首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Apolipoprotein A-I(Milano): current perspectives   总被引:4,自引:0,他引:4  
PURPOSE OF REVIEW: Strategies to increase HDL are among the major targets of clinical research in atherosclerosis prevention. The mutant apolipoprotein A-I(Milano) has been associated with a reduced incidence of coronary disease in carriers. Furthermore, recombinant apolipoprotein A-I(Milano) has displayed remarkable atheroprotective activities and the possibility of directly reducing the burden of atherosclerosis in experimental models. This review is aimed at providing an update on the experimental studies in which apolipoprotein A-I(Milano), produced as a recombinant protein, has displayed important effects in the treatment of vascular diseases. RECENT FINDINGS: In the past year, two reports have appeared, indicating that a single-dose administration of recombinant apolipoprotein A-I(Milano) dimers formulated into liposomes can reduce atheromas in models such as the apolipoprotein E-deficient mice and a rabbit model of carotid focal lesion, in which a direct 90 min infusion of the product reduced atheroma up to 30%. This finding was associated with an increase in HDL free cholesterol and the permanence of the recombinant product in the lesion for over 72 h. SUMMARY: Recombinant apolipoprotein A-I(Milano), formulated as synthetic HDL with phospholipids, appears to exert a direct removing effect on arterial cholesterol. This is well evident in experimental animals and, more recently in clinical findings, as indicated by a dramatic increase in HDL free cholesterol after the infusion of different doses of the agent. As the product appears to be well tolerated and non-immunogenic, ongoing phase II studies in patients are being awaited with interest to obtain a 'proof of principle' for 'HDL therapy'.  相似文献   

2.
PURPOSE OF REVIEW: The purpose of this review is to highlight recent advances in mass spectrometry and its use for identifying the lipid-bound conformation of apolipoprotein A-I. Given the current interest in understanding the structure of HDL apolipoprotein A-I, this approach seems ideal in assessing its dual role as mediator of lipid efflux and modulator of cellular inflammation. RECENT FINDINGS: A large number of different technical approaches have been employed over the past 25 years in attempts to solve the lipid-bound conformation of apolipoprotein A-I. Since the X-ray crystal structure of lipid-free Delta43 apolipoprotein A-I was reported in 1997, a 'double belt' model describing lipid-bound apolipoprotein A-I conformation for recombinant HDL has prevailed. Recent studies have focused on determining the exact helix-helix registry and salt-bridging partners found on a two apolipoprotein A-I molecule disc as well as on spherical HDL particles. Investigations are all aimed at defining the conformation of lipid-bound apolipoprotein A-I which may provide an explanation for how specific domains of apolipoprotein A-I interact with important HDL-modifying proteins that ultimately determine the apolipoprotein's fate in circulation. SUMMARY: Recent advances in mass spectrometric sequencing of cross-linked peptides provide an excellent tool to help define protein tertiary structure. This approach has provided refined structural information on apolipoprotein A-I folding which had eluded all previous approaches.  相似文献   

3.
Human apolipoprotein (apo) A-I has been the subject of intense investigation because of its well-documented anti-atherogenic properties. About 70% of the protein found in high density lipoprotein complexes is apo A-I, a molecule that contains a series of highly homologous amphipathic alpha-helices. A number of significant experimental observations have allowed increasing sophisticated structural models for both the lipid-bound and the lipid-free forms of the apo A-I molecule to be tested critically. It seems clear, for example, that interactions between amphipathic domains in apo A-I may be crucial to understanding the dynamic nature of the molecule and the pathways by which the lipid-free molecule binds to lipid, both in a discoidal and a spherical particle. The state of the art of these structural studies is discussed and placed in context with current models and concepts of the physiological role of apo A-I and high-density lipoprotein in atherosclerosis and lipid metabolism.  相似文献   

