首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Kv2.1 gene encodes a highly conserved delayed rectifier potassium channel that is widely expressed in neurons of the central nervous system. In the bag cell neurons of Aplysia, Kv2.1 channels contribute to the repolarization of action potentials during a prolonged afterdischarge that triggers a series of reproductive behaviors. Partial inactivation of Aplysia Kv2.1 during repetitive firing produces frequency-dependent broadening of action potentials during the afterdischarge. We have now found that, as in mammalian neurons, Kv2.1 channels in bag cell neurons are localized to ring-like clusters in the plasma membrane of the soma and proximal dendrites. Either elevation of cyclic AMP levels or direct electrical stimulation of afterdischarge rapidly enhanced formation of these clusters on the somata of these neurons. In contrast, injection of a 13-amino acid peptide corresponding to a region in the C terminus that is required for clustering of Kv2.1 channels produced disassociation of the clusters, resulting in a more uniform distribution over the somata. Voltage clamp recordings demonstrated that peptide-induced dissociation of the Kv2.1 clusters is associated with an increase in the amplitude of delayed rectifier current and a shift of activation toward more negative potentials. In current clamp recording, injection of the unclustering peptide reduced the width of action potentials and reduced frequency-dependent broadening of action potentials. Our results suggest that rapid redistribution of Kv2.1 channels occurs during physiological changes in neuronal excitability.  相似文献   

2.
3.
Summary Three lines of evidence are presented indicating that axons of the Aplysia neuroendocrine bag cells extend into the head-ring ganglia of the CNS. When the abdominal ganglion was bisected longitudinally, separating the two bag cell clusters, an afterdischarge induced in one cluster generated an afterdischarge in the other via activity through the head-ring ganglia to which each half abdominal ganglion was attached by connective nerves. This suggests that some axons of bag cells in each cluster communicate through the head-ring ganglia. Retrograde labelling of bag cells occurred when rhodamine-onjugated latex microspheres were injected into the cerebral or either pleural ganglion, a direct demonstration that bag cell axons extend into these ganglia. Finally, cell LP1 in the left pleural ganglion was inhibited during a bag cell afterdischarge, an action mimicked by application of alpha-bag cell peptide (BCP). Since BCP can act only close to its site of release due to susceptibility to peptidase activity, it is likely that LP1 inhibition is dependent on the local release of BCP from bag cell neurites in the pleural ganglion. These results open new possibilities for how bag cell afterdischarges may be initiated and broaden the distribution of their effects.Abbreviations ASW artificial sea water; -BCP -bag cell peptide - ELH egg-laying-hormone - IR immunorective - PB phosphate buffer - PVC pleurovisceral connective  相似文献   

4.
During brain aging neuronal degradation occurs. In some neurons this may result in degeneration and cell death, still other neurons may survive and maintain their basic properties. The present study deals with survival of the egg-laying controlling neuroendocrine caudodorsal cells (CDCs) during reproductive senescence of the pond snail Lymnaea stagnalis. In senescent animals CDCs exhibited reduced branching patterns but still maintained their electrophysiological characteristics. In the isolated CNS the cells could still respond with an afterdischarge upon electrical stimulation. After an extended period of no egg laying of Lymnaea CDCs failed to exhibit an afterdischarge. In senescent CDCs that failed an afterdischarge, discharge activity could be restored by exposure to peptides released by CDCs from reproductive animals. Moreover, raising the intracellular cAMP level could induce discharge activity in CDCs with afterdischarge failure. Discharge activity also occurred during depolarization of senescent CDCs by exposure of the cells to saline with a high potassium concentration. These results indicate that in senescent CDCs the pacemaking mechanism of the afterdischarge is still intact but that the initial activation fails. Chemical (auto)transmission of CDCs in such animals was indeed reduced as indicated by the small amplitude of the depolarizing afterpotential (DAP) induced by electrical stimulation. Interestingly, CDCs of senescent animals contained a relative large amount of a particular small peptide. The artificially synthesized peptide appeared to suppress DAP induction in CDCs. Possibly, release of the peptide contributes to the prevention of afterdischarge induction in senescent CDCs. The results so far indicate that in senescent Lymnaea neurons electrophysiological functions persist even after long periods of inactivity and severe morphological reduction.  相似文献   

