首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Structure of nucleosomes and organization of internucleosomal DNA in chromatin   总被引:16,自引:0,他引:16  
We have compared the mononucleosomal pattern produced by micrococcal nuclease digestion of condensed and unfolded chromatin and chromatin in nuclei from various sources with the repeat length varying from 165 to 240 base-pairs (bp). Upon digestion of isolated H1-containing chromatin of every tested type in a low ionic strength solution (unfolded chromatin), a standard series of mononucleosomes (MN) was formed: the core particle, MN145, and H1-containing, MN165, MN175, MN185, MN195, MN205 and MN215 (the indexes give an approximate length of the nucleosomal DNA that differs in these particles by an integral number of 10 bp). In addition to the pattern of unfolded chromatin, digestion of whole nuclei or condensed chromatin (high ionic strength of Ca2+) gave rise to nuclei-specific, H1-lacking MN155. Digestion of H1-lacking chromatin produced only MN145, MN155 and MN165 particles, indicating that the histone octamer can organize up to 165 bp of nucleosomal DNA. Although digestion of isolated sea urchin sperm chromatin (repeat length of about 240 bp) at a low ionic strength gave a typical "unfolded chromatin pattern", digests of spermal nuclei contained primarily MN145, MN155, MN235 and MN245 particles. A linear arrangement of histones along DNA (primary organization) of the core particle was found to be preserved in the mononucleosomes, with the spacer DNA length from 10 to 90 bp on one (in MN155) or both sides of core DNA being a multiple of about 10 bp. In MN235, the core particle occupies preferentially a central position with the length of the spacer DNA on both sides of the core DNA being usually about 30 + 60 or 40 + 50 bp. Histone H1 is localized at the ends of these particles, i.e. close to the centre of the spacer DNA. The finding that globular part of histones H3 and sea urchin sperm H2B can covalently bind to spacer DNA suggests their involvement in the organization of chromatin superstructure. Our data indicate that decondensation of chromatin is accompanied by rearrangement of histone H1 on the spacer DNA sites adjacent to the core particle and thus support a solenoid model for the chromatin superstructure in nuclei in which the core DNA together with the spacer DNA form a continuous superhelix.  相似文献   

2.
Rat liver chromatin was digested by micrococcal nuclease. Chromatin subunits (or mononucleosomes) were isolated by sucrose density gradient and subsequently fractionated by 6% polyacrylamide gel electrophoresis into two major components. One component (MN1) of the mononucleosomes had a higher mobility, contained histones H2A, H2B, H3, H4, and shorter DNA fragments (140 base pairs) while the other (MN2) contained all five histones and longer DNA fragments (180 base pairs). Both submononucleosomes (MN1 and MN2) were found to contain nonhistone chromatin proteins (NHCP). By electrophoresis in 15% sodium dodecyl sulfate-polyacrylamide gel, 9 and 11 major fractions of NHCP were identified in the submononucleosomes MN1 and MN2, respectively. It was also observed that treatment of mononucleosomes with 0.6 M NaCl removes most of these NHCP and histone H1 except for two major NHCP which remain in the core particles.  相似文献   

3.
Nucleosomes and subnucleosomes: heterogeneity and composition   总被引:1,自引:0,他引:1  
Previous studies (Varshavsky, Bakayev and Georgiev, 1976a) have shown that chromatin subunits (mononucleosomes) and their oligomers in a mild staphylococcal nuclease digest of chromatin display a heterogeneous content of histone H1. We now report that a mild staphylococcal nuclease digest of either chromatin or nuclei from mouse Ehrlich tumor cells contains mononucleosomes of three discrete kinds. The smallest mononucleosome (MN1) contains all histones except H1 and a DNA fragment 140 base pairs (bp) long. The intermediate mononucleosome (MN2) contains all five histones and a DNA fragment 170 bp long. The third mononucleosome (MN3) also contains all five histones, but its DNA fragment is longer and more heterogeneous in size (180–200 bp). Most of the MN3 particles are rapidly converted by nuclease into mononucleosomes MN1 and MN2 There exists, however, a relatively nuclease-resistant subpopulation of the MN3 mononucleosomes. These 200 bp MN1 particles contain not only histones but also nonhistone proteins, and are significantly more resistant to nuclease than the bulk of MN3 particles and the smaller mononucleosomes MN1 and MN2.There are eight major kinds of staphylococcal nuclease-produced soluble subnucleosomes (SN). The SN1 is a set of naked double-stranded DNA fragments ~20 bp long. The SN2 is a complex of a specific basic nonhistone protein (molecular weight ~16,000 daltons) and a DNA fragment ~27 bp long. The SN3 contains histone H4, the above-mentioned specific nonhistone protein and a DNA fragment ~27 bp long. The SN4 contains histones H2a, H2b, H4 and a DNA fragment ~45 bp long. The SN5 contains histones H2a, H2b, H3 and a DNA fragment ~55 bp long. The SN6 is a complex of histone H1 and a DNA fragment ~35 bp long. Subnucleosomes SN7 and SN8 each contain all the histones except H1, and DNA fragments ~100 and ~120 bp long, respectively.Nuclease digestion of isolated mono- or dinucleosomes does not produce some of the subnucleosomes. These and related findings indicate that the cleavage required to generate these subnucleosomes result from some aspect of chromatin structure which is lost upon digestion to mono- and dinucleosomes.  相似文献   

