首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The molecular structure of fagopyritol A1, a novel galactopyranosyl cyclitol from buckwheat seeds, was determined to be O-alpha-D-galactopyranosyl-(1 --> 3)-D-chiro-inositol by 1H and 13C NMR. Fagopyritol A1 is a positional isomer of fagopyritol B1 (O-alpha-D-galactopyranosyl-(1 --> 2)-D-chiro-inositol), representing a different series of fagopyritol oligomers. Trimethylsilyl derivatives of both compounds have similar mass spectra, but each may be identified by different abundance ratios of fragments with m/z 305/318 and 318/319.  相似文献   

2.
Isolation and structural analysis of ajugose from Vigna mungo L   总被引:1,自引:0,他引:1  
The hexasaccharide ajugose, alpha-D-galactopyranosyl-(1-->6)-alpha-D-galactopyranosyl-(1-->6)-O-alpha-D-galactopyranosyl-(1-->6)-alpha-D-galactopyranosyl-(1-->6)-alpha-D-glucopyranosyl-(1<-->2)-beta-D-fructofuranoside, generally uncommon in legumes, was detected in the seeds of Vigna mungo L. by TLC and paper chromatography. Ajugose was then isolated by silica gel chromatography and its structure was established by acid and enzymatic hydrolysis, fast atom bombardment mass spectrometry and both one- and two-dimensional 1H and 13C NMR techniques.  相似文献   

3.
Fagopyritol A1 (3-O-alpha-d-galactopyranosyl-d-chiro-inositol) and fagopyritol B1 (2-O-alpha-d-galactopyranosyl-d-chiro-inositol) have been synthesized by glycosylation of the diequatorial diol 1,4,5,6-tetra-O-benzoyl-d-chiro-inositol, readily obtained from d-chiro-inositol, with 2,3,4,6-tetra-O-benzyl-d-galactopyranosyl trichloroacetimidate.  相似文献   

4.
We have studied the potential of several newly cloned alpha-galactosidases to catalyze the regioselective synthesis of disaccharides using 4-nitrophenylgalactoside as a donor. The kinetics of the reactions were followed by in situ NMR spectroscopy. The following thermophilic enzymes have been tested: Aga A and an isoenzyme Aga B obtained from the strain KVE39 and Aga 285 from the strain IT285 of Bacillus stearothermophilus; Aga T is an alpha-galactosidase from Thermus brockianus (strain IT360). Two other non-thermophilic alpha-galactosidases have also been evaluated: Aga 1 (Streptococcus mutans, strain Ingbritt) and Raf A (Escherichia coli, strain D1021). For all of the enzymes studied, high regioselectivity was observed leading to two (1 --> 6)-disaccharides: 4-nitrophenyl alpha-D-galactopyranosyl-(1--> 6)-alpha-D-galactopyranoside and methyl alpha-D-galactopyranosyl-(1--> 6)-alpha-D-galactopyranoside, which were obtained in 54% (Aga B) and 20% (Aga T) yields, respectively.  相似文献   

5.
Yang F  Du Y 《Carbohydrate research》2002,337(6):485-491
Oligosaccharide derivatives from sanqi, a Chinese herbal medicine derived from Panax notoginseng, methyl beta-D-galactopyranosyl-(1-->3)-[alpha-L-arabinofuranosyl-(1-->6)]-alpha-D-galactopyranoside, diosgenyl beta-D-galactopyranosyl-(1-->3)-[alpha-L-arabinofuranosyl-(1-->6)]-alpha-D-galactopyranoside, and methyl beta-D-galactopyranosyl-(1-->3)-[alpha-L-arabinofuranosyl-(1-->6)]-alpha-D-galactopyranosyl-(1-->4)-beta-D-galactopyranosyl-(1-->3)-[alpha-L-arabinofuranosyl-(1-->6)]-alpha-D-galactopyranoside, were synthesized under standard glycosylation conditions. An unexpected alpha-(1-->4) linkage was formed predominantly in the presence of neighboring participation group during regioselective synthesis of hexasaccharide via 3+3 strategy.  相似文献   