5.
Effects of ryanodine on calcium transients evoked by depolarization of external membrane under voltage clamp conditions or by a train of action potentials under current clamp conditions were studied on isolated dorsal root ganglion neurons of newborn rats. In 70% neurons tested, ryanodine, a blocker of Ca2+-induced Ca2+ release from endoplasmic reticulum, significantly decreased the amplitude of calcium transients. The data obtained indicate that the Ca2+-induced Ca2+ release plays an important role for calcium signal generation in a subpopulation of sensory neurons.Neirofiziologiya/Neurophysiology, Vol. 26, No. 6, pp. 420–422, November–December, 1994.  相似文献   

6.
Activation of protein kinase C (PKC) in Aplysia bag cell neurons causes the recruitment of voltage-dependent calcium channels. Using imaging techniques on isolated cells, we have now found that an activator of PKC, 12-O-tetradecanoyl-phorbol-13-acetate (TPA), promotes the rapid appearance of new sites of calcium influx associated with a change in the morphology of neurite endings. In untreated cells, calcium influx triggered by action potentials occurs along neurites and in the central region of growth cones, but does not usually occur at the leading edge of lamellipodia. TPA produces extension of the lamellipodium, and action potentials now trigger calcium influx at the distal edge of the newly extended endings. Cotreatment with TPA and a cyclic AMP analog promotes movement of secretory organelles toward the new sites of calcium influx. Our results suggest that these second messenger systems promote the rapid formation of morphological structures that contribute to the potentiation of peptide release.  相似文献   

7.
Like neurons and astrocytes, oligodendrocytes have a variety of neurotransmitter receptors and ion channels. However, except for facilitating the rapid conduction of action potentials by forming myelin and buffering extracellular K(+), little is known about the direct involvement of oligodendrocytes in neuronal activities. To investigate their physiological roles, we focused on oligodendrocytes in the alveus of the rat hippocampal CA1 region. These cells were found to respond to exogenously applied glutamate by depolarization through N-methyl-D-aspartate (NMDA) receptors and non-NMDA receptors. Electrical stimulation of the border between the alveus and stratum oriens evoked inward currents through several routes involving glutamate receptors and inward rectifier K(+) channels. Moreover, electrical stimulation resembling in vivo activity evoked long-lasting depolarization. To examine the modulatory effects of oligodendrocytes on neuronal activities, we performed dual, whole-cell recording on CA1 pyramidal neurons and oligodendrocytes. Direct depolarization of oligodendrocytes shortened the latencies of action potentials evoked by antidromic stimulation. These results indicate that oligodendrocytes increase the conduction velocity of action potentials by a mechanism additional to saltatory conduction, and that they have active roles in information processing in the brain.  相似文献   

8.
The electrotonically coupled network of about 100 neuroendocrine caudodorsal cells (CDC) of the freshwater snail Lymnaea stagnalis exhibits three states of excitability with distinct electrophysiological characteristics. Transitions between these states occur spontaneously or can be induced experimentally. The CDC produce an ovulation hormone, and the excitability states are clearly related to the egg-laying cycle of the snail. Two hours before egg laying, the cells enter an active state, which lasts one hour. This phase is characterized by a spontaneous firing pattern, which in preparations can be evoked as an afterdischarge, and during which the hormone is thought to be released. After this, the cells enter an inhibited state in which no other activity than directly stimulus-dependent ortho- and antidromic action potentials can be evoked. This phase lasts till about four hours after egg laying. The subsequent resting state is characterized by facilitation of the responses upon repetitive stimulation of the cells, leading to depolarization of the network and additional action potentials. In this phase, an afterdischarge can be evoked, which brings the cells into the active stage again.  相似文献   

9.
The peptidergic bag cell neurons of the opisthobranch mollusc Aplysia control egg laying and its correlated behavior by release of the neuroactive peptide, egg-laying hormone, during the extended electrical discharge termed afterdischarge. This paper examines the evidence for the involvement of cyclic AMP (cAMP) and protein phosphorylation in the mediation of this electrical afterdischarge. It is concluded that an important component in the mechanism of afterdischarge is the suppression of a potassium channel, mediated by cAMP-dependent protein kinase-induced protein phosphorylation. The exact identity of the potassium channel remains to be worked out.  相似文献   