4.
Mononucleosomes released from Dictyostelium discoideum chromatin by micrococcal nuclease contained two distinctive DNA sizes (166-180 and 146 bp). Two dimensional gel electrophoresis suggested a lysine-rich protein protected the larger mononucleosomes from nuclease digestion. This was confirmed by stripping the protein from chromatin with Dowex resin. Subsequently, only the 146 bp mononucleosome was produced by nuclease digestion. Reconstitution of the stripped chromatin with the purified lysine-rich protein resulted in the reappearance of the larger mononucleosomes. Two-dimensional gel electrophoresis showed the protein was associated with mononucleosomes. Hence, the protein functions as an H1 histone in bringing the two DNA strands together at their exit point from the nucleosome. Trypsin digestion of the lysine-rich protein in nuclei resulted in a limiting peptide of approx. 10 kilodaltons. Trypsin concentrations which degraded the protein to peptides of 12-14 kilodaltons and partially degraded the core histones did not change the DNA digestion patterns obtained with micrococcal nuclease. Thus, the trypsin-resistant domain of the lysine-rich protein is able to maintain chromatosome structure.  相似文献   

5.
We have compared mononucleosomes that were obtained by hydrolysis of chromatin micrococcal nuclease from a number of sources with the length of a nucleosomal repeat 185--245 b. p. long. For hydrolysis of chromatin isolated from nuclei, a series of nucleosomes was formed: MN145 (core particle), MN165, MN175...MN205, MN215, the lengths of their DNAs differing (by approximately 10.n b.p. where n = 1, 2, 3...) by a factor of 10. A feature of hydrolysis of chromatin in nuclei was the appearance of an additional H1-depleted MN155 particle. It is suggested that upon isolation of chromatin from nuclei, its partial decompactization takes place. This decompactization changes the character of nuclease splitting and seems to be connected with rearrangement of histone H1. These observations demonstrate that besides core particles MN145 and chromatosomes MN165, the major particles of digest of nuclei appear to be MN155, and for isolated chromatin--MN175. Unlike this standard picture, mainly MN145, MN155, MN235 and MN245 are formed upon hydrolysis of sea urchin sperm nuclei.  相似文献   

6.
Three major satellite DNAs comprise 40–45% of the genome of Drosophila virilis. Since these satellites are not substrates for most restriction enzymes, we were able to digest D. virilis nuclei with HaeIII and micrococcal nuclease and isolate chromatin fractions containing variable levels of satellite DNA. Electrophoretic analysis of these chromatin fractions revealed that the level of the acid-soluble chromosomal protein, cp17.3, was directly related to the percentage of satellite DNA in chromatin. The correlation between cp17.3 and satellite DNA abundance suggests that cp17.3 is involved in the heterochromatic condensation of satellite DNAs. cp17.3 occurs at a frequency of one molecule per 10–20 nucleosomes. It is detected in an electrophoretically distinguishable class of mononucleosomes, provisionally identified as MN1uH2A, which contains ubiquitinated histone H2A (uH2a) but lacks histone H1. It is not detected in MN1, a second class of mononucleosomes, which lacks uH2A and H1. Since cp17.3 is correlated with satellite DNAs and present in nucleosome cores, it might be a histone variant specifically associated with satellite DNAs.This work was supported by Grant GM22138 from the National Institutes of Health. G.A.V. was a predoctoral trainee supported by Grant GM07094 from the National Institutes of Health.  相似文献   

