首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
DNA topoisomerases have been shown to be important therapeutic targets in cancer chemotherapy. We found that KT6006 and KT6528, synthetic antitumor derivatives of indolocarbazole antibiotic K252a, were potent inducers of a cleavable complex with topoisomerase I. In DNA cleavage assay using purified calf thymus DNA topoisomerase I and supercoiled pBR322 DNA, KT6006 induced topoisomerase I mediated DNA cleavage in a dose-dependent manner at drug concentrations up to 50 microM, while DNA cleavage induced by KT6528 was saturated at 5 microM. The maximal amount of nicked DNA produced by KT6006 was more than 50% of substrate DNA, which was comparable to that of camptothecin. Heat treatment (65 degrees C) of the reaction mixture containing these compounds and topoisomerase I resulted in a substantial reduction in DNA cleavage, suggesting that topoisomerase I mediated DNA cleavage induced by KT6006 and KT6528 is through the mechanism of stabilizing the reversible enzyme-DNA "cleavable complex". Both KT6006 and KT6528 did not induce topoisomerase II mediated DNA cleavage in vitro. KT6006 and KT6528 were found to induce nearly identical topoisomerase I mediated DNA cleavage patterns, which was distinctly different from that with camptothecin. In contrast to the similarity between KT6006 and KT6528 in their structures and the nature of their cleavable complex with topoisomerase I, these drugs have different properties with respect to their interaction with DNA: KT6006 is a very weak intercalator whereas KT6528 is a strong intercalator with potentials comparable to that of adriamycin. These results indicate that KT6006 and KT6528 represent a new distinct class of mammalian DNA topoisomerase I active antitumor drugs.  相似文献   

2.
Thiopurines and topoisomerase II-targeted drugs (e.g., etoposide) are widely used anticancer drugs. However, topoisomerase II-targeted drugs can cause acute myeloid leukemia, with the risk of this secondary leukemia linked to a genetic defect in thiopurine catabolism. Chronic thiopurines result in thioguanine substitution in DNA. The effect of these substitutions on DNA topoisomerase II activity is not known. Our goal was to determine whether deoxythioguanosine substitution alters DNA cleavage stabilized by human topoisomerase II. We studied four variations of a 40 mer oligonucleotide with a topoisomerase II cleavage site, each with a single deoxythioguanosine in a different position relative to the cleavage site (-1 or +2 in the top and +2 or +4 in the bottom strand). Deoxythioguanosine substitution caused position-dependent quantitative effects on cleavage. With the -1 or +2 top and +2 or +4 bottom substitutions, mean topoisomerase II-induced cleavage was 0.6-, 2.0-, 1.1-, and 3.3-fold that with the wild-type substrate (P=0. 011, < 0.008, 0.51, and < 0.001, respectively). In the presence of 100 microM etoposide, cleavage was enhanced for wild-type and all thioguanosine-modified substrates relative to no etoposide, with the +4 bottom substitution showing greater etoposide-induced cleavage than the wild-type substrate (P=0.015). We conclude that thioguanine incorporation alters the DNA cleavage induced by topoisomerase II in the presence and absence of etoposide, providing new insights to the mechanism of thiopurine effect and on the leukemogenesis of thiopurines, with or without topoisomerase inhibitors.  相似文献   

3.
Various antitumor drugs stabilize DNA topoisomerase II-DNA transient covalent complexes. The complexes distribution along pBR322 DNA was shown previously to depend upon the nature of the drug (Tewey et al. (1984) Science 226, 466-468). The position in pBR322 of DNA cleavage by calf DNA topoisomerase II for 115 such sites stabilized by an ellipticine derivative and the relative frequency of cleavage at most of these sites were determined. The nucleotide sequence surrounding the 25 strongest sites was analyzed and the following ellipticine specific consensus sequence was deduced: 5'-ANCNT(A/G)T.NN(G/C)N(A/G)-3' where cleavage occurs at the indicated mark. A thymine is always present at the 3' end of at least one strand of the strong cleavage sites, and the dinucleotide AT or GT at the 3' end of the break plays a major role in the complex stabilisation. The predictive value of cleavage of the consensus was tested for two regions of SV40 DNA and cleavage was indeed detected at the majority of the sites matching the consensus. Some complexes stabilized by ellipticine are resistant to salt dissociation and this property seems to be correlated with the presence of symmetrical sequences in the cleavage site with a center of symmetry staggered relatively to the center of symmetry of cleavage.  相似文献   