4.
The high-density lipoproteins (HDL) from canine, bovine, and chicken plasma have been shown to contain almost exclusively the apolipoprotein A-I, while human HDL contains a second major component, the apolipoprotein A-II. Chemical cross-linking demonstrated that dog and chicken HDL contain three apolipoprotein A-I molecules per particle, while bovine HDL contain approximately six apolipoprotein A-I molecules per particle. By this method, the amount of protein in human HDL2 (d = 1.063-1.12) was found to be approximately 120 000 g/mol, while for human HDL3 (d = 1.12-1.21) a value of approximately 90 000 g/mol was obtained, suggesting that the protein complement of HDL2 and HDL3 differ by only one apolipoprotein A-I chain per particle. Comparison of the apolipoprotein A-I from various animal species indicated that the canine and human apolipoprotein A-I proteins were the most similar by fluorescence, self-association properties, and immunoreactivity. Cross-linking of chicken and bovine apolipoprotein A-I yielded patterns distinctly different from that obtained with the human or canine counterpart. It is concluded that the quaternary structure of the various species of HDL is not directly correlated with the degree of self-association found for the protein constituents.  相似文献   

5.
Three mouse monoclonal antibodies (Mabs) to human apo A-I were produced using apolipoprotein A-I or HDL3 as immunogens. These monoclonal antibodies, 2G11, 4A12 and 4B11, were characterized for their reactivity with isolated apolipoprotein A-I and HDL in solution. The immunoblotting patterns of the HDL3 two-dimensional electrophoresis show that these three monoclonal antibodies reacted with all the polymorphic forms of apolipoprotein A-I. Cotitration experiments indicated that they correspond to three distinct epitopes. In order to locate these three antigenic determinants on the isolated apolipoprotein A-I, the reactivity of the three monoclonal antibodies has been studied on CNBr-cleaved apolipoprotein A-I. The monoclonal antibodies 2G11 and 4A12 addressed to the amino (CNBr 1) and carboxy (CNBr 4) terminal segments, respectively. In comparison with the monoclonal antibodies characterized by Weech et al. ((1985) Biochim. Biophys. Acta 835, 390-401), monoclonal antibody 4A12 is the only one described in the literature which is specific of the carboxy terminal segment of apolipoprotein A-I. Monoclonal antibody 4B11 does not react with any CNBr fragment, its binding is temperature dependent, it could be directed to a conformational epitope. Relative differences were demonstrated in the expression of the three epitopes in HDL subfractions isolated by density gradient ultracentrifugation. According to Curtiss and Edgington ((1985) J. Biol. Chem. 260, 2982-2993) our results indicate the existence of an immunochemical heterogeneity in the organization of apolipoprotein A-I at the surface of HDL particles as well as in the soluble form of apolipoprotein A-I.  相似文献   

6.
PURPOSE OF REVIEW: Apolipoprotein A-I is the major structural protein of HDL. Its physicochemical properties maintain a delicate balance between maintenance of stable lipoproteins and the ability to associate with and dissociate from the lipid transported. Here we review the progress made in the last 2-3 years on the structure-function relationships of apolipoprotein A-I, including elements related to the ATP binding cassette transporter A1. RECENT FINDINGS: Current evidence now supports the so-called 'belt' or 'hairpin' models for apolipoprotein A-I conformation when bound to discoidal lipoproteins. In-vivo expression of apolipoprotein A-I mutant proteins has shown that both the N- and C-terminal domains are important for lipid association as well as for the esterification reaction, particularly binding of cholesteryl esters and formation of mature alpha-migrating lipoproteins. This property is apparently quite distinct from the activation of the enzyme lecithin cholesterol acyl transferase, which requires interaction with the central helix 6. The interaction of apolipoprotein A-I with the ATP binding cassette transporter A1 has been shown to require the C-terminal domain, which is proposed to mediate the opening of the helix bundle formed by lipid-free or lipid-poor apolipoprotein A-I and allow its association with hydrophobic binding sites. SUMMARY: Significant progress has been made in the understanding of the molecular mechanisms controlling the folding of apolipoprotein A-I and its interaction with lipids and various other protein factors involved in HDL metabolism.  相似文献   

7.
Over the past few years, new experimental approaches have reinforced the awareness among investigators that the heterogeneity of HDL particles indicates significant differences in production and catabolism of HDL particles. Recent kinetic studies have suggested that small HDL, containing two apolipoprotein A-I molecules per particle, are converted in a unidirectional manner to medium HDL or large HDL, containing three or four apolipoprotein A-I molecules per particle, respectively. Conversion appears to occur in close physical proximity with cells and not while HDL particles circulate in plasma. The medium and large HDL are terminal particles in HDL metabolism with large HDL, and perhaps medium HDL, being catabolized primarily by the liver. These novel kinetic studies of HDL subfraction metabolism are compelling in-vivo data that are consistent with the proposed role of HDL in reverse cholesterol transport.  相似文献   