10.
Intracellular correlates of complex sets of rhythmic cortical "spike and wave" potentials evoked in sensorimotor cortex and of self-sustained rhythmic "spike and wave" activity were examined during acute experiments on cats immobilized by myorelaxants. Rhythmic spike-wave activity was produced by stimulating the thalamic relay (ventroposterolateral) nucleus (VPLN) at the rate of 3 Hz; self-sustained afterdischarges were recorded following 8–14 Hz stimulation of the same nucleus. Components of the spike and wave afterdischarge mainly correspond to the paroxysmal depolarizing shifts of the membrane potential of cortical neurons in length. After cessation of self-sustained spike and wave activity, prolonged hyperpolarization accompanied by inhibition of spike discharges and subsequent reinstatement of background activity was observed in cortical neurons. It is postulated that the negative slow wave of induced spike and wave activity as well as slow negative potentials of direct cortical and primary response reflect IPSP in more deep-lying areas of the cell bodies, while the wave of self-sustained rhythmic activity is due to paroxysmal depolarizing shifts in the membrane potential of cortical neurons.I. S. Beritashvili Institute of Physiology, Academy of Sciences of the Georgian SSR, Tbilisi. Translated from Neirofiziologiya, Vol. 18, No. 3, pp. 298–306, May–June, 1986.  相似文献   

11.
We have examined the effects of peptides on the neuroendocrine bag cells, the R2 neuron and the left upper quadrant (LUQ) neurons of the abdominal ganglion of Aplysia californica. Peptides include those extracted from the atrial gland, a reproductive organ; those released by an afterdischarge of the bag cells; and 2 synthetic peptides: the amidated 9-amino acid C-terminal portion of atrial gland peptides A/B/ERH (B26-34), and the 8-amino acid alpha-bag cell peptide (alpha-BCP1-8). Peptides were applied by superfusion, arterial perfusion, pressure ejection from micropipettes, or by inducing a bag cell afterdischarge. Both alpha-BCP1-8 and B26-34 are able to produce a bag cell afterdischarge when applied to the abdominal ganglion but are not as effectively able to trigger the bag cells when applied selectively to the ganglia of the head ring. Peptides released by the bag cells inhibit R2 and LUQ neurons; whereas atrial gland extract mildly excites LUQ neurons and powerfully excites R2. The inhibitory effect of the LUQ cells and R2 following an afterdischarge of the bag cells is mimicked by alpha-BCP1-8. The excitatory effect of the atrial gland extract cannot be duplicated with B26-34. Rather, instead of having an excitatory effect on R2 and LUQ cells, B26-34 seems to mimick alpha-BCP1-8 and inhibit these neurons. Both peptides produce a membrane conductance increase in R2 and LUQ cells.  相似文献   

12.
The intent of this work was to elucidate the mechanism by which N-methyl-D-aspartate (NMDA) receptor agonists inhibit a second messenger system, namely, the stimulation of phosphoinositide (PI) hydrolysis activated by muscarinic cholinergic receptor agonists. NMDA inhibited cholinergic stimulation of PI hydrolysis in a dose- and time-dependent manner. NMDA exerts this effect indirectly through channel activation, because both MK-801 and N-[1-(2-thienyl)cyclohexyl]piperidine (TCP) prevented this action. Prevention of the NMDA effect by removal of sodium, but not calcium, from the incubation buffer suggested that depolarization may be the responsible mechanism. Depolarization alone proved sufficient to inhibit cholinergic activation of PI hydrolysis, because both veratridine and an elevated extracellular potassium level inhibited cholinergic stimulation of PI hydrolysis. The effect of NMDA appeared to require sodium flux through NMDA channels rather than through voltage-dependent sodium channels, because tetrodotoxin failed to inhibit the effect of NMDA. In correlative electrophysiologic experiments, NMDA profoundly inhibited evoked excitatory postsynaptic potentials and population action potentials of CA1 neurons, an effect almost certainly due to depolarization. The dose and time course of the electrophysiologic effects correlated well with the biochemical effects. Taken together, the data support the assertion that NMDA receptor activation inhibits PI hydrolysis by depolarization mediated by sodium flux through NMDA channels.  相似文献   

13.
The role of calcium and potassium conductances in electrogenesis of smooth muscle cells of the bovine basilar artery has been investigated using blocking agents of calcium and potassium channels both in the normal Krebs solution and in hyperpotassium solution under anelectrotonic repolarization of the cell membrane. It is shown that both voltage-operated calcium and potassium conductances participate in generation of gradual action potentials evoked by electrical stimulation. A higher contribution of potassium conductance into the total membrane conductance during depolarization is found to be the main factor interfered with development of full-size action potential.  相似文献   