4.
DNA topoisomerases are important clinical targets for antibacterial and anticancer therapy. At least one type IA DNA topoisomerase can be found in every bacterium, making it a logical target for antibacterial agents that can convert the enzyme into poison by trapping its covalent complex with DNA. However, it has not been possible previously to observe the consequence of having such a stabilized covalent complex of bacterial topoisomerase I in vivo. We isolated a mutant of recombinant Yersinia pestis topoisomerase I that forms a stabilized covalent complex with DNA by screening for the ability to induce the SOS response in Escherichia coli. Overexpression of this mutant topoisomerase I resulted in bacterial cell death. From sequence analysis and site-directed mutagenesis, it was determined that a single amino acid substitution in the TOPRIM domain changing a strictly conserved glycine residue to serine in either the Y. pestis or E. coli topoisomerase I can result in a mutant enzyme that has the SOS-inducing and cell-killing properties. Analysis of the purified mutant enzymes showed that they have no relaxation activity but retain the ability to cleave DNA and form a covalent complex. These results demonstrate that perturbation of the active site region of bacterial topoisomerase I can result in stabilization of the covalent intermediate, with the in vivo consequence of bacterial cell death. Small molecules that induce similar perturbation in the enzyme-DNA complex should be candidates as leads for novel antibacterial agents.  相似文献   

5.
A type II DNA topoisomerase has been partially purified from calf thymus mitochondria by a combination of differential centrifugation and column chromatography. The mitochondrial enzyme was inhibited by amsacrine (m-AMSA) slightly at 0.5 microM, significantly at 5.0 microM, and completely at 50 microM. A similar profile was obtained with teniposide (VM-26) although the latter drug was not quite as potent an inhibitor as the former. P4 unknotting assays of the purified nuclear type II topoisomerase in the presence of m-AMSA and VM-26 indicated that the mitochondrial and nuclear enzymes behaved similarly, although the mitochondrial enzyme appeared to be inhibited more strongly.  相似文献   

6.
The strand specificity of topoisomerase II mediated DNA cleavage was analyzed at the nucleotide level by characterizing the enzyme's interaction with a strong DNA recognition site. This site was isolated from the promoter region of the extrachromosomal rRNA genes of Tetrahymena thermophila and was recognized by type II topoisomerases from a variety of phylogenetically diverse eukaryotic organisms, including Drosophila, Tetrahymena, and calf thymus. When incubated with this site, topoisomerase II was found to introduce single-stranded breaks (i.e., nicks) in addition to double-stranded breaks in the nucleic acid backbone. Although the nucleotide position of cleavage on both the noncoding and coding strands of the rDNA remained unchanged, the relative ratios of single- and double-stranded DNA breaks could be varied by altering reaction conditions. Under all conditions which promoted topoisomerase II mediated DNA nicking, the enzyme displayed a 3-10-fold specificity for cleavage at the noncoding strand of its recognition site. To determine whether this specificity of topoisomerase II was due to a faster forward rate of cleavage of the noncoding strand or a slower rate of its religation, a DNA religation assay was performed. Results indicated that both the noncoding and coding strands were religated by the enzyme at approximately the same rate. Therefore, the DNA strand preference of topoisomerase II appears to be embodied in the enzyme's forward cleavage reaction.  相似文献   

