首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Immobilization is widely used to isolate agglutinative and associative proteins with large hydrophobic surfaces. Surface hydrophobicities of immobilized proteins were quantified by measuring the adsorption amounts of Triton X-100 as a hydrophobic probe with a biosensor that utilizes the phenomena of surface plasmon resonance (SPR). We measured SPR signal changes derived from adsorption of Triton X-100 to five kinds proteins and calculated the monolayer adsorption capacity using the Brunauer-Emmett-Teller equation, partly modified with a term for correcting an influence of the net charge of immobilized protein. SPR signal changes obtained by this method correlated with the values of surface hydrophobicities obtained by conventional assay using a hydrophobic probe. Thus this measuring method using an SPR sensor and Triton X-100 is expected to be a tool for quantifying surface hydrophobicities of immobilized proteins.  相似文献   

2.
Affinity tags are vital tools for the production of high-throughput recombinant proteins. Several affinity tags, such as the hexahistidine tag, maltose-binding protein, streptavidin-binding peptide tag, calmodulin-binding peptide, c-Myc tag, glutathione S-transferase and FLAG tag, have been introduced for recombinant protein production. The fragment crystallizable (Fc) domain of the IgG1 antibody is one of the useful affinity tags that can facilitate detection, purification and localization of proteins and can improve the immunogenicity, modulatory effects, physicochemical and pharmaceutical properties of proteins. Fcγ recombinant forms a group of recombinant proteins called Fc-fusion proteins (FFPs). FFPs are widely used in drug discovery, drug delivery, vaccine design and experimental research on receptor–ligand interactions. These fusion proteins have become successful alternatives to monoclonal antibodies for drug developments. In this review, the physicochemical, biochemical, immunological, pharmaceutical and therapeutic properties of recombinant FFPs were discussed as a new generation of bioengineering strategies.  相似文献   

3.
The Fusarium solani pisi lipase cutinase has been genetically engineered to investigate the influence of C-terminal peptide extensions on the partitioning of the enzyme in PEG-salt based aqueous two-phase bioseparation systems. Seven different cutinase lipase variants were constructed containing various C-terminal peptide extensions including tryptophan rich peptide tags ((WP)(2) and (WP)(4)), positively ((RP)(4)) and negatively ((DP)(4)) charged tags as well as combined tags with tryptophan together with either positively ((WPR)(4)) or negatively ((WPD)(4)) charged amino acids. The modified cutinase variants were stably produced in Escherichia coli as secreted to the periplasm from which they were efficiently purified by IgG-affinity chromatography employing an introduced N-terminal IgG-binding ZZ affinity fusion partner present in all variants. Partitioning experiments performed in a PEG 4000/sodium phosphate aqueous two-phase system showed that for variants containing either (WP)(2) or (WP)(4) peptide extensions, 10- to 70-fold increases in the partitioning to the PEG rich top-phase were obtained, when compared to the wild type enzyme. An increased partitioning was also seen for cutinase variants tagged with both tryptophans and charged amino acids, whereas the effect of solely charged peptide extensions was relatively small. In addition, when performing partitioning experiments from cell disintegrates, the (WP)(4)-tagged cutinase showed a similarly high PEG-phase partitioning, indicating that the effect from the peptide tag was unaffected by the background of the host proteins. Taken together, the results show that the partitioning of the recombinantly produced cutinase model enzyme could be significantly improved by relatively minor genetic engineering and that the effects observed for purified proteins are retained also in an authentic whole cell disintegrate system. The results presented should be of general interest also for the improvement of the partitioning properties of other industrially interesting proteins including bulk enzymes.  相似文献   