14.
M Jia  P G Nelson 《Peptides》1987,8(3):565-568
Monosynaptic excitatory post-synaptic potentials (EPSPs) evoked in spinal cord (SC) neurons by stimulation of dorsal root ganglion (DRG) neurons in cell cultures were reduced by perfusion application of the opiate peptide, Met-enkephalin (2-4 microM). In about 2/3 of cases examined, EPSPs evoked by stimulation of spinal cord cells were also reduced by Met-enkephalin. The effects were antagonized by concomitant perfusion with naloxone (1-2 microM) and recovered when perfusion with Met-enkephalin was stopped. Statistical analysis of synaptic responses indicated that the reduction of EPSP amplitude was due, at least to a major extent, to a decrease in presynaptic transmitter release.  相似文献   

15.
We have examined the effects of peptides on the neuroendocrine bag cells, the R2 neuron and the left upper quadrant (LUQ) neurons of the abdominal ganglion of Aplysia californica. Peptides include those extracted from the atrial gland, a reproductive organ; those released by an afterdischarge of the bag cells; and 2 synthetic peptides: the amidated 9-amino acid C-terminal portion of atrial gland peptides A/B/ERH (B26–34), and the 8-amino acid alpha-bag cell peptide (α-BCP1–8). Peptides were applied by superfusion, arterial perfusion, pressure ejection from micropipettes, or by inducing a bag cell afterdischarge. Both α-BCP1–8 and B26–34 are able to produce a bag cell afterdischarge when applied to the abdominal ganglion but are not as effectively able to trigger the bag cells when applied selectively to the ganglia of the head ring. Peptides released by the bag cells inhibit R2 and LUQ neurons; whereas atrial gland extract mildly excites LUQ neurons and powerfully excites R2. The inhibitory effect of the LUQ cells and R2 following an afterdischarge of the bag cells in mimicked by α-BCP1–8. The excitatory effect of the atrial gland extract cannot be duplicated with B26–34. Rather, instead of having an excitatory effect on R2 and LUQ cells, B26–34 seems to mimick α-BCP1–8 and inhibit these neurons. Both peptides produce a membrane conductance increase in R2 and LUQ cells.  相似文献   

16.
By the frequency-dependent release of serotonin, Retzius neurons in the leech modulate diverse behavioral responses of the animal. However, little is known about how their firing pattern is produced. Here we have analyzed the effects of mechanical stimulation of the skin and intracellular stimulation of mechanosensory neurons on the electrical activity of Retzius neurons. We recorded the electrical activity of neurons in ganglia attached to their corresponding skin segment by segmental nerve roots, or in isolated ganglia. Mechanosensory stimulation of the skin induced excitatory synaptic potentials (EPSPs) and action potentials in both Retzius neurons in a ganglion. The frequency and duration of responses depended on the strength and duration of the skin stimulation. Retzius cells responded after T and P cells, but before N cells, and their sustained responses correlated with the activity of P cells. Trains of five impulses at 10 Hz in every individual T, P, or N cell in isolated ganglia produced EPSPs and action potentials in Retzius neurons. Responses to T cell stimulation appeared after the first impulse. In contrast, the responses to P or N cell stimulation appeared after two or more presynaptic impulses and facilitated afterward. The polysynaptic nature of all the synaptic inputs was shown by blocking them with a high calcium/magnesium external solution. The rise time distribution of EPSPs produced by the different mechanosensory neurons suggested that several interneurons participate in this pathway. Our results suggest that sensory stimulation provides a mechanism for regulating serotonin-mediated modulation in the leech.  相似文献   

17.
The bag cells in the abdominal ganglion of Aplysia californica control egg-laying behavior by releasing a polypeptide (ELH) during an afterdischarge of synchronous action potentials. We have used intracellular injection of Lucifer Yellow to study the morphology and interconnections of the bag cells. These neurosecretory cells are typically multipolar and their processes extend in all directions out from the bag cell clusters into the surrounding connective tissue, where they branch in a complex manner. In some of the dye injection experiments, dye transfer from the injected cell to neighboring cells was observed. Freeze fracture of the bag cell clusters and their surrounding connective tissue revealed numerous gap junctions on bag cell processes within the clusters as well as on more distal processes. We have also examined the morphology and coupling between bag cells in primary culture. As in the intact ganglion, bag cells in culture were found to be multipolar. All pairs of bag cells whose somata or processes had formed contacts in culture were electrically coupled. The strongest coupling was observed between pairs of cells whose somata appeared closely apposed. In these cases transfer of Lucifer Yellow between cells could also be observed. It is therefore likely that the synchrony of bag cell action potentials during a bag cell afterdischarge is a result of coupling between individual cells in the bag cell cluster.  相似文献   