7.
Cleavage of DNA by mammalian DNA topoisomerase II   总被引:46,自引:0,他引:46  
Using the P4 unknotting assay, DNA topoisomerase II has been purified from several mammalian cells. Similar to prokaryotic DNA gyrase, mammalian DNA topoisomerase II can cleave double-stranded DNA and be trapped as a covalent protein-DNA complex. This cleavage reaction requires protein denaturant treatment of the topoisomerase II-DNA complex and is reversible with respect to salt and temperature. The product after reversal of the cleavage reaction remains supertwisted, suggesting that the two ends of the putatively broken DNA are held tightly by the topoisomerase. Alternatively, the enzyme-DNA interaction is noncovalent, and the covalent linking of topoisomerase to DNA is induced by the protein denaturant. Detailed characterization of the cleavage products has revealed that topoisomerase II cuts DNA with a four-base stagger and is covalently linked to the protruding 5'-phosphoryl ends of each broken DNA strand. Calf thymus DNA topoisomerase II cuts SV40 DNA at multiple and specific sites. However, no sequence homology has been found among the cleavage sites as determined by direct nucleotide-sequencing studies.  相似文献   

8.
The DNA cleavage reaction of topoisomerase II is central to the catalytic activity of the enzyme and is the target for a number of important anticancer drugs. Unfortunately, efforts to characterize this fundamental reaction have been limited by the low levels of DNA breaks normally generated by the enzyme. Recently, however, a type II topoisomerase with an extraordinarily high intrinsic DNA cleavage activity was isolated from Chlorella virus PBCV-1. To further our understanding of this enzyme, the present study characterized the site-specific DNA cleavage reaction of PBCV-1 topoisomerase II. Results indicate that the viral enzyme cleaves DNA at a limited number of sites. The DNA cleavage site utilization of PBCV-1 topoisomerase II is remarkably similar to that of human topoisomerase IIalpha, but the viral enzyme cleaves these sites to a far greater extent. Finally, PBCV-1 topoisomerase II displays a modest sensitivity to anticancer drugs and DNA damage in a site-specific manner. These findings suggest that PBCV-1 topoisomerase II represents a unique model with which to dissect the DNA cleavage reaction of eukaryotic type II topoisomerases.  相似文献   

9.
Doxorubicin, a DNA-intercalator, is one of several anti-cancer drugs that have been found to stabilizes topoisomerase II cleavage complexes at drug-specific DNA sites. The distribution and DNA sequence environments of doxorubicin-stabilized sites were determined in the SV40 genome. The sites were found to be most concentrated in the major nuclear matrix-associated region and nearly absent in the vicinity of the replication origin including the enhancer sequences in the 21-bp and 72-bp tandem repeats. Among 97 doxorubicin-stabilized sites that were localized at the DNA sequence level, none coincided with any of the 90 topoisomerase II cleavage sites detected in the same regions in the absence of drug. Cleavage at the 90 enzyme-only sites was inhibited by doxorubicin and never stimulated even at low drug concentrations. All of the doxorubicin-stabilized sites had an A at the 3' terminus of at least one member of each pair of strand breaks that would constitute a topoisomerase II double-strand scission. Conversely, none of the enzyme-only sites had an A simultaneously at the corresponding positions on opposite strands. The 3'-A requirement for doxorubicin-stabilized cleavage is therefore incompatible with enzyme-only cleavage and explains the mutual exclusivity of the two classes of sites.  相似文献   

10.
Cytosine arabinoside (araC) is an important drug used for the treatment of human leukemias. In order to exert its cytotoxic effects, araC must be incorporated into chromosomal DNA. Although specific DNA lesions that involve base loss or modification stimulate nucleic acid cleavage mediated by type II topoisomerases, the effects of deoxyribose sugar ring modification on enzyme activity have not been examined. Therefore, the effects of incorporated araC residues on the DNA cleavage/religation equilibrium of human topoisomerase IIalpha and beta were characterized. AraC lesions were position-specific topoisomerase II poisons and stimulated DNA scission mediated by both human type II enzymes. However, the positional specificity of araC residues differed from that previously reported for other cleavage-enhancing DNA lesions. Finally, additive or synergistic increases in DNA cleavage were observed in the presence of araC lesions and etoposide. These findings broaden the range of DNA lesions known to alter topoisomerase II function and raise the possibility that this enzyme may mediate some of the cellular effects of araC.  相似文献   

