首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Na+和Ca2+对拟南芥根原生质体质膜内向K+通道电流的影响   总被引:2,自引:1,他引:2  
以拟南芥(Arabidopsis thaliana Columbia)根为材料,利用膜片钳技术测定其根细胞原生质体质膜内向K^ 电流,并对Na^ 对其K^ 电流的影响进行了初步研究,发现Na^2 可明显抑制拟南芥根细胞原生质体的内向K^ 电流,外施Ca^2 可缓解Na^ 对内向K^ 电流的抑制.说明Ca^2 参与了质膜上K^ 通道对K^ /Na^ 的选择性吸收的调节,从而使植物适应盐胁迫.  相似文献   

2.
Increases in cytosolic free Ca2+ ([Ca2+]cyt) are common to many stress-activated signalling pathways, including the response to saline environments. We have investigated the nature of NaCl-induced [Ca2+]cyt signals in whole Arabidopsis thaliana seedlings using aequorin. We found that NaCl-induced increases in [Ca2+]cyt are heterogeneous and mainly restricted to the root. Both the concentration of NaCl and the composition of the solution bathing the root have profound effects on the magnitude and dynamics of NaCl-induced increases in [Ca2+]cyt. Alteration of external K+ concentration caused changes in the temporal and spatial pattern of [Ca2+]cyt increase, providing evidence for Na+-induced Ca2+ influx across the plasma membrane. The effects of various pharmacological agents on NaCl-induced increases in [Ca2+]cyt indicate that NaCl may induce influx of Ca2+ through both plasma membrane and intracellular Ca2+-permeable channels. Analysis of spatiotemporal [Ca2+]cyt dynamics using photon-counting imaging revealed additional levels of complexity in the [Ca2+]cyt signal that may reflect the oscillatory nature of NaCl-induced changes in single cells.  相似文献   

3.
4.
Treatment of Arabidopsis thaliana cells with oligogalacturonides (OG) initiates a transient production of reactive oxygen species (ROS), the concentration of which in the medium peaks after about 20 min of treatment. The analysis of OG effects on Ca (2+) fluxes shows that OG influence both Ca (2+) influx and Ca (2+) efflux (measured as (45)Ca (2+) fluxes) in a complex way. During the first 10 - 15 min, OG stimulate Ca (2+) influx and decrease its efflux, while at successive times of treatment, OG cause an increase of Ca (2+) efflux and a slight decrease of its influx. Treatment with sub- micro M concentrations of eosin yellow (EY), which selectively inhibits the Ca (2+)-ATPase of plasma membrane (PM), completely prevents the OG-induced increase in Ca (2+) efflux. EY also suppresses the transient feature of OG-induced ROS accumulation, keeping the level of ROS in the medium high. The biochemical analysis of PM purified from OG-treated cells indicates that treatment with OG for 15 to 45 min induces a significant decrease in Ca (2+)-ATPase activation by exogenous calmodulin (CaM), and markedly increases the amount of CaM associated with the PM. During the same time span, OG do not influence the expression of At-ACA8, the main isoform of PM Ca (2+)-ATPase in suspension-cultured A. thaliana cells, and of CaM genes. Overall, the reported results demonstrate that the PM Ca (2+)-ATPase is involved in the response of plant cells to OG and is essential in regulation of the oxidative burst.  相似文献   

5.
Soil salinity adversely affects plant growth, crop yield and the composition of ecosystems. Salinity stress impacts plants by combined effects of Na+ toxicity and osmotic perturbation. Plants have evolved elaborate mechanisms to counteract the detrimental consequences of salinity. Here we reflect on recent advances in our understanding of plant salt tolerance mechanisms. We discuss the embedding of the salt tolerance‐mediating SOS pathway in plant hormonal and developmental adaptation. Moreover, we review newly accumulating evidence indicating a crucial role of a transpiration‐dependent salinity tolerance pathway, that is centred around the function of the NADPH oxidase RBOHF and its role in endodermal and Casparian strip differentiation. Together, these data suggest a unifying and coordinating role for Ca2+ signalling in combating salinity stress at the cellular and organismal level.  相似文献   