8.
Klon AE  Segrest JP  Harvey SC 《Biochemistry》2002,41(36):10895-10905
We have constructed a series of models for apolipoprotein A-I (apo A-I) bound to discoidal high-density lipoprotein (HDL) particles, based upon the molecular belt model [Segrest, J. P., et al. (1999) J. Biol. Chem. 274, 31755-31758] and helical hairpin models [Rogers, D. P., et al. (1998) Biochemistry 37, 11714-11725], and compared these with picket fence models [Phillips, J. C., et al. (1997) Biophys. J. 73, 2337-2346]. Molecular belt models for discoidal HDL particles with differing diameters are presented, illustrating that the belt model can explain the discrete changes in HDL particle size observed experimentally. Hairpin models are discussed for the binding of apo A-I to discoidal HDL particles with diameters identical to those for the molecular belt model. Two models are presented for the binding of three monomers of apo A-I to a 150 A diameter discoidal HDL particle. In one model, two monomers of apo A-I bind to the exterior of the HDL particle in an antiparallel belt, with a third monomer of apo A-I bound to the disk in a hairpin conformation. In the second model, all three monomers of apo A-I are bound to the discoidal HDL particle in a hairpin conformation. Previously published experimental data for each model are reviewed, with FRET favoring either the belt or hairpin models over the picket fence models for HDL particles with diameters of 105 A. Naturally occurring mutations appear to favor the belt model for the 105 A particles, while the 150 A HDL particles favor the presence of at least one hairpin.  相似文献   

9.
PURPOSE OF REVIEW: Apolipoprotein A-II, the second major HDL apolipoprotein, was often considered of minor importance relatively to apolipoprotein A-I and its role was controversial. This picture is now rapidly changing, due to novel polymorphisms and mutations, to the outcome of clinical trials, and to studies with transgenic mice. RECENT FINDINGS: The -265 T/C polymorphism supports a role for apolipoprotein A-II in postprandial very-low-density lipoprotein metabolism. Fibrates, which increase apolipoprotein A-II synthesis, significantly decrease the incidence of major coronary artery disease events, particularly in subjects with low HDL cholesterol, high plasma triglyceride, and high body weight. The comparison of transgenic mice overexpressing human or murine apolipoprotein A-II has highlighted major structural differences between the two proteins; they have opposite effects on HDL size, apolipoprotein A-I content, plasma concentration, and protection from oxidation. Human apolipoprotein A-II is more hydrophobic, displaces apolipoprotein A-I from HDL, accelerates apolipoprotein A-I catabolism, and its plasma concentration is decreased by fasting. Apolipoprotein A-II stimulates ATP binding cassette transporter 1-mediated cholesterol efflux. Human and murine apolipoprotein A-II differently affect glucose metabolism and insulin resistance. A novel beneficial role for apolipoprotein A-II in the pathogenesis of hepatitis C virus has been shown. SUMMARY: The hydrophobicity of human apolipoprotein A-II is a key regulatory factor of HDL metabolism. Due to the lower plasma apolipoprotein A-II concentration during fasting, measurements of apolipoprotein A-II in fed subjects are more relevant. More clinical studies are necessary to clarify the role of apolipoprotein A-II in well-characterized subsets of patients and in the insulin resistance syndrome.  相似文献   

10.
Models for the binding of the 200-residue carboxy-terminal domain of two mutants of apolipoprotein A-I (apo A-I), apo A-I(R173C)(Milano) and apo A-I(R151C)(Paris), to lipid in discoidal high-density lipoprotein (HDL) particles are presented. In both models, two monomers of the mutant apo A-I molecule bind to lipid in an antiparallel manner, with the long axes of their helical repeats running perpendicular to the normal of the lipid bilayer to form a single disulfide-linked homodimer. The overall structures of the models of these two mutants are very similar, differing only in helix-helix registration. Thus these models are consistent with experimental observations that reconstituted HDL particles containing apo A-I(Milano) and apo A-I(Paris) are very similar in diameter to reconstituted HDL particles containing wild-type apo A-I, and they support the belief that apo A-I binds to lipid in discoidal HDL particles via the belt conformation.  相似文献   