11.
Specific DNA cleavage and binding by vaccinia virus DNA topoisomerase I   总被引:12,自引:0,他引:12  
Cleavage of a defined linear duplex DNA by vaccinia virus DNA topoisomerase I was found to occur nonrandomly and infrequently. Approximately 12 sites of strand scission were detected within the 5372 nucleotides of pUC19 DNA. These sites could be classified as having higher or lower affinity for topoisomerase based on the following criteria. Higher affinity sites were cleaved at low enzyme concentration, were less sensitive to competition, and were most refractory to religation promoted by salt, divalent cations, and elevated temperature. Cleavage at lower affinity sites required higher enzyme concentration and was more sensitive to competition and induced religation. Cleavage site selection correlated with a pentameric sequence motif (C/T)CCTT immediately preceding the site of strand scission. Noncovalent DNA binding by topoisomerase predominated over covalent adduct formation, as revealed by nitrocellulose filter-binding studies. The noncovalent binding affinity of vaccinia topoisomerase for particular subsegments of pUC19 DNA correlated with the strength and/or the number of DNA cleavage sites contained therein. Thus, cleavage site selection is likely to be dictated by specific noncovalent DNA-protein interactions. This was supported by the demonstration that a mutant vaccinia topoisomerase (containing a Tyr----Phe substitution at the active site) that was catalytically inert and did not form the covalent intermediate, nevertheless bound DNA with similar affinity and site selectivity as the wild-type enzyme. Noncovalent binding is therefore independent of competence in transesterification. It is construed that the vaccinia topoisomerase is considerably more stringent in its cleavage and binding specificity for duplex DNA than are the cellular type I enzymes.  相似文献   

12.
A DNA consensus sequence for topoisomerase II cleavage sites was derived previously based on a statistical analysis of the nucleotide sequences around 16 sites that can be efficiently cleaved by Drosophila topoisomerase II (Sander, M., and Hsieh, T. (1985) Nucleic Acids Res. 13, 1057-1072). A synthetic 21-mer DNA sequence containing this cleavage consensus sequence was cloned into a plasmid vector, and DNA topoisomerase II can cleave this sequence at the position predicted by the cleavage consensus sequence. DNase I footprint analysis showed that topoisomerase II can protect a region of approximately 25 nucleotides in both strands of the duplex DNA, with the cleavage site located near the center of the protected region. Similar correlation between the DNase I footprints and strong topoisomerase II cleavage sites has been observed in the intergenic region of the divergent HSP70 genes. This analysis therefore suggests that the strong DNA cleavage sites of Drosophila topoisomerase II likely correspond to specific DNA-binding sites of this enzyme. Furthermore, the extent of DNA contacts made by this enzyme suggests that eucaryotic topoisomerase II, in contrast to bacterial DNA bacterial DNA gyrase, cannot form a complex with extensive DNA wrapping around the enzyme. The absence of DNA wrapping is probably the mechanistic basis for the lack of DNA supercoiling action for eucaryotic topoisomerase II.  相似文献   

13.
We have previously shown that heparin is a potent inhibitor of a mammalian DNA topoisomerase I. We have now investigated the mechanism of its inhibition. This was carried out first by scrutinizing the structural features of heparin molecules responsible for the inhibition. Commercial heparin preparation was fractionated by antithrombin III-Sepharose into non-adsorbed, low-affinity and high-affinity fractions, of which only the high-affinity fraction of heparin is known to contain a specific oligosaccharide sequence responsible for the binding to antithrombin III. These fractions all exhibited essentially similar inhibitory activities. Furthermore, when chemically sulphated to an extent comparable with or higher than heparin, otherwise inactive glycosaminoglycans such as heparan sulphate, chondroitin 4-sulphate, dermatan sulphate and neutral polysaccharides such as dextran and amylose were converted into potent inhibitors. Sulphated dermatan sulphate, one of the model compounds, was further shown to bind competitively to the same sites on the enzyme as heparin. These observations strongly suggested that topoisomerase inhibition by heparin is attributable primarily, if not entirely, to the highly sulphated polyanionic nature of the molecules. In a second series of experiments we examined whether heparin inhibits only one or both of the topoisomerase reactions, i.e. nicking and re-joining. It was demonstrated that both reactions were inhibited by heparin, but the nicking reaction was more severely affected than was the re-joining reaction.  相似文献   