4.
The demand for recombinant proteins for medical and industrial use is expanding rapidly and plants are now recognized as an efficient, inexpensive means of production. Although the accumulation of recombinant proteins in transgenic plants can be low, we have previously demonstrated that fusions with an elastin‐like polypeptide (ELP) tag can significantly enhance the production yield of a range of different recombinant proteins in plant leaves. ELPs are biopolymers with a repeating pentapeptide sequence (VGVPG)n that are valuable for bioseparation, acting as thermally responsive tags for the non‐chromatographic purification of recombinant proteins. To determine the optimal ELP size for the accumulation of recombinant proteins and their subsequent purification, various ELP tags were fused to green fluorescent protein, interleukin‐10, erythropoietin and a single chain antibody fragment and then transiently expressed in tobacco leaves. Our results indicated that ELP tags with 30 pentapeptide repeats provided the best compromise between the positive effects of small ELP tags (n = 5–40) on recombinant protein accumulation and the beneficial effects of larger ELP tags (n = 80–160) on recombinant protein recovery during inverse transition cycling (ITC) purification. In addition, the C‐terminal orientation of ELP fusion tags produced higher levels of target proteins, relative to N‐terminal ELP fusions. Importantly, the ELP tags had no adverse effect on the receptor binding affinity of erythropoietin, demonstrating the inert nature of these tags. The use of ELP fusion tags provides an approach for enhancing the production of recombinant proteins in plants, while simultaneously assisting in their purification. Biotechnol. Bioeng. 2009;103: 562–573. © 2009 Wiley Periodicals, Inc.  相似文献   

5.
Charge-free hydrophobic gels of Hjerten et al. (Hjerten, S., Rosengren, J. and Pahlman, S. (1974) J. Chromatogr. 101, 281--288) were used for hydrophobic affinity chromatography. The effective hydrophobicity of proteins was expressed as their retention volumes from columns of butylepoxy- and hexylepoxy-Sepharose 4B. The effective hydrophobicity was also estimated by a partition method of Shanbhag and Axelsson ((1975) Eur. J. Biochem. 60, 17--22) from the partition coefficients of proteins between two phases, poly (ethylene glycol) and dextran. The former contained a hydrophobic ligand, palmitate. A close correlation was observed between the hydrophobicities determined by the two methods. However, no significant relationship was observed between these effective hydrophobicities and the average hydrophobicity of Bigelow ((1967) J. Theoret. Biol. 16, 187--211) that was calculated from the total amino acid composition of each protein. The interfacial tensions at the 0.2% protein/corn oil interface revealed negative correlations with the effective hydrophobicities determined by both methods indicating lower interfacial tensions with more hydrophobic proteins.  相似文献   

6.
Charge-free hydrophobic gels of Hjerten et al. (Hjerten, S., Rosengren, J. and Pahlman, S. (1974) J. Chromatogr. 101, 281–288) were used for hydrophobic affinity chromatography. The effective hydrophobicity of proteins was expressed as their retention volumes from columns of butylepoxy- and hexylepoxy-Sepharose 4B. The effective hydrophobicity was also estimated by a partition method of Shanbhag and Axelsson ((1975) Eur. J. Biochem. 60, 17–22) from the partition coefficients of proteins between two phases, poly (ethylene glycol) and dextran. The former contained a hydrophobic ligand, palmitate.A close correlation was observed between the hydrophobicities determined by the two methods. However, no significant relationship was observed between these effective hydrophobicities and the average hydrophobicity of Bigelow ((1967) J. Theoret. Biol. 16, 187–211) that was calculated from the total amino acid composition of each protein.The interfacial tensions at the 0.2% protein/corn oil interface revealed negative correlations with the effective hydrophobicities determined by both methods indicating lower interfacial tensions with more hydrophobic proteins.  相似文献   

7.
Signal peptides that direct protein export in Bacillus subtilis are overall more hydrophobic than signal peptides in Escherichia coli. To study the importance of signal peptide hydrophobicity for protein export in both organisms, the alpha-amylase AmyQ was provided with leucine-rich (high hydrophobicity) or alanine-rich (low hydrophobicity) signal peptides. AmyQ export was most efficiently directed by the authentic signal peptide, both in E. coli and B. subtilis. The leucine-rich signal peptide directed AmyQ export less efficiently in both organisms, as judged from pulse-chase labelling experiments. Remarkably, the alanine-rich signal peptide was functional in protein translocation only in E. coli. Cross-linking of in vitro synthesized ribosome nascent chain complexes (RNCs) to cytoplasmic proteins showed that signal peptide hydrophobicity is a critical determinant for signal peptide binding to the Ffh component of the signal recognition particle (SRP) or to trigger factor, not only in E. coli, but also in B. subtilis. The results show that B. subtilis SRP can discriminate between signal peptides with relatively high hydrophobicities. Interestingly, the B. subtilis protein export machinery seems to be poorly adapted to handle alanine-rich signal peptides with a low hydrophobicity. Thus, signal peptide hydrophobicity appears to be more critical for the efficiency of early stages in protein export in B. subtilis than in E. coli.  相似文献   