7.
8.
We have removed histone H1 specifically from calf thymus nuclei by low pH treatment, and studied the digestion of such nuclei in comparison with undepleted nuclei. By a number of criteria the nuclei do not appear damaged. The DNA repeat-length in nuclear chromatin is found to be the same (192 +/- 4 bp) in the presence or absence of H1. These experiments demonstrate that the core histone complex of H2A, H2B, H3, and H4 can itself protect DNA sequences as long as 168 bp from nuclease. Our interpretation is that this represents an important structural element in chromatin, carrying two full turns of superhelical DNA. Depending on conditions of digestion this 168 bp fragment may be metastable and is normally rapidly converted by exonucleolytic trimming to the well-known "core-particle" containing 145 bp. Larger stable DNA fragments observed indigestion of H-1 depleted nuclei appear to arise from oligomers assembled from 168 bp cores in close contact exhibiting trimming of 0-20 bp at the ends. Electrophorograms of undepleted nuclear digests reveal oligomer bands in several size classes, each corresponding to one or more combinations of 168 bp particles, H1-protected spacers of about 20 bp length, and particles with ends trimmed to varying degrees.  相似文献   

9.
UV laser irradiation has been used to covalently crosslink histones to DNA in nuclei, chromatin and core particles and the presence of the different histone species in the covalently linked material was detected immunochemically. When nuclei were irradiated and then trypsinized to cleave the N- and C- terminal histone tails, no histones have been found covalently linked to DNA. This finding shows that UV laser-induced crosslinking of histones to DNA is accomplished via the non-structured domains only. This unexpected way of crosslinking operated in chromatin, H1-depleted chromatin and core particles, i.e. independently of the chromatin structure. The efficiency of crosslinking, however, showed such a dependence: whilst the yield of crosslinks was similar in total and H1-depleted chromatin, in core particles the efficiency was 3-4 times lower for H2A, H2B and H4 and 10-12 times lower for H3. The decreased crosslinking efficiency, especially dramatic in the case of H3, is attributed to a reduced number of binding sites, and, respectively, is considered as a direct evidence for interaction of nonstructured tails of core histones with linker DNA.  相似文献   

10.
Mononucleosomes were released from both isolated mammalian (hog thyroid) and protozoan (Tetrahymena) nuclei by the bleomycin-induced DNA-strand breaking reaction. Trout sperm nuclei, on the other hand, were protected from the bleomycin-mediated DNA degradation. The mononucleosomes released from the bleomycin-treated nuclei contained the core histones H2A, H2B, H3, and H4; while HMG1 and HMG2 proteins, in addition to the core histones, were detected in the mononucleosomes obtained by micrococcal nuclease digestion of nuclei. HMGs, but not H1 histone, were dissociated into the supernatant by cleavage of chromatin DNA with bleomycin, whereas both HMGs and H1 were found in that fraction by digestion of nuclei with micrococcal nuclease. HMG1 and HMG2 were exclusively dissociated from chromatin with 1 mM bleomycin under the solvent condition where the DNA strand-breaking activity of the drug is repressed. These observations suggest the possibility that bleomycin preferentially binds to linker DNA regions not occupied by H1 histone in chromatin and exclusively dissociates HMG proteins and breaks the DNA strand. The results of the effects on bleomycin-induced DNA cleavage of nuclei of various drugs including polyamines, chelating agents, intercalating antibiotics such as mitomycin C or adriamycin, and radical scavengers are also presented.  相似文献   

11.
MacroH2A is a histone H2A variant that is typically found in heterochromatic regions of the genome. A positively charged linker that connects the histone-fold with the macro-domain was suggested to have DNA-binding properties, and has been shown to promote oligomerization of chromatin fibers. Here we examine the influence of this basic linker on DNA of mononucleosomes. We find that the macro-linker reduces accessibility to extranucleosomal DNA, and appears to increase compaction of the nucleosome. These properties arise from interactions between the H1-like basic linker region and DNA around the entry/exit site, which increases protection of nucleosomal DNA from exonuclease III digestion by ∼10 bp. By stabilizing the wrapping of DNA around the histone core, this basic linker of macroH2A may alter the distribution of nucleosome-associated factors, and potentially contribute to the more compacted nature of heterochromatin.  相似文献   