11.
Apolipoprotein A-I is a major secretory product of the human hepatoma cell line, Hep G2; approx. 70% of apolipoprotein A-I was separated from the medium as lipid-poor apolipoprotein A-I in the d greater than 1.21 g/ml fraction while 30% was associated with high-density lipoproteins (HDL) of d 1.063-1.21 g/ml. The lipid-poor apolipoprotein A-I contains 50% proapolipoprotein A-I which is similar to the isoform distribution in Hep G2 preformed HDL. We tested the ability of lipid-poor apolipoprotein A-I from Hep G2 to form complexes with dimyristoylphosphatidylcholine (DMPC) vesicles at DMPC/apolipoprotein A-I molar ratios of 100:1 and 300:1. Lipid-poor apolipoprotein A-I was recovered in complex form while at a 300:1 ratio, 68.8 +/- 6.3% was recovered. On electron microscopy, the former complexes were small discs 16.9 nm +/- 4.5 S.D. in diameter while the latter were larger discs 21.4 +/- 4.4 nm diameter. Non-denaturing gradient gel electrophoresis of complexes formed at a 100:1 ratio had a peak in the region corresponding to 9.64 +/- 0.08 nm; these particles possessed two apolipoprotein A-I molecules. At the higher ratio, 300:1, two distinct complexes were identifiable, one which banded in the 9.7 nm region and the other in the 16.9-18.7 nm region. The former particles contained two molecules of apolipoprotein A-I and the latter, three molecules. This study demonstrates that lipid-poor apolipoprotein A-I which is rich in more basic isoforms forms discrete lipoprotein complexes similar to those formed by mature apolipoprotein A-I. It is further suggested that, under the appropriate conditions, precursor or nascent HDL may be assembled extracellularly.  相似文献   

12.
A method has been developed for quantitative analysis of 'free' apolipoprotein A-I and apolipoprotein A-I associated with high-density lipoprotein (HDL) in serum. The method utilizes the difference between the rate of electrophoretic migration of apolipoprotein A-I associated with HDL (alpha) and 'free' apolipoprotein A-I (pre-beta) in agarose gel. Apolipoprotein A-I is subsequently quantitated by electrophoresis in a second dimensional gel containing anti-apolipoprotein A-I antibodies. Using this method all apolipoprotein A-I of normal fasting serum was found associated with HDL (n = 16). By contrast, 'free' apolipoprotein A-I accounted for up to 12% of the total in the serum of patients with isolated hypertriglyceridemia (n = 8) or mixed hyperlipoproteinemia (n = 8). Between 30 and 35% of 'free' apolipoprotein A-I was found in one patient afflicted with the apolipoprotein C-II deficiency syndrome. Also, 'free' apolipoprotein A-I could be detected in normal postabsorptive serum. 30 and 90 min following heparin-enhanced lipolysis 'free' apolipoprotein A-I accounted for 23 and 20%, respectively, of the total apolipoprotein A-I of serum. Apolipoprotein A-I associated with HDL remained unaltered. It appears, therefore, that 'free' apolipoprotein A-I is liberated from triglyceride-rich lipoproteins during lipolysis.  相似文献   

13.
Plasma high-density lipoproteins (HDL) can provide rat ovary steroidogenic tissue with cholesterol for steroid hormone production, but the mechanism of cholesterol transfer is unknown. To test the importance of apolipoprotein A-I (the major HDL apolipoprotein) in HDL-cell interactions, we examined the ability of canine-human HDL hybrids containing various proportions of canine apolipoprotein A-I and human apolipoprotein A-II to stimulate steroidogenesis by cultured rat ovary granulosa cells. We observed that as the apolipoprotein A-II to apolipoprotein A-II ratio decreased, the ability of the hybrid particles to stimulate granulosa cell progestin (progesterone and 20 alpha-dihydroprogesterone) production diminished. However, granulosa cell progestin (progesterone and 20 alpha-dihydroprogesterone) production diminished. However, apolipoprotein A-I was not necessary for cholesterol transfer, since hybrids with less than 5% of their total apolipoprotein mass as apolipoprotein A-I stimulated progestin production 30% as effectively as canine HDL, which contained essentially only apolipoprotein A-I. These data indicate that the delivery of cholesterol from HDL into the rat ovary cell for steroidogenesis is not strictly dependent on the presence of a specific HDL apolipoprotein.  相似文献   