6.
Castor bean (Ricinus communis L.) plants were hydroponically cultivated to achieve NO3 deficiency (N starvation), salt stress (addition of 100 mM NaCl), or normal conditions. Endodermal (ECW) and rhizodermal and hypodermal cell walls (RHCW) were isolated enzymatically from roots, and suberin monomers were released by transesterification after solvent extraction. Aromatic and aliphatic suberin monomers were identified and quantified by gas chromatography and mass spectrometry. Between 90 and 95% of the released suberin monomers were linear, long-chain, aliphatic compounds (alcohols, acids, diacids, ω-hydroxy acids and 2-hydroxy acids) with an average chain length of 19 C-atoms. The remainder was an aromatic suberin fraction mainly composed of coumaric and ferulic acid. Suberin amounts were significantly increased in ECW and RHCW in the presence of NaCl. In contrast, N starvation led to significantly reduced levels of suberization in ECW and RHCW. It is concluded that R. communis plants reinforce their apoplastic transport barriers in roots in adaptation to NaCl stress in order to minimize NaCl uptake. Under conditions of N starvation the opposite occurs and plants reduce the suberization of their apoplastic transport barriers to facilitate nutrient uptake form the soil.  相似文献   

7.
拟南芥叶细胞游离钙离子的测定   总被引:5,自引:0,他引:5  
低温(4℃)条件下将钙离子荧光探针Fluo-3/AM导入拟南芥叶细胞,利用激光共聚焦显微技术检测了胞内钙离子荧光强度的分布。实验证明,低温导入Fluo-3/AM法测定拟南芥叶细胞中钙离子荧光强度的变化切实可行。茉莉酸(JA)处理能够诱导胞内游离钙离子浓度的升高。  相似文献   

8.
The transport and hydrolytic activities of the plasma membrane (PM) Ca2+ pump were characterized in a PM fraction purified from seedlings of Arabidopsis thaliana by the aqueous two-phase partitioning technique. Ca2+ uptake could be energized by ATP and by ITP (at about 70% the rate sustained by ATP). This characteristic was used to measure the hydrolytic activity of the enzyme as Ca2+-dependent ITPase activity. The PM Ca2+ pump displayed a broad pH optimum around pH 7.2, was drastically inhibited by erythrosin B (EB), and was half-saturated by 60 μM ITP. It was stimulated by CaM, specially at low, non-saturating Ca2+ concentrations. All of these characteristics closely resemble those of the PM Ca2+ pump in other plant materials. Analysis of the effects of EB and other fluorescein derivatives (eosin Y and rose bengal) showed that: i) EB behaved as a competitive inhibitor with respect to ITP; ii) the PM Ca2+ pump was drastically inhibited by concentrations of fluorescein derivatives (submicromolar), much lower than those required to inhibit the PM H+-ATPase; iii) the different fluorescein derivatives were diversely efficient in inhibiting the activities of the Ca2+ pump and of the H+-ATPase of the PM (eosin Y was about 10000-fold, EB 1000-fold and rose bengal only 50-fold more active on the Ca2+ pump than on the H+-ATPase); and iv) the effectiveness of EB in inhibiting the Ca2+ pump was strongly affected by the protein concentration in the assay medium.  相似文献   

9.
Ca2+预处理对热胁迫下辣椒叶肉细胞中Ca2+-ATP酶活性的影响   总被引:2,自引:0,他引:2  
在常温下生长的辣椒(Capsicum annum L.)叶肉细胞中Ca2+-ATP酶主要分布于质膜、液泡膜上,叶绿体的基质和基粒片层上也有少量分布;在40℃下热胁迫不同的时间,酶活性逐渐下降,直至叶绿体超微结构解体.同样条件下,经过Ca2+预处理后,分布在上述细胞器膜或片层上的酶活性大大提高,表明Ca2+预处理对该酶活性具有激活作用;Ca2+预处理对热胁迫下的超微结构的完整性具有一定的保护作用,并且能使Ca2+-ATP酶在热胁迫下维持较高活性.结果表明,Ca2+预处理增强辣椒幼苗的抗热性,可能与其稳定细胞膜、从而使Ca2+-ATP酶在热胁迫下保持较高活性有一定关系.  相似文献   