12.
Photochemical cross-linking of histones to DNA nucleosomes.   总被引:10,自引:5,他引:5       下载免费PDF全文
Ultraviolet (UV)-induced cross-linking was utilized in order to identify histone-DNA interacting regions in the chromatin repeating unit. Fractionated mononucleosomes which contained 185 base pairs of DNA and a full complement of the histones, including histone H1, were irradiated with light of lambda greater than 290nm in the presence of a photosensitizer. Equimolar amounts of histones H2A and H2B were found, by two independent labeling experiments, to be cross-linked to the DNA. Based on previous finding that the UV irradiation specifically cross-links residues which are in close proximity, irrespective of the nature of the amino acid side chain or the nucleotide involved, our results indicate that the four core histones are not positioned equivalently with respect to the DNA. This arrangement allows histones H2A and H2B to preferentially cross-link to the DNA. A water soluble covalent complex of DNA and histones was isolated. This complex was partially resistant to mild nuclease digestion, it exhibited a CD spectrum similar to that of chromatin, and was found to contain histone H1. These results are compatible with a model which suggests that histone H1, though anchored to the linker, is bound to the DNA at additional sites. By doing so it spans the whole length of the nucleosome and clamps together the DNA fold around the histone core.  相似文献   

13.
A method for fluorescently labeled DNA synthesis, which makes it possible to assemble mononucleosomes with 40 bp linkers, was developed. Cy3 and Cy5 labels were introduced into the linkers at distances of 10 bp before the first nucleotide and 15 bp after the last nucleotide of the nucleosome positioning DNA sequence, respectively. Without histone H1.5, f luorescence microscopy of single complexes revealed two equally probable states of nucleosomes. The states were different in the linker conformation: the open one with the energy transfer efficiency (E) between the labels of 0.06 and the closed one with E = 0.37, when the linkers are brought together. Binding of histone H1.5 with nucleosomes occurs in a range of nanomolar concentrations, and the complex formation rate is significantly higher as compared with its dissociation rate. The significant convergence of the DNA linkers (E = 0.73) is observed in these complexes together with the higher conformation uniformity in the region where the labels are localized. The developed nucleosomal constructs represent highly sensitive f luorescent sensors that can be used for the analysis of structural linker rearrangements. Also, in combination with microscopy of single complexes, they are suitable for studying the structure of complexes of nucleosomes with different chromatin architectural proteins.  相似文献   

14.
The assembly of hybrid core particles onto long chicken DNA with histone H2B in the chicken histone octamer replaced with either wheat histone H2B(2) or sea urchin sperm histone H2B(1) or H2B(2) is described. All these histone H2B variants have N-terminal extensions of between 18 and 20 amino acids, although only those from sea urchin sperm have S(T)PXX motifs present. Whereas chicken histone octamers protected 167 base pairs (bp) (representing two full turns) of DNA against micrococcal nuclease digestion (Lindsey, G. G., Orgeig, S., Thompson, P., Davies, N., and Maeder, D. L. (1991) J. Mol. Biol. 218, 805-813), all the hybrid histone octamers protected an additional 17-bp DNA against nuclease digestion. This protection was more marked in the case of hybrid octamers containing sea urchin sperm histone H2B variants and similar to that described previously (Lindsey, G. G., Orgeig, S., Thompson, P., Davies, N., and Maeder, D. L. (1991) J. Mol. Biol. 218, 805-813) for hybrid histone octamers containing wheat histone H2A variants all of which also have S(T)PXX motifs present. Continued micrococcal nuclease digestion reduced the length of DNA associated with the core particle via 172-, 162-, and 152-bp intermediates until the 146-bp core particle was obtained. These DNA lengths were approximately 5 bp or half a helical turn longer than those reported previously for stripped chicken chromatin and for core particles containing histone octamers reconstituted using "normal" length histone H2B variants. This protection pattern was also found in stripped sea urchin sperm chromatin, demonstrating that the assembly/digestion methodology reflects the in vivo situation. The interaction between the N-terminal histone H2B extension and DNA of the "linker" region was confirmed by demonstrating that stripped sea urchin sperm chromatin precipitated between 120 and 500 mM NaCl in a manner analogous to unstripped chromatin whereas stripped chicken chromatin did not. Tryptic digestion to remove all the histone tails abolished this precipitation as well as the protection of DNA outside of the 167-bp core particle against nuclease digestion.  相似文献   