6.
4-Nitrophenyl alpha-D-galactopyranosyl-(1-->3)-6-O-acetyl-alpha-D-galactopyranoside was prepared in a transglycosylation reaction catalyzed by alpha-D-galactosidase from Talaromyces flavus using 4-nitrophenyl alpha-D-galactopyranoside as a glycosyl donor and 4-nitrophenyl 6-O-acetyl-alpha-D-galactopyranoside as an acceptor. 4-Nitrophenyl 6-O-acetyl-alpha-D-galactopyranoside and 4-nitrophenyl 6-O-acetyl-beta-D-galactopyranoside were prepared in a regioselective enzymic transesterification in pyridine-acetone catalyzed by the lipase PS from Burkholderia cepacia. A series of water-miscible organic solvents (acetone, acetonitrile, dimethylformamide, dimethyl sulfoxide, 1,4-dioxane, 2-methoxyethanol, pyridine, 2-methylpropan-2-ol, tetrahydrofuran, propargyl alcohol) were used as co-solvents in this enzymic reaction. Their influence on the activity and stability of the alpha-galactosidase from T. flavus was established. 2-Methylpropan-2-ol and acetone (increasing the solubility of the modified substrate acceptors and displaying the minimum impairment of the activity and stability of the enzyme) were used as co-solvents in transglycosylation reactions.  相似文献   

7.
1. Eight glycerophosphoglycolipids were isolated from six Gram-positive bacteria. Besides sn-glycero-1-phospho-beta-gentiobiosyldiacylglycerol (i) and sn-glycero-1-phospho-alpha-kojibiosyldiacylglycerol (ii), three novel structures have been established: 1,2-di-O-acyl-3-O-[6-(sn-glycero-1-phospho)-alpha-D-glucopyranosyl-(1 leads to 2)-(6-O-acyl-alpha-D-glucopyranosyl)]glycerol (iii), 1,2-di-O-acyl-3-O-[6-(sn-glycero-1-phospho)-beta-D-glucopyranosyl-(1 leads to 6)-alpha-D-galactopyranosyl-(1 leads to 2)-alpha-D-glucopyranosyl]glycerol (iv), and 1,2-di-O-acyl-3-O-[6-(sn-glycero-1-phospho)-beta-D-glucopyranosyl-(1 leads to 6)-alpha-D-galactopyranosyl-(1 leads to 2)-(6-O-acyl-alpha-D-glucopyranosyl)]glycerol (v). 2. Compound i was isolated from Bacillus licheniformis, Bacillus subtilis and Staphylococcus aureus, compound ii from a group B Streptococcus, compounds ii and iii from Streptococcus lactis, compounds iv and v from Lactobacillus casei. Lactobacillus plantarum contained besides compounds iv and v a glycerophosphate derivative of 1,2-di-O-acyl-3-O-[alpha-D-galactopyranosyl (1 leads to 2)-alpha-D-glucopyranosyl]glycerol. 3. Identical structural features of the described glycerophosphoglycolipids and the corresponding lipoteichoic acids are discussed.  相似文献   

8.
Liu MZ  Fan HN  Lee YC 《Biochimie》2001,83(7):693-698
6-Aminohexyl alpha-D-galactopyranosyl-(1-->4)-beta-D-galactopyranosyl-(1-->4)-beta-D-glucopyranoside (2), a globotriose analogue with a functionalized aglycon, was synthesized, using alpha-D-galactopyranosyluronic acid-(1-->4)-D-galactopyranosyluronic acid [di-GalA (3)] as the starting material, which is commercially available or can be readily prepared from pectin.  相似文献   

9.
The molecular structure of galactosyl-D-(-)-bornesitol, a novel compound isolated from sweet pea seeds, was determined to be alpha-D-galactopyranosyl-(1-->3)-1-O-methyl-1D-myo-inositol by 1D and 2D NMR spectroscopy and is assigned the trivial name lathyritol.  相似文献   