8.
An automatic procedure is described for determining the amino acid sequences of peptides with various lengths and hydrophobicities in a protein sequenator of the Edman-Begg type. A film consisting of Quadrol salts is left in the cup as a hydrated solid phase on which the peptide partitions during solvent extraction. The partitioning of the peptide is facilitated by using benzene and 1-chlorobutane/acetic acid as the sole extractants after coupling. The reproducibility and efficacy of the procedure is illustrated by the sequences obtained with peptides of from 3–29 residues, including several with a series of hydrophobic residues at the C terminus. The procedure is well suited to the completion of the sequence determination on a large peptide following the normal Edman-Begg procedure for proteins.  相似文献   

9.
Comparison of affinity tags for protein purification   总被引:11,自引:0,他引:11  
Affinity tags are highly efficient tools for purifying proteins from crude extracts. To facilitate the selection of affinity tags for purification projects, we have compared the efficiency of eight elutable affinity tags to purify proteins from Escherichia coli, yeast, Drosophila, and HeLa extracts. Our results show that the HIS, CBP, CYD (covalent yet dissociable NorpD peptide), Strep II, FLAG, HPC (heavy chain of protein C) peptide tags, and the GST and MBP protein fusion tag systems differ substantially in purity, yield, and cost. We find that the HIS tag provides good yields of tagged protein from inexpensive, high capacity resins but with only moderate purity from E. coli extracts and relatively poor purification from yeast, Drosophila, and HeLa extracts. The CBP tag produced moderate purity protein from E. coli, yeast, and Drosophila extracts, but better purity from HeLa extracts. Epitope-based tags such as FLAG and HPC produced the highest purity protein for all extracts but require expensive, low capacity resin. Our results suggest that the Strep II tag may provide an acceptable compromise of excellent purification with good yields at a moderate cost.  相似文献   

10.
Patterns of hydrophobic and hydrophilic residues play a major role in protein folding and function. Long, predominantly hydrophobic strings of 20-22 amino acids each are associated with transmembrane helices and have been used to identify such sequences. Much less attention has been paid to hydrophobic sequences within globular proteins. In prior work on computer simulations of the competition between on-pathway folding and off-pathway aggregate formation, we found that long sequences of consecutive hydrophobic residues promoted aggregation within the model, even controlling for overall hydrophobic content. We report here on an analysis of the frequencies of different lengths of contiguous blocks of hydrophobic residues in a database of amino acid sequences of proteins of known structure. Sequences of three or more consecutive hydrophobic residues are found to be significantly less common in actual globular proteins than would be predicted if residues were selected independently. The result may reflect selection against long blocks of hydrophobic residues within globular proteins relative to what would be expected if residue hydrophobicities were independent of those of nearby residues in the sequence.  相似文献   

11.
Histidine-rich peptides are commonly used in recombinant protein production as purification tags, allowing the one-step affinity separation of the His-tagged proteins from the extracellular media or cell extracts. Genetic engineering makes feasible the post-purification His-tag removal by inserting, between the tag and the main protein body, a target site for trans-acting proteases or a self-proteolytic peptide with regulatable activities. However, for technical ease, His tags are often not removed and the fusion proteins eventually used in this form. In this commentary, we revise the powerful biological properties of histidine-rich peptides as endosomolytic agents and as architectonic tags in nanoparticle formation, for which they are exploited in drug delivery and other nanomedical applications. These activities, generally unknown to biotechnologists, can unwillingly modulate the functionality and biotechnological performance of recombinant proteins in which they remain trivially attached.  相似文献   

12.
A novel method for the isolation of protein sequence tags to identify proteins in a complex mixture of hydrophobic proteins is described. The PST (Protein Sequence Tag) technology deals with the isolation and MS/MS based identification of one N-terminal peptide from each polypeptide fragment generated by cyanogen bromide cleavage of a mixture of proteins. PST sampling takes place after sub-cellular fractionation of a complex protein mixture to give enrichment of mitochondrial proteins. The method presented here combines effective sample preparation with a novel peptide isolation protocol involving chemical and enzymatic cleavage of proteins coupled to chemical labeling and selective capture procedures. The overall process has been very successful for the analysis of complex mixtures of hydrophobic proteins, particularly membrane proteins. This method substantially reduces the complexity of a protein digest by "sampling" the peptides present in the digest. The sampled digest is amenable to analysis by liquid chromatography tandem mass spectrometry (LC-MS/MS). Methods of "sampling" protein digests have great value' if they can provide sufficient information to identify substantially all of the proteins in the sample while reducing the complexity of the sample to maximize the efficient usage of LC-MS/MS capacity. The validity of the process is demonstrated for mitochondrial samples from S. cerevisiae. The proteins identified by the PST technology are compared to the proteins identified by the conventional technology 2-D gel electrophoresis as a control.  相似文献   