18.
Epileptic seizure is a paroxysmal and self-limited phenomenon characterized by abnormal hypersynchrony of a large population of neurons. However, our current understanding of seizure dynamics is still limited. Here we propose a novel in vivo model of seizure-like afterdischarges using optogenetics, and report on investigation of directional network dynamics during seizure along the septo-temporal (ST) axis of hippocampus. Repetitive pulse photostimulation was applied to the rodent hippocampus, in which channelrhodopsin-2 (ChR2) was expressed, under simultaneous recording of local field potentials (LFPs). Seizure-like afterdischarges were successfully induced after the stimulation in both W-TChR2V4 transgenic (ChR2V-TG) rats and in wild type rats transfected with adeno-associated virus (AAV) vectors carrying ChR2. Pulse frequency at 10 and 20 Hz, and a 0.05 duty ratio were optimal for afterdischarge induction. Immunohistochemical c-Fos staining after a single induced afterdischarge confirmed neuronal activation of the entire hippocampus. LFPs were recorded during seizure-like afterdischarges with a multi-contact array electrode inserted along the ST axis of hippocampus. Granger causality analysis of the LFPs showed a bidirectional but asymmetric increase in signal flow along the ST direction. State space presentation of the causality and coherence revealed three discrete states of the seizure-like afterdischarge phenomenon: 1) resting state; 2) afterdischarge initiation with moderate coherence and dominant septal-to-temporal causality; and 3) afterdischarge termination with increased coherence and dominant temporal-to-septal causality. A novel in vivo model of seizure-like afterdischarge was developed using optogenetics, which was advantageous in its reproducibility and artifact-free electrophysiological observations. Our results provide additional evidence for the potential role of hippocampal septo-temporal interactions in seizure dynamics in vivo. Bidirectional networks work hierarchically along the ST hippocampus in the genesis and termination of epileptic seizures.  相似文献   

19.
A single slice of rat pons that contained the locus ceruleus (LC) or two slices of cerebellum were loaded with [3H]noradrenaline; superfusion with high (35 or 60 mM) potassium solutions evoked a release of 3H. In the presence of normorphine, the release of 3H evoked by 35 mM potassium and 60 mM potassium was reduced. In some of those experiments in which the release of 3H from the LC slice was measured, an intracellular microelectrode was used to measure membrane potential. This showed that solutions of increased potassium concentration depolarized the neurons to a potential at which inward calcium currents flowed (calcium action potentials occurred). Normorphine hyperpolarized the neurons; during this hyperpolarization the depolarization caused by 35 mM potassium did not reach the threshold for significant calcium entry. The results suggest that the inhibition by normorphine of transmitter release evoked by solutions of raised potassium concentration could result in part from the membrane hyperpolarization caused by the normorphine.  相似文献   

20.
We have chemically characterized a preparation of halitoxins, (1,3 alkyl-pyridinium salts) isolated from the marine sponge Callyspongia ridleyi. At concentrations of 50 and 5 μg/ml the halitoxin preparation caused irreversible membrane potential depolarization, decreased input resistance and inhibited evoked action potentials when applied to cultured dorsal root ganglion neurones. Under whole cell voltage clamp the halitoxins produced an increase in cation conductance that was attenuated by replacing sodium with N-methyl-d-glucamine. Fura-2 fluorescence ratiometric calcium imaging was used to directly measure calcium flux into neurones after exposure to halitoxins. Calcium influx, evoked by the halitoxins, persisted when the neurones were bathed in medium containing the voltage-activated calcium channel antagonists cadmium and nickel. Experiments on undifferentiated F-11 cells showed little or no calcium influx in response to depolarizing concentrations of potassium and indicated that halitoxins evoked massive calcium influx in the absence of voltage-activated calcium channels. The halitoxins also produced transient increases in intracellular calcium when F-11 cells were bathed in calcium-free medium suggesting that the toxins could release calcium from intracellular stores. The pore-forming action of the halitoxins was identified when the toxins were applied to artificial lipid bilayers composed of phosphatidylcholine and cholesterol. Halitoxins evoked channel-like activity in the lipid bilayers, with estimated unitary conductances of between 145pS and 2280pS, possibly indicating that distinct channels could be produced by the different components in the preparation of halitoxins. Received: 23 December 1999/Revised: 3 April 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号