10.
A general scheme of synthesis of antibiotic doxorubicin derivatives is based on the 13-dimethyl ketal of 14-bromodaunorubicin (4). The interaction of 4 with melibiose (5), lactose (6), 3-methoxy-4-O-(2,3,4,6-tetra-O-acetyl-beta-D-galactopyranosyl)-4-oxybenzaldehyde (12) or 4-O-(2,3,4,6-tetra-O-acetyl-beta-D-galactopyranosyl)-4-oxybenzaldehyde (13) by reductive alkylation followed by hydrolysis of the corresponding intermediate bromoketals produced 3'-N-[alpha-D-galactopyranosyl-(1-->6)-O-1-deoxy-D-glucit-1-yl]doxorubicin (7), 3'-N-[beta-D-galactopyranosyl-(1-->4)-O-1-deoxy-D-glucit-1-yl]doxorubicin (8), 3'-N-[3"-methoxy-4"-O-(beta-D-galactopyranosyl)-4"-oxybenzyl]doxorubicin (16), and 3'-N-[4"-O-(beta-D-galactopyranosyl)-4"-oxybenzyl]doxorubicin (17). Cytotoxic and antitumor activity of the synthesized drug candidates compared to the parent doxorubicin was studied using various experimental models, in particular, on mice bearing lymphocyte leukemia P-388 at single and multiple i.v. injection regimens.  相似文献   

11.
Propyl and 2-aminoethyl alpha-D-galactopyranosyl-(1-->3')-beta-lactosides (1 and 2) were prepared from the corresponding perbenzylated trisaccharide allyl glycoside 6 which, in turn, was obtained by methyl triflate promoted alpha-galactosylation of benzylated allyl lactoside acceptor 4 with thiogalactoside 3. Transformation of the allyl moiety in compound 6 into 2-azidoethyl one was achieved by cleavage of the double bond followed by reduction into alcohol 9, subsequent mesylation, and mesylate-->azide substitution. Alternatively trisaccharide 2 was synthesized using alpha-galactosylation of selectively benzoylated 2-azidoethyl lactoside 19 with 3 as the key step.  相似文献   

12.
Classical arabinogalactan proteins partially defined by type II O-Hyp-linked arabinogalactans (Hyp-AGs) are structural components of the plant extracellular matrix. Recently we described the structure of a small Hyp-AG putatively based on repetitive trigalactosyl subunits and suggested that AGs are less complex and varied than generally supposed. Here we describe three additional AGs with similar subunits. The Hyp-AGs were isolated from two different arabinogalactan protein fusion glycoproteins expressed in tobacco cells; that is, a 22-residue Hyp-AG and a 20-residue Hyp-AG, both isolated from interferon α2b-(Ser-Hyp)20, and a 14-residue Hyp-AG isolated from (Ala-Hyp)51-green fluorescent protein. We used NMR spectroscopy to establish the molecular structure of these Hyp-AGs, which share common features: (i) a galactan main chain composed of two 1→3 β-linked trigalactosyl blocks linked by a β-1→6 bond; (ii) bifurcated side chains with Ara, Rha, GlcUA, and a Gal 6-linked to Gal-1 and Gal-2 of the main-chain trigalactosyl repeats; (iii) a common side chain structure composed of up to six residues, the largest consisting of an α-l-Araf-(1→5)-α-l-Araf-(1→3)-α-l-Araf-(1→3- unit and an α-l-Rhap-(1→4)-β-d-GlcUAp-(1→6)-unit, both linked to Gal. The conformational ensemble obtained by using nuclear Overhauser effect data in structure calculations revealed a galactan main chain with a reverse turn involving the β-1→6 link between the trigalactosyl blocks, yielding a moderately compact structure stabilized by H-bonds.  相似文献   