13.
Partial specific volume and compressibility properties of the extended state of proteins are estimated from additivity schemes using revised amino acid and peptide data. These calculated properties are compared with the experimental data of the native state in order to assess the contribution from folding. Results of this treatment show that, in the case of partial specific volumes, there is close agreement between the two data sets for a number of proteins. The implication is that subtle compensatory contributions in volume occur during the folding process. In the case of compressibilities, however, a substantial difference is observed which is believed to arise because of the hydrophobic interior created in the native protein as a result of the folding process. Using suitable measures of protein hydrophobicities and estimates of the fraction of buried apolar residues, a "micellar model of protein compressibility" is proposed and tested for several proteins. Results obtained from this model show good agreement with the experimental data for the native state of a number of proteins.  相似文献   

14.
Finn RD  Kapelioukh I  Paine MJ 《BioTechniques》2005,38(3):387-8, 390-2
Visualization systems for tracking proteins are standard experimental tools in most areas of biological research apart from protein purification. Here, we have sought to plug this gap by producing red and yellow visual tags using the heme-binding domain of mosquito cytochrome b5 and the flavin mononucleotide (FMN)-binding domain of human P450 reductase. Tests with colorless glutathione-S-transferase (GST) show them to be simple and effective tools for visually identifying correctly folded protein and tracking protein molecules through protein expression and purification. Furthermore, the characteristic absorbance signatures of the colored tags can be used to quantify protein concentrations directly, which allows purification to be linked to colorimetric detection. This technology, which we call Rainbow Tagging, facilitates expression and downstream processing of recombinant proteins, paving the way for the development of automated high-throughput protein expression systems.  相似文献   

15.
For the identification of novel proteins using MS/MS, de novo sequencing software computes one or several possible amino acid sequences (called sequence tags) for each MS/MS spectrum. Those tags are then used to match, accounting amino acid mutations, the sequences in a protein database. If the de novo sequencing gives correct tags, the homologs of the proteins can be identified by this approach and software such as MS-BLAST is available for the matching. However, de novo sequencing very often gives only partially correct tags. The most common error is that a segment of amino acids is replaced by another segment with approximately the same masses. We developed a new efficient algorithm to match sequence tags with errors to database sequences for the purpose of protein and peptide identification. A software package, SPIDER, was developed and made available on Internet for free public use. This paper describes the algorithms and features of the SPIDER software.  相似文献   

16.
Affinity tags have become highly popular tools for purifying recombinant proteins from crude extracts by affinity chromatography. Besides, short peptides are excellent ligands for affinity chromatography, as they are not likely to cause an immune response in case of leakage into the product, they are more stable than antibodies to elution and cleaning conditions and they usually have very acceptable selectivity. Hydropathically complementary peptides designed de novo show enough selectivity to be used successfully as peptide ligands for protein purification from crude extracts. Recognition specificity and selectivity in the interaction between the complementary peptide pair His-Leu-Leu-Phe-Pro-Ile-Ile-Ile-Ala-Ala-Ser-Leu and Lys-Asn-Tyr-Pro-Lys-Lys-Lys-Met-Glu-Lys-Arg-Phe have been demonstrated by other authors. In this work, we designed a recombinant protein purification method using a peptide affinity tag that binds to a peptide-binding partner immobilized on a chromatographic matrix. The enhanced green fluorescent protein expressed (EGFP) in Escherichia coli was used as the model. The peptide Gly-Gly-Gly-His-Leu-Leu-Phe-Pro-Ile-Ile-Ile-Ala-Ala-Ser-Leu was synthesized by solid phase using the Fmoc chemistry and immobilized in NHS-Sepharose (PC-Sepharose). Gly residues were added as a spacer arm at the N terminus. The EGFP was expressed either with the fusion tag Lys-Asn-Tyr-Pro-Lys-Lys-Lys-Met-Glu-Lys-Arg-Phe on the C terminus (EGFP-CPTag) or without any fusion tag. After cell disruption, the extract was directly applied to the PC-Sepharose column equilibrated with 20mM sodium phosphate buffer, pH 7.0. The adsorbed EGFP-CPTag was then eluted with 1M Tris. The yield was 98% and the purification factor 4.6. By contrast, EGFP without tag pass through without interacting with the PC-Sepharose column. The method designed can be applied for the purification of other recombinant proteins.  相似文献   