15.
The points of histone H5 interactions with DNA within nucleosomes and chromatin at different levels of compaction are delineated by identification of H5 amino acid residues that can be covalently bound to DNA. Three major crosslinkable points of H5 are His25, His62 (both within the globular part of the molecule), and N-terminal Thr1. His25 interacts with the terminal regions of nucleosomal DNA; His62 appears to bind more distal segments of the linker DNA. The His25-DNA crosslink predominates in the isolated mononucleosomes and persists throughout the chromatin condensation states studied, from extended oligonucleosomal chains to nuclei. His62 is the strongest crosslinking site in nuclei; in oligonucleosomes, the predominance of the His62-DNA crosslink requires the number of nucleosomes in the chain to be above some critical value. The Thr1-DNA crosslink is generated only in decondensed poly- or oligonucleosomes, but not in mononucleosomes. Thus, underlying the higher-order folding transitions of the nucleosomal chain is the restructuring of H5-DNA interactions.  相似文献   

16.
Hen erythrocyte chromatin was digested with staphylococcal nuclease and fractionated by electrophoresis in polyacrylamide gels. Instead of the three bands described for mouse carcinoma chromatin, four main discrete components (MN1, MN2, MN2E and MN3) were resolved in the mononucleosome fraction of erythrocyte chromatin. MN2 contained all five histones and a DNA fragment of 165–180 base pairs. MN2E comprised four nucleosomal histones plus histone H5 (but not H1) and a DNA fragment of 170–190 base pairs. The relatively nuclease resistant MN3 fraction of erythrocyte nucleosomes contained H1 but no H5 histone. A more accurate analysis of the MN2 fraction in mouse carcinoma nucleosomes revealed some additional microheterogeneity depending on the presence of two different subfractions of H1.  相似文献   

17.
Overall pathway of mononucleosome production.   总被引:13,自引:0,他引:13  
Five electrophoretically distinguishable classes of mononucleosomes (MI, MII, ...MV) are produced upon treatment of mammalian nuclear chromatin with micrococcal nuclease. These five forms differ in their initial DNA lengths, relative mass proportions, stability, contents of histone H1, and presence of certain nonhistone proteins. A new "chromatin fingerprinting" technique has been developed in order to trace nuclease-mediated interconversions between these mononucleosomes and their polynucleosomal precursors. Application of this technique, together with earlier findings from this laboratory, has made possible the elucidation of the overall pathway of nuclease cleavage of chromatin which leads to the production and interconversion of these mononucleosomes, and has permitted reconstruction of the organization of these mononucleosomes in undigested chromatin...  相似文献   

18.
19.
Electrophoretic analysis of the nucleosomal histones from MN1 and MN2 subpopulations of the seminiferous tubules in gels containing either 6.25 or 2.5 M urea revealed the presence of testis specific histone H2S, H1 and protein ‘A’ in addition to the somatic histones in the core protein complex. Size analysis indicated the presence of a 150–160 bp DNA segment in the MNI subpopulation, whereas, an approx 180 bp DNA fragment was present in the MN2 subpopulation of both liver and tubule nucleosomes. These data suggest an extensive remodeling of the nucleosomal core protein complex during mammalian spermatogenesis.  相似文献   

20.
Micrococcal-nuclease digestion of rat liver nuclei selectively released mononucleosomes associated with ADP-ribosylated [Caplan, Ord & Stocken (1978) Biochem. J.174, 475-483] histone H1. Two classes of mononucleosome were detected, those that leaked out during digestion and those that were subsequently released by 5mm-sodium phosphate buffer (pH6.8)/0.2mm-NaEDTA. The former, from which histone H1 had been dissociated, contained 140-base-pair-length DNA and core histones;the latter contained core particles and mononucleosomes with histone H1 and 200-base-pair-length DNA. When normal liver nuclei were phosphorylated with [gamma-(32)P]ATP, dissociated histone H1, which could be separated from core particles with Sephadex G-200, showed (32)P uptake. (32)P uptake into histones H2A and poly(ADP-ribosyl)ated H3 was appreciable in core particles, but was less evident in nucleosomes still containing histone H1. When [(3)H]-thymidine was given to partially hepatectomized rats in S-phase, 5-10min pulses in animals of over 300g body wt. showed the presence of high-specific-radioactivity DNA in released core particles and mononucleosomes compared with DNA retained in the nuclear pellets. Mononucleosomes from rat livers in S-phase with new, [(3)H]lysine-containing histones, had higher (32)P incorporation in histones H1 and their core histones, than for di- or tri-nucleosomes. Thermal-denaturation properties of control and phosphorylated mononucleosomes and core particles were very similar; removal of histone H1 and non-histone chromosomal proteins in 0.5m-NaCl markedly increased the proportion of DNA ;melting' below 70 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号