13.
Fluorescence-labeled glycoconjugate polymers carrying carbohydrate segments of a globotriaosyl ceramide (Gb3) were synthesized and subjected to biological assays using Escherichia coli O-157 strains and Shiga-like toxins (Stx-I and Stx-II). For the fluorescence labeling, a new polymerizable fluorescent monomer with a TBMB carbonyl chromophore (Ex. 325 nm, Em. 410 nm) was designed. A glycosyl monomer of the trisaccharide segment of Gb3 was prepared from p-nitrophenyl beta-lactoside and copolymerized with acrylamide and the fluorescent monomer to prepare a fluorescence-labeled glycoconjugate copolymer carrying [alpha-D-galactopyranosyl-(1-->4)-beta-D-galactopyranosyl]-(1-->4)-beta- D-glucopyranoside. The polymer showed potent neutralization activity against Stx-I and also binding activity onto E. coli O-157 strains.  相似文献   

14.
Trigalactosyl diglyceride has been isolated from tubers of potato (Solanum tuberosum) by a combination of chromatographic methods. This galactolipid, which constitutes approximately 1% by weight of the total lipids, was characterized by analysis of the intact lipid and its deacylation product. The fatty acids:glycerol:galactose molar proportions were shown to be close to 2:1:3. Evidence was obtained that suggests that trigalactosyl diglyceride is a higher homologue of mono- and di-galactosyl diglycerides and contains an additional d-galactopyranosyl moiety that is linked alpha-(1-->6) to the terminal galactose unit of digalactosyl diglyceride.  相似文献   

15.
Zhang Q  Zhao Y  Wang B  Feng R  Liu X  Cheng T 《Steroids》2002,67(5):347-351
Four new pregnane glycosides, stelmatocryptonoside A, B, C, and D (1-4), were isolated from the stems of Stelmatocrypton khasianum. On the basis of chemical and spectral data, the structures of 1-4 were established as 3beta, 16alpha-dihydroxy-pregn-5-en-20-one-16-O-beta-D-glucopyranosyl-(1-->2)-[beta-D-glucopyranosyl-(1-->6)]-beta-D-glucopyranosyl-(1-->6)-beta-D-glucopyranoside; 3beta, 20-dihydroxy-pregn-5-en-20-beta-D-glucopyranosyl-(1-->6)-beta-D-glucopyranosyl-(1-->6)-beta-D-glucopyranosyl-(1-->2)-beta-D-digitalopyranoside; 3beta, 16alpha-dihydroxy-pregn-5-en-20-one-16-O-beta-D-glucopyranosyl-(1-->2)-beta-D-glucopyranosyl-(1-->6)-beta-D-glucopyranoside; and 3beta, 16alpha-dihydroxy-pregn-5-en-20-one-16-O-beta-D-glucopyranosyl-(1-->6)-beta-D-glucopyranosyl-(1-->6)-beta-D-glucopyranoside. This is the first report of pregnane glycosides with sugar chains linked at C-16 of the aglycone.  相似文献   

16.
Two polygalactolipids, designated as components A and B, were isolated from spinach chloroplasts and were also obtained from glycolipid products synthesized with chloroplast enzymes using uridine diphosphate galactose as a galactose donor. These lipids were purified by column and thin layer chromatography. Chemical analysis of component A indicates that the lipid is trigalactosyl diglyceride, whereas component B behaves like tetragalactosyl diglyceride on a thin layer plate. The major fatty acid in trigalactosyl diglyceride was alpha-linolenic acid. Relative amount (molar ratio) of galactolipids in spinach chloroplasts was monogalactosyl diglyceride:digalactosyl diglyceride:trigalactosyl diglyceride:(tetragalactosyl diglyceride) = 60:30:5:1.  相似文献   