10.
Transition metals such as copper can interact with ascorbate or hydrogen peroxide to form highly reactive hydroxyl radicals (OH?), with numerous implications to membrane transport activity and cell metabolism. So far, such interaction was described for extracellular (apoplastic) space but not cytosol. Here, a range of advanced electrophysiological and imaging techniques were applied to Arabidopsis thaliana plants differing in their copper‐transport activity: Col‐0, high‐affinity copper transporter COPT1‐overexpressing (C1OE) seedlings, and T‐DNA COPT1 insertion mutant (copt1). Low Cu concentrations (10 µm ) stimulated a dose‐dependent Gd3+ and verapamil sensitive net Ca2+ influx in the root apex but not in mature zone. C1OE also showed a fivefold higher Cu‐induced K+ efflux at the root tip level compared with Col‐0, and a reduction in basal peroxide accumulation at the root tip after copper exposure. Copper caused membrane disruptions of the root apex in C1OE seedlings but not in copt1 plants; this damage was prevented by pretreatment with Gd3+. Our results suggest that copper transport into cytosol in root apex results in hydroxyl radical generation at the cytosolic side, with a consequent regulation of plasma membrane OH?‐sensitive Ca2+ and K+ transport systems.  相似文献   

11.
淹水玉米幼苗根尖分生细胞内Ca2+超微细胞化学定位   总被引:1,自引:0,他引:1  
采用焦锑酸钾沉淀法,对遭受淹水胁迫的玉米幼苗初生根根尖分生细胞内钙离子分布变化情况进行了电镜细胞化学观察。在正常状态下,根尖分生细胞内Ca^2+沉淀颗粒的分布较少.主要位于细胞核和细胞质中。在淹水1h后,根尖分生细胞内呈现有大量Ca^2+沉淀颗粒分布,细胞核和细胞质中分布的Ca^2+沉淀颗粒密度,远大于正常细胞。随着淹水时间的延长,根尖分生细胞的细胞核和细胞质中分布的Ca^2+沉淀颗粒呈现不断增多的趋势,而液泡中分布的Ca^2+沉淀颗粒则逐步明显减少。根据实验结果本文对受淹根尖分生细胞的死亡与Ca^2+分布变化的关系进行了研究。  相似文献   

12.
Ca2+在茉莉酸甲酯诱导拟南芥气孔关闭中的信号转导作用   总被引:8,自引:0,他引:8  
以拟南芥叶片下表皮为材料 ,分别用表皮生物分析法和激光扫描共聚焦显微镜成像技术 ,研究茉莉酸甲酯 (JA Me)促进气孔关闭过程中胞质Ca2 浓度的变化及其与气孔关闭的关系。结果表明 ,10 - 7到 10 - 3mol L的JA Me处理能促进拟南芥叶片的气孔关闭 ,其中 ,10 - 5mol L是最适浓度。用 10 - 5mol L的JA Me处理5min ,胞质Ca2 浓度从静息态的 10 5nmol L增加到 332 0nmol L ;质膜Ca2 通道阻断剂LaCl3和Ca2 螯合剂EGTA均能明显地降低JA Me对气孔关闭的促进作用。由此推测 ,胞质Ca2 可能是JA Me促进气孔关闭的重要信号转导因子  相似文献   

13.
14.
Ca2+ concentration inside human umbilical vein endothelial cells was studied separately in cytosol and nucleus by a confocal laser scanning microscopy using fluo-3. The in vivo calibration curve for cytosol and nucleus showed good linearity between fluorescence intensity and Ca2+ concentration in cytosol ([Ca2+]i) and nuclei ([Ca2+]n). After calibration, [Ca2+]n was constantly higher than [Ca2+]i before and after the chelation of extracellular Ca2+ suggesting an active Ca2+ accumulation system on nuclear membrane. [Ca2+]n was also constantly higher than [Ca2+]i after the stimulation of thrombin (0.05 U/ml), FCS (10%), and thapsigargin (Tsg, 1μM). The temporal change of [Ca2+]n and [Ca2+]i was identical, and [Ca2+]i gradient towards the nucleus and peripheral or central [Ca2+]n rise was observed after these stimulations. From these results, [Ca2+]n is not only regulated by the active Ca2+ accumulation system on nuclear membrane at rest but also the generation of Inositol-triphosphate. FCS caused heterogeneous [Ca2+]n or [Ca2+]i rise from cell to cell; single spike or oscillatory change of [Ca2+]n and [Ca2+]i was observed in about 56% of cells, which were completely abolished by the chelation of extracellular Ca2+, suggesting that FCS stimulated [Ca2+]n and [Ca2+]i rise solely depending on Ca2+ influx from extracellular medium. The higher concentration of [Ca2+]n and heterogeneous [Ca2+]n rise may have important roles in nuclear-specific cellular responses. © 1996 Wiley-Liss, Inc.  相似文献   