14.
Amino acid precursors labelled with stable isotopes have been successfully used to explore the metabolism of the apolipoproteins of HDL. Some methodological and mathematical modelling problems remain, mainly related to amino acid recycling in a plasma protein such as apolipoprotein A-I with a long residence time (the reciprocal of the fractional catabolic rate) of 4-5 days. Apolipoprotein A-I, apolipoprotein E, and apolipoprotein A-IV in triglyceride-rich lipoproteins (containing chylomicrons, VLDL, and remnants) exhibit more complex kinetics. The small amounts of apolipoprotein A-I and of apolipoprotein A-IV in the triglyceride-rich lipoproteins have a residence time similar to that of the apolipoprotein A-I of HDL. In contrast, the apolipoprotein E in triglyceride-rich lipoproteins has been found to have an average residence time of 0.11 days. Diets low in saturated fat and cholesterol, which lower HDL levels, do so by decreasing the secretion of apolipoprotein A-I, with apolipoprotein A-II kinetics unaffected. Individuals with impaired glucose tolerance have a decreased residence time of apolipoprotein A-I but no change in secretion rate or in apolipoprotein A-II kinetics. This suggests a link between insulin resistance and the risk of atherosclerosis. In heterozygous familial hypercholesterolemia, both the fractional catabolic rate and the secretion rate of apolipoprotein A-I are increased, resulting in no change in the plasma level. Stable isotope studies have strengthened the evidence that triglyceride enrichment of HDL increases its catabolism Laboratory.  相似文献   

15.
Adipocyte plasma membranes purified from omental fat tissue biopsies of massively obese subjects possess specific binding sites for high-density lipoprotein (HDL3). This binding was independent of apolipoprotein E as HDL3 isolated from plasma of an apolipoprotein E-deficient individual was bound to a level comparable to that of normal HDL3. To examine the importance of apolipoprotein A-I, the major HDL3 apolipoprotein, in the specific binding of HDL3 to human adipocytes, HDL3 modified to contain varying proportions of apolipoproteins A-I and A-II was prepared by incubating normal HDL3 particles with different amounts of purified apolipoprotein A-II. As the apolipoproteins A-I-to-A-II ratio in HDL3 decreased, the binding of these particles to adipocyte plasma membranes was reduced. Compared to control HDL3, a 92 +/- 3.1% reduction (mean +/- S.E., n = 3) in maximum binding capacity was observed along with an increased binding affinity for HDL3 particles in which almost all of the apolipoprotein A-I had been replaced by A-II. The uptake of HDL cholesteryl ester by intact adipocytes as monitored by [3H]cholesteryl ether labeled HDL3, was also significantly reduced (about 35% reduction, P less than 0.005) by substituting apolipoprotein A-II for A-I in HDL3. These data suggest that HDL binding to human adipocyte membranes is mediated primarily by apolipoprotein A-I and that optimal delivery of cholesteryl ester from HDL to human adipocytes is also dependent on apolipoprotein A-I.  相似文献   

16.
17.
PURPOSE OF REVIEW: The interest for the human HDL system was recently revived by the identification of the ABCA1 as a critical component in the formation and maintenance of plasma HDL levels. The present review focuses on recent progress in our understanding of the basic mechanisms underlying HDL biogenesis pathways. RECENT FINDINGS: Several novel mechanisms governing ABCA1/apoA-I interactions have recently been identified: apolipoprotein A-I activates ABCA1 phosphorylation through the cAMP/protein kinase A-dependent pathway; the majority of ABCA1 exists as a tetramer in human living cell, supporting the concept that the homotetrameric ABCA1 complex constitutes the minimum functional unit for the formation of nascent HDL particles; apolipoprotein A-I has been shown to have a recycling retroendocytic pathway with uptake and resecretion of the lipidated nascent HDL particles by the cell, most likely through the ABCA1 transporter pathway; there is evidence that the speciation of nascent HDL into pre-beta and alpha-HDL is linked to specific cell lines, and occurs by both ABCA1-dependent and independent pathways. SUMMARY: The fundamental mechanisms underlying the biogenesis, speciation and maturation of HDL remain complex and not well understood. Understanding the mechanisms governing HDL genesis at the cellular level could provide novel insights into the human atheroprotective system in health and disease.  相似文献   