17.
K Yamashita  K Umetsu  T Suzuki  T Ohkura 《Biochemistry》1992,31(46):11647-11650
Two lectins were purified from tuberous roots of Trichosanthes japonica. The major lectin, which was named TJA-II, interacted with Fuc alpha 1-->2Gal beta/GalNAc beta 1-->groups, and the other one, which passed through a porcine stomach mucin-Sepharose 4B column, was purified by sequential chromatography on a human alpha 1-antitrypsin-Sepharose 4B column and named TJA-I. The molecular mass of TJA-I was determined to be 70 kDa by sodium dodecyl sulfate gel electrophoresis. TJA-I is a heterodimer of 38-kDa (36-kDa) and 32-kDa (30-kDa) subunits with disulfide linkage(s), and the difference between 38 and 36 kDa, and between 32 and 30 kDa, is due to secondary degradation of the carboxyl-terminal side. It was determined by equilibrium dialysis that TJA-I has four equal binding sites per molecule, and the association constant toward tritium-labeled Neu5Ac alpha 2-->6Gal beta 1-->4GlcNAc beta 1-->3Gal beta 1-->4GlcOT is Ka = 8.0 x 10(5) M-1. The precise carbohydrate binding specificity was studied using hemagglutinating inhibition assay and immobilized TJA-I. A series of oligosaccharides possessing a Neu5Ac alpha 2-->6Gal beta 1-->4GlcNAc or HSO3(-)-->6Gal beta 1-->4GlcNAc group showed tremendously stronger binding ability than oligosaccharides with a Gal beta 1-->4GlcNAc group, indicating that TJA-I basically recognizes an N-acetyllactosamine residue and that the binding strength increases on substitution of the beta-galactosyl residue at the C-6 position with a sialic acid or sulfate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
SAR exploration from an initial hit, (S)-N-(2-cyclohexenylethyl)-2-fluoro-6-(2-(1-hydroxy-3-phenylpropan-2-ylamino)-2-oxoethoxy)benzamide (1), identified using our proprietary automated ligand identification system (ALIS),1 has led to a novel series of selective hepatitis C virus (HCV) NS5B polymerase inhibitors with improved in vitro potency as exemplified by (S)-2-fluoro-6-(2-(1-hydroxy-3-phenylpropan-2-ylamino)-2-oxoethoxy)-N-isopentyl-N-methylbenzamidecarboxamide (41) (IC50 = 0.5 μM). The crystal structure of an analogue (44) was solved and provided rationalization of the SAR of this series, which binds in a distinct manner in the palm domain of NS5B, consistent with biochemical analysis using enzyme mutant variants. These data warrant further lead optimization efforts on this novel series of non-nucleoside inhibitors targeting the HCV polymerase.  相似文献   

19.
Cellobiose was tested as acceptor in the reaction catalyzed by alternansucrase (EC 2.4.1.140) from Leuconostoc mesenteroides NRRL B-23192. The oligosaccharides synthesized were compared to those obtained with dextransucrase from L. mesenteroides NRRL B-512F. With alternansucrase and dextransucrase, overall oligosaccharide synthesis yield reached 30 and 14%, respectively, showing that alternansucrase is more efficient than dextransucrase for cellobiose glucosylation. Interestingly, alternansucrase produced a series of oligosaccharides from cellobiose. Their structure was determined by mass spectrometry and [13C-1H] NMR spectroscopy. Two trisaccharides are first produced: alpha-D-glucopyranosyl-(1-->2)-[beta-D-glucopyranosyl-(1-->4)]-D-glucopyranose (compound A) and alpha-D-glucopyranosyl-(1-->6)-beta-D-glucopyranosyl-(1-->4)-D-glucopyranose (compound B). Then, compound B can in turn be glucosylated leading to the synthesis of a tetrasaccharide with an additional alpha-(1-->6) linkage at the non-reducing end (compound D). The presence of the alpha-(1-->3) linkage occurred only in the pentasaccharides (compounds C1 and C2) formed from tetrasaccharide D. Compounds B, C1, C2 and D were never described before. They were produced efficiently only by alternansucrase. Their presence emphasizes the difference existing in the acceptor reaction selectivity of the various glucansucrases.  相似文献   

20.
We show that the yields in saccharide synthesis by tranglycosylation with alpha-galactosidase from green coffee beans can be greatly enhanced when working in ice. Thus, methyl alpha-D-galactopyranosyl-(1-->3)-alpha-D-galactopyranoside (3a) produced by reaction of alpha-D-galactopyranosyl fluoride 1 with methyl alpha-D-galactopyranoside (2) is obtained with 51% yield in ice while only 29% is synthesized at 37 degrees C. This result, already previously found by others with proteases and by us with a beta-galactosidase appears to be a general property of hydrolases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号