15.
Although the extent of ischemic brain damage is directly proportional to the duration of anoxic depolarization (AD), the mechanism of cytosolic [Ca(2+)] ([Ca(2+)](c)) elevation during AD is poorly understood. To address the mechanism in this study, [Ca(2+)](c) was monitored in cultured rat hippocampal CA1 neurons loaded with a Ca-sensitive dye, fura-2FF, and exposed to an AD-simulating medium containing (in mmol/L): K(+) 65, Na(+) 50, Ca(2+) 0.13, glutamate 0.1, and pH reduced to 6.6. Application of this medium promptly elevated [Ca(2+)](c) to about 30 micromol/L, but only if oxygen was removed, the respiratory chain was inhibited, or if the mitochondria were uncoupled. These high [Ca(2+)](c) elevations depended on external Ca(2+) and could not be prevented by inhibiting NMDA or alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)/kainate receptors, or gadolinium-sensitive channels. However, they could be prevented by removing external Na(+) or simultaneously inhibiting NMDA and AMPA/kainate receptors; 2-[2-[4-(4-nitrobenzyloxy)phenyl]ethyl]isothiourea methanesulfonate (KB-R7943), an inhibitor of plasmalemmal Na(+)/Ca(2+) exchanger, partly suppressed them. The data indicate that the [Ca(2+)](c) elevations to 30 micromol/L during AD result from Na(+) influx. Activation of either NMDA or AMPA/kainate channels provides adequate Na(+) influx to induce these [Ca(2+)](c) elevations, which are mediated by KB-R7943-sensitive and KB-R7943-resistant mechanisms.  相似文献   

16.
It is likely that cytosolic Ca2+ elevations have played a part in eukaryotic signal transduction for about the last 2 Gyr, being mediated by a group of molecules which are collectively known as the [Ca2+]cyt signalling toolkit. Different eukaryotes often display strikingly similar [Ca2+]cyt signalling elevations, which may reflect conservation of toolkit components (homology) or similar constraints acting on different toolkits (homoplasy). Certain toolkit components, which are presumably ancestral, are shared by plants and animals, but some components are unique to photosynthetic organisms. We propose that the structure of modern plant [Ca2+]cyt signalling toolkits may be explained by their modular adaptation from earlier pathways.  相似文献   

17.
Localized Ca2+ signals were consistently visualized in the formed somites of intact zebrafish embryos during the early segmentation period. Unlike the regular process of somitogenesis, these signals were stochastic in nature with respect to time and location. They did, however, occur predominantly at the medial and lateral boundaries within the formed somites. Embryos were treated with modulators of [Ca2+]i to explore the signal generation mechanism and possible developmental function of the stochastic transients. Blocking elements in the phosphoinositol pathway eliminated the stochastic signals but had no obvious effect, stochastic or otherwise, on the formed somites. Such treatments did, however, result in the subsequently formed somites being longer in the mediolateral dimension. Targeted uncaging of buffer (diazo‐2) or Ca2+ (NP‐ethyleneglycoltetraacetic acid [EGTA]) in the presomitic mesoderm, resulted in a regular mediolateral lengthening and shortening, respectively, of subsequently formed somites. These data suggest a requirement for IP3 receptor‐mediated Ca2+ release during convergence cell movements in the presomitic mesoderm, which appears to have a distinct function from that of the IP3 receptor‐mediated stochastic Ca2+ signaling in the formed somites.  相似文献   

