalian species, including humans. Little is known about the proteins that are surface exposed on the outer membrane (OM) of F. tularensis, yet identification of such proteins is potentially fundamental to understanding the initial infection process, intracellular survival, virulence, immune evasion and, ultimately, vaccine development. To facilitate the identification of putative F. tularensis outer membrane proteins (OMPs), the genomes of both the type A strain (Schu S4) and type B strain (LVS) were subjected to six bioinformatic analyses for OMP signatures. Compilation of the bioinformatic predictions highlighted 16 putative OMPs, which were cloned and expressed for the generation of polyclonal antisera. Total membranes were extracted from both Schu S4 and LVS by spheroplasting and osmotic lysis, followed by sucrose density gradient centrifugation, which separated OMs from cytoplasmic (inner) membrane and other cellular compartments. Validation of OM separation and enrichment was confirmed by probing sucrose gradient fractions with antibodies to putative OMPs and inner membrane proteins. F. tularensis OMs typically migrated in sucrose gradients between densities of 1.17 and 1.20 g/ml, which differed from densities typically observed for other gram-negative bacteria (1.21 to 1.24 g/ml). Finally, the identities of immunogenic proteins were determined by separation on two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis and mass spectrometric analysis. This is the first report of a direct method for F. tularensis OM isolation that, in combination with computational predictions, offers a more comprehensive approach for the characterization of F. tularensis OMPs.  相似文献   

18.
The outer membranes of pathogenic and saprophytic leptospires have been isolated. The spectrum of outer membrane proteins in three saprophytic and one pathogenic Leptospira strains has been studied by means of electrophoresis in polyacrylamide gel. In Leptospira strains VGNKI-6 (pathogenic) and G-80 (saprophytic) identical proteins, as well as proteins similar in their Rf value, have been detected. The possibility of using strain G-80 for the development of leptospiral vaccine against serovars having common surface antigens with this strain has been suggested.  相似文献   

19.
Summary VariousEscherichia coli strains differ in the composition of their major outer membrane proteins. However, allE. coli K12 strains tested possess the same major outer membrane proteinsa, b, c andd although quantitative differences were detected.The influence of growth conditions on the composition of the major outer membrane proteins ofE. coli was analyzed. It was found that neither the growth phase at which the cells are harvested, nor the fatty acid composition of the phospholipids has a considerable influence on the composition of these proteins. However, the composition of the growth medium, and, to a less extent, the growth temperature, have a pronounced influence.Certain mutants, changed in the composition of their lipopolysaccharide, are deficient in proteinb. Also mutants deficient in proteinc andd respectively, are described.Proteinsb andc ofE. coli K12 were found to be associated with peptidoglycan. Protein bands, corresponding with flagellin and pilin respectively, were identified.  相似文献   

20.
Protein composition of Rhodopseudomonas sphaeroides outer membrane.   总被引:2,自引:9,他引:2       下载免费PDF全文
The outer membrane polypeptide profile of Rhodopseudmonas sphaeroides was characterized. Solubilization of the outer membrane at 75 or 100 degrees C as opposed to room temperature resulted in the dissociation of 75-, 72-, and 68-kilodalton (kdal) polypeptide aggregates into 29-, 26.5-, and 21.5-kdal polypeptides, respectively, and a shared 47-kdal subunit. Similarly, an 88.5-kdal polypeptide dissociates into a 45-kdal monomeric form, and the electrophoretic mobility of a 58.5-kdal polypeptide was altered to 83 kdal.Lysozyme treatment of outer membrane fractions altered the 21.5-kdal polypeptide mobility to 23 kdal. The presence of lipid in both the 47-kdal polypeptide and an 8- to 10-kdal polypeptide was demonstrated by lipid staining and [14C]acetate incorporation. The lipid component of the 47-kdal polypeptide was neither lipopolysaccharide nor phospholipid. The 8- to 10-kdal polypeptide may be the equivalent of the Braun lipoprotein. Outer membrane fractions isolated from R. sphaeroides-specific phage RS1-resistant mutants were deficient in several of the high-molecular-weight aggregates involving the 47-kdal polypeptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号