17.
Improved ways to cleave peptide chains at engineered sites easily and specifically would form useful tools for biochemical research. Uses of such methods include the activation or inactivation of enzymes or the removal of tags for enhancement of recombinant protein expression or tags used for purification of recombinant proteins. In this work we show by gel electrophoresis and mass spectroscopy that salts of Co(II) and Cu(II) can be used to cleave fusion proteins specifically at sites where sequences of His residues have been introduced by protein engineering. The His residues could be either consecutive or spaced with other amino acids in between. The cleavage reaction required the presence of low concentrations of ascorbate and in the case of Cu(II) also hydrogen peroxide. The amount of metal ions required for cleavage was very low; in the case of Cu(II) only one to two molar equivalents of Cu(II) to protein was required. In the case of Co(II), 10 molar equivalents gave optimal cleavage. The reaction occurred within minutes, at a wide pH range, and efficiently at temperatures ranging from 0 degrees C to 70 degrees C. The work described here can also have implications for understanding protein stability in vitro and in vivo.  相似文献   

18.
Careful analysis of sub-visible amorphous aggregates, where proteins associate non-covalently in either native or denatured states without forming a specific quaternary structure, may shed insight into the mechanisms of protein aggregation and solubility. Here we report a biophysical and biochemical analysis of our model protein, a bovine pancreatic trypsin inhibitor variant (BPTI-19A), whose oligomerization were controlled by attaching solubility controlling peptide tags (SCP tags) to its C terminus, which are short peptides composed of a single type of amino acid that modulate protein solubility. The dynamic light scattering and static light scattering at 25 °C indicated that 11 out of 15 SCP tags merely affected the hydrodynamic radius and light scattering intensity of our reference variants BPTI-19A and BPTI-C2G. On the other hand, hydrophobic SCP tags composed of 5 Ile (C5I) or 5 Leu (C5L) were associated into sub-visible aggregates. Circular dichroism indicated that all tagged BPTI variants had the same secondary structure contents as the reference BPTI-19A at 25 °C, suggesting that BPTI-C5I and C5L kept their native structure upon association. Furthermore, the thermal denaturation of all of the BPTI variants was fully reversible and typical of natively folded small globular proteins, as monitored by CD at 222 nm. However, the thermal stability of BPTI-19A tagged with hydrophobic residues decreased with increasing protein concentration and tag's hydrophobicity, and BPTI-C5I and C5L were partially denatured at 37 °C. Biochemical stability assessed by limited proteolysis with pepsin correlated with the extent of the variants' aggregation, and the large sub-visible aggregates formed by BPTI-C5I and C5L significantly increased their resistance to pepsin proteolysis. Altogether, these observations indicated that hydrophobic SCP tags led to the reversible association of native-like proteins into sub-visible soluble amorphous aggregates resistant to pepsin digestion.  相似文献   

19.
20.
Immobilized metal ion affinity chromatography (IMAC) using peptide affinity tags has become a popular tool for protein purification. An important feature dictating the use of a specific affinity tag is whether its structure influences the properties of the target protein to which it is attached. In this work we have studied the influence on protein stability of two novel peptide affinity tags, namely NT1A and HIT2, and compared their effect to the commonly used hexa‐histidine tag, all attached to the C‐terminus of a enhanced green fluorescent protein (eGFP). A comparison of the influence of C‐ or N‐terminal orientation of the tags was also carried out by studying the NT1A tag attached at either terminus of the eGFP. Protein stability was studied utilising guanidine hydrochloride equilibrium unfolding procedures and CD and fluorescence spectroscopy. The novel peptide affinity tags, NT1A and HIT2, and the His6 tag were found to not affect the stability of eGFP. Although these results are protein specific, they highlight, nevertheless, the need to employ suitable characterisation tools if the impact of a specific peptide tag on the folded status or stability of a recombinant tagged protein, purified by immobilized metal ion affinity chromatographic methods, are to be rigorously evaluated and the appropriate choice of peptide tag made. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号