18.
Plants adapt to a changing environment by entraining their growth and development to prevailing conditions. Such 'plastic' development requires a highly dynamic integration of growth phenomena with signal perception and transduction systems, such as occurs during tropic growth. The plant hormone auxin has been shown to play a key role in regulating these directional growth responses of plant organs to environmental cues. However, we are still lacking a cellular and molecular understanding of how auxin-dependent signaling cascades link stimulus perception to the rapid modulation of growth patterns. Here, we report that in root gravitropism of Arabidopsis thaliana, auxin regulates root curvature and associated apoplastic, growth-related pH changes through a Ca2+-dependent signaling pathway. Using an approach that integrates confocal microscopy and automated computer vision-based image analysis, we demonstrate highly dynamic root surface pH patterns during vertical growth and after gravistimulation. These pH dynamics are shown to be dependent on auxin, and specifically on auxin transport mediated by the auxin influx carrier AUX1 in cells of the lateral root cap and root epidermis. Our results further indicate that these pH responses require auxin-dependent changes in cytosolic Ca2+ levels that operate independently of the TIR1 auxin perception system. These results demonstrate a methodology that can be used to visualize vectorial auxin responses in a manner that can be integrated with the rapid plant growth responses to environmental stimuli.  相似文献   

19.
铝胁迫下小麦根尖分生细胞中Ca2+分布变化   总被引:2,自引:0,他引:2  
王建波  李阳生  利容千 《生态学报》2001,21(8):1246-1250
运用透射电镜细胞化学方法对铝胁迫下小麦根尖分生细胞中Ca^2 分布的变化进行了观察,在正常生长条件下,Ca^2 广泛分布于细胞质、细胞核、细胞间隙中,特别是液泡中有大量的Ca^2 沉淀颗粒;在AI^3+胁迫条件下,细胞质、细胞核中Ca^2 沉淀颗粒明显减少,分布发生改变,细胞质中液泡增多,但其中Ca^2 沉淀颗粒明显减少。结果表明,AI^3 不但抑制了根尖细胞对Ca^2 的吸收,而且引起细胞中原有Ca^2 分布的变化,这很可能引起细胞功能的紊乱,进而影响极系的生长。  相似文献   

20.
The regulation of cytosolic Ca2+ has been investigated in growing root-hair cells of Sinapis alba L. with special emphasis on the role of the plasmamembrane Ca2+-ATPase. For this purpose, erythrosin B was used to inhibit the Ca2+-ATPase, and the Ca2+ ionophore A23187 was applied to manipulate cytosolic free [Ca2+] which was then measured with Ca2+-selective microelectrodes. (i) At 0.01 M, A23187 had no effect on the membrane potential but enhanced the Ca2+ permeability of the plasma membrane. Higher concentrations of this ionophore strongly depolarized the cells, also in the presence of cyanide. (ii) Unexpectedly, A23187 first caused a decrease in cytosolic Ca2+ by 0.2 to 0.3 pCa units and a cytosolic acidification by about 0.5 pH units, (iii) The depletion of cytosolic free Ca2+ spontaneously reversed and became an increase, a process which strongly depended on the external Ca2+ concentration, (iv) Upon removal of A23187, the cytosolic free [Ca2+] returned to its steady-state level, a process which was inhibited by erythrosin B. We suggest that the first reaction to the intruding Ca2+ is an activation of Ca2+ transporters (e.g. ATPases at the endoplasmic reticulum and the plasma membrane) which rapidly remove Ca2+ from the cytosol. The two observations that after the addition of A23187, (i) Ca2+ gradients as steep as-600 mV could be maintained and (ii) the cytosolic pH rapidly and immediately decreased without recovery indicate that the Ca2+-exporting plasma-membrane ATPase is physiologically connected to the electrochemical pH gradient, and probably works as an nH+/Ca2+-ATPase. Based on the finding that the Ca2+-ATPase inhibitor erythrosin B had no effect on cytosolic Ca2+, but caused a strong Ca2+ increase after the addion of A23187 we conclude that these cells, at least in the short term, have enough metabolic energy to balance the loss in transport activity caused by inhibition of the primary Ca2+-pump. We further conclude that this ATPase is a major Ca2+ regulator in stress situations where the cytosolic Ca2+ has been shifted from its steady-state level, as may be the case during processes of signal transduction.Abbreviations and Symbols EB erythrosin B - Em membrane potential - pCa negative logarithm of the Ca2+ concentration This work was supported by the Deutche Forschungsgemeinschaft (H.F.) and the Alexander-von-Humboldt-Foundation (A.T.).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号