18.
In this study immunological procedures were used to detect and quantify high-density lipoprotein (HDL) particles of differing apolipoprotein A composition. In the plasma of eight healthy female subjects, 45% of the total apolipoprotein A-I existed in particles (called '(AI)HDL') devoid of apolipoprotein A-II. The remainder circulated in association with apolipoprotein A-II at a molar ratio of approximately 1:1. Nicotinic acid selectively raised the plasma apolipoprotein A-I/A-II ratio by increasing the proportion of (AI)HDL particles. Probucol produced the opposite effect, lowering the plasma concentration of these particles. The kinetic properties of apolipoprotein A-I in total HDL and in the (AI)HDL particle were the same despite the fact that apolipoprotein A-I equilibration between these two species was incomplete. Therefore, there appear to be at least two apolipoprotein A-containing particle populations in HDL which are immunochemically and metabolically distinct.  相似文献   

19.
The purpose of this review is to highlight recent advances toward the refinement of a three-dimensional structure for lipid-bound apolipoprotein A-I (apoA-I) on recombinant HDL. Recently, X-ray crystallography has yielded a new structure for full-length, lipid-free apoA-I. Although this approach has not yet been successful in solving the three-dimensional structure of lipid-bound apoA-I, analysis of the X-ray structures has been of immense help in the interpretation of structural data obtained from other methods that yield structural information. Recent studies emphasize the use of mass spectrometry to unambiguously identify cross-linked peptides or to quantify solvent accessibility using hydrogen-deuterium exchange. The combination of mass spectrometry, molecular modeling, molecular dynamic analysis, and small-angle X-ray diffraction has provided additional structural information on apoA-I folding that complements previous approaches.  相似文献   

20.
Gao X  Yuan S  Jayaraman S  Gursky O 《Biochemistry》2012,51(23):4633-4641
High-density lipoproteins (HDL, or "good cholesterol") are heterogeneous nanoparticles that remove excess cell cholesterol and protect against atherosclerosis. The cardioprotective action of HDL and its major protein, apolipoprotein A-I (apoA-I), is well-established, yet the function of the second major protein, apolipoprotein A-II (apoA-II), is less clear. In this review, we postulate an ensemble of apolipoprotein conformations on various HDL. This ensemble is based on the crystal structure of Δ(185-243)apoA-I determined by Mei and Atkinson combined with the "double-hairpin" conformation of apoA-II(dimer) proposed in the cross-linking studies by Silva's team, and is supported by the wide array of low-resolution structural, biophysical, and biochemical data obtained by many teams over decades. The proposed conformational ensemble helps integrate and improve several existing HDL models, including the "buckle-belt" conformation of apoA-I on the midsize disks and the "trefoil/tetrafoil" arrangement on spherical HDL. This ensemble prompts us to hypothesize that endogenous apoA-II (i) helps confer lipid surface curvature during conversion of nascent discoidal HDL(A-I) and HDL(A-II) containing either apoA-I or apoA-II to mature spherical HDL(A-I/A-II) containing both proteins, and (ii) hinders remodeling of HDL(A-I/A-II) by hindering the expansion of the apoA-I conformation. Also, we report that, although endogenous apoA-II circulates mainly on the midsize spherical HDL(A-I/A-II), exogenous apoA-II can bind to HDL of any size, thereby slightly increasing this size and stabilizing the HDL assembly. This suggests distinctly different effects of the endogenous and exogenous apoA-II on HDL. Taken together, the existing results and models prompt us to postulate a new structural and functional role of apoA-II on human HDL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号