14.
Many intercalative antitumor drugs have been shown to induce reversible protein-linked DNA breaks in cultured mammalian cells. Using purified mammalian DNA topoisomerase II, we have demonstrated that the antitumor drugs ellipticine and 2-methyl-9-hydroxyellipticine (2-Me-9-OH-E+) can produce reversible protein-linked DNA breaks in vitro. 2-Me-9-OH-E+ which is more cytotoxic toward L1210 cells and more active against experimental tumors than ellipticine is also more effective in stimulating DNA cleavage in vitro. Similar to the effect of 4'-(9-acridinylamino)-methanesulfon-m-anisidide (m-AMSA) on topoisomerase II in vitro, the mechanism of DNA breakage induced by ellipticines is most likely due to the drug stabilization of a cleavable complex formed between topoisomerase II and DNA. Protein denaturant treatment of the cleavable complex results in DNA breakage and covalent linking of one topoisomerase II subunit to each 5'-end of the cleaved DNA. Cleavage sites on pBR322 DNA produced by ellipticine or 2-Me-9-OH-E+ treatment mapped at the same positions. However, many of these cleavage sites are distinctly different from those produced by the antitumor drug m-AMSA which also targets at topoisomerase II. Our results thus suggest that although mammalian DNA topoisomerase II may be a common target of these antitumor drugs, drug-DNA-topoisomerase interactions for different antitumor drugs may be different.  相似文献   

15.
Many intercalative antitumor drugs have been shown to cleave DNA indirectly through their specific effect on the stabilization of a cleavable complex formed between mammalian DNA topoisomerase II and DNA (Nelson, E.M., Tewey, K.M., and Liu, L.F. (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 1361-1365). Antitumor epipodophyllotoxins (VP-16 and VM-26) which do not intercalate DNA can similarly induce protein-linked DNA breaks in cultured mammalian cells. In vitro studies using purified mammalian DNA topoisomerase II show that epipodophyllotoxins interfere with the breakage-reunion reaction of mammalian DNA topoisomerase II by stabilizing a cleavable complex. Treatment of this stabilized cleavable complex with protein denaturants results in DNA strand breaks and the covalent linking of a topoisomerase subunit to the 5'-end of the broken DNA. Furthermore, epipodophyllotoxins also inhibit the strand-passing activity of mammalian DNA topoisomerase II, presumably as a result of drug-enzyme interaction. The agreement between the in vivo and in vitro studies suggests that mammalian DNA topoisomerase II is a drug target in vivo. The similarity between the effect of epipodophyllotoxins on mammalian DNA topoisomerase II and the effect of nalidixic acid on Escherichia coli DNA gyrase suggests that the cytotoxic action of epipodophyllotoxins may be analogous to the bactericidal action of nalidixic acid.  相似文献   

16.
A consensus sequence for cleavage by vertebrate DNA topoisomerase II.   总被引:30,自引:13,他引:17       下载免费PDF全文
Topoisomerase II, purified from chicken erythrocytes, was reacted with a large number of different DNA fragments and cleavages were catalogued in the presence and absence of drugs that stabilize the cleavage intermediate. Cleavages were sequenced to derive a consensus for topoisomerase II that predicts catalytic sites. The consensus is: (sequence; see text) where N is any base and cleavage occurs at the indicated mark between -1 and +1. The consensus accurately predicts topoisomerase II sites in vitro. This consensus is not closely related to the Drosophila consensus sequence, but the two enzymes show some similarities in site recognition. Topoisomerase II purified from human placenta cleaves DNA sites that are essentially identical to the chicken enzyme, suggesting that vertebrate type II enzymes share a common catalytic sequence. Both viral and tissue specific enhancers contain sites sharing strong homology to the consensus and endogenous topoisomerase II recognizes some of these sites in vivo.  相似文献   

17.
Pattern of recognition of DNA by mammalian DNA topoisomerase II   总被引:1,自引:0,他引:1  
The antitumor drug VP-16 stabilizes the topoisomerase II-DNA covalent complexes formed in an intermediate step of the isomerization reaction. The location of the sites of formation of these complexes and their relative strength were studied in vitro using pBR322. Sequences alignment of the regions containing the 24 detectable sites allows to identify GCGCGC-(N) alpha-TGAC with 9 less than or equal to alpha less than or equal to 25 as the DNA sequence recognized by topoisomerase II to form a cleavable complex. Changes in the last two nucleotides of the sequence determine weaker complexes.  相似文献   

18.
Although cobalt is an essential trace element for humans, the metal is genotoxic and mutagenic at higher concentrations. Treatment of cells with cobalt generates DNA strand breaks and covalent protein-DNA complexes. However, the basis for these effects is not well understood. Since the toxic events induced by cobalt resemble those of topoisomerase II poisons, the effect of the metal on human topoisomerase IIalpha was examined. The level of enzyme-mediated DNA scission increased 6-13-fold when cobalt(II) replaced magnesium(II) in cleavage reactions. Cobalt(II) stimulated cleavage at all DNA sites observed in the presence of magnesium(II), and the enzyme cut DNA at several "cobalt-specific" sites. The increased level of DNA cleavage in the presence of cobalt(II) was partially due to a decrease in the rate of enzyme-mediated religation. Topoisomerase IIalpha retained many of its catalytic properties in reactions that included cobalt(II), including sensitivity to the anticancer drug etoposide and the ability to relax and decatenate DNA. Finally, cobalt(II) stimulated topoisomerase IIalpha-mediated DNA cleavage in the presence of magnesium(II) in purified systems and in human MCF-7 cells. These findings demonstrate that cobalt(II) is a topoisomerase II poison in vitro and in cultured cells and suggest that at least some of the genotoxic effects of the metal are mediated through topoisomerase IIalpha.  相似文献   

19.
DNA adducts are mutagenic and clastogenic. Because of their harmful nature, lesions are recognized by many proteins involved in DNA repair. However, mounting evidence suggests that lesions also are recognized by proteins with no obvious role in repair processes. One such protein is topoisomerase II, an essential enzyme that removes knots and tangles from the DNA. Because topoisomerase II generates a protein-linked double-stranded DNA break during its catalytic cycle, it has the potential to fragment the genome. Previous studies indicate that abasic sites and other lesions that distort the double helix stimulate topoisomerase II-mediated DNA cleavage. Therefore, to further explore interactions between DNA lesions and the enzyme, the effects of exocyclic adducts on DNA cleavage mediated by human topoisomerase IIalpha were determined. When located within the four-base overhang of a topoisomerase II cleavage site (at the +2 or +3 position 3' relative to the scissile bond), 3,N(4)-ethenodeoxycytidine, 3,N(4)-etheno-2'-ribocytidine, 1,N(2)-ethenodeoxyguanosine, pyrimido[1,2-a]purin-10(3H)-one deoxyribose (M(1)dG), and 1,N(2)-propanodeoxyguanosine increased DNA scission approximately 5-17-fold. Enhanced cleavage did not result from an increased affinity of topoisomerase IIalpha for adducted DNA or a decreased rate of religation. Therefore, it is concluded that these exocyclic lesions act by accelerating the forward rate of enzyme-mediated DNA scission. Finally, treatment of cultured human cells with 2-chloroacetaldehyde, a reactive metabolite of vinyl chloride that generates etheno adducts, increased cellular levels of DNA cleavage by topoisomerase IIalpha. This finding suggests that type II topoisomerases interact with exocyclic DNA lesions in physiological systems.  相似文献   

20.
The cutting sites specificity of topoisomerase II from porcine spleen were determined by a modified Sanger's DNA sequencing method. The topoisomerase II prefers to cut DNA at the 3' side of A and leave 5' protruding end with two staggering bases. Through the free energy analysis for DNA duplex, we also found that the topoisomerase II seemed cut DNA preferably at energetically unstable regions. So it is concluded that the specific DNA cutting by porcine spleen topoisomerase II has two structural recognition factors: one is to localize around the energetically unstable region and another is to act at the 3' side of A base.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号