首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Scapinin, also named phactr3, is an actin and protein phosphatase 1 (PP1) binding protein, which is expressed in the adult brain and some tumor cells. At present, the role(s) of scapinin in the brain and tumors are poorly understood. We show that the RPEL-repeat domain of scapinin, which is responsible for its direct interaction with actin, inhibits actin polymerization in vitro. Next, we established a Hela cell line, where scapinin expression was induced by tetracycline. In these cells, expression of scapinin stimulated cell spreading and motility. Scapinin was colocalized with actin at the edge of spreading cells. To explore the roles of the RPEL-repeat and PP1-binding domains, we expressed wild-type and mutant scapinins as fusion proteins with green fluorescence protein (GFP) in Cos7 cells. Expression of GFP-scapinin (wild type) also stimulated cell spreading, but mutation in the RPEL-repeat domain abolished both the actin binding and the cell spreading activity. PP1-binding deficient mutants strongly induced cell retraction. Long and branched cytoplasmic processes were developed during the cell retraction. These results suggest that scapinin enhances cell spreading and motility through direct interaction with actin and that PP1 plays a regulatory role in scapinin-induced morphological changes.  相似文献   

3.
The catalytic subunit of protein serine/threonine phosphatase 4 (PP4C) has greater than 65% amino acid identity to the catalytic subunit of protein phosphatase 2A (PP2AC). Despite this high homology, PP4 does not appear to associate with known PP2A regulatory subunits. As a first step toward characterization of PP4 holoenzymes and identification of putative PP4 regulatory subunits, PP4 was purified from bovine testis soluble extracts. PP4 existed in two complexes of approximately 270-300 and 400-450 kDa as determined by gel filtration chromatography. The smaller PP4 complex was purified by sequential phenyl-Sepharose, Source 15Q, DEAE2, and Superdex 200 gel filtration chromatographies. The final product contained two major proteins: the PP4 catalytic subunit plus a protein that migrated as a doublet of 120-125 kDa on SDS-polyacrylamide gel electrophoresis. The associated protein, termed PP4R1, and PP4C also bound to microcystin-Sepharose. Mass spectrometry analysis of the purified complex revealed two major peaks, at 35 (PP4C) and 105 kDa (PP4R1). Amino acid sequence information of several peptides derived from the 105 kDa protein was utilized to isolate a human cDNA clone. Analysis of the predicted amino acid sequence revealed 13 nonidentical repeats similar to repeats found in the A subunit of PP2A (PP2AA). The PP4R1 cDNA clone engineered with an N-terminal Myc tag was expressed in COS M6 cells and PP4C co-immunoprecipitated with Myc-tagged PP4R1. These data indicate that one form of PP4 is similar to the core complex of PP2A in that it consists of a catalytic subunit and a "PP2AA-like" structural subunit.  相似文献   

4.
A cAMP binding protein was detected in HL-60 cells using photoaffinity labeling with 8-azido [32P]cAMP. The binding protein was found in a 0.35 M NaCl nuclear protein extract from untreated HL-60 cells and from the HL-60 cells induced to mature with retinoic acid. While the quantity of the cAMP binding protein did not change following the induced differentiation, a second form of the subunit, altered in charge, was present at 3 and 5 days after retinoic acid treatment. The findings indicate that the regulatory subunit of the type II cAMP-dependent protein kinase could be involved in nuclear functions associated with human myeloid cell differentiation.  相似文献   

5.
To evaluate the involvement of protein phosphatases (PP) in differentiation of human myelogenous leukemia HL-60 cells, we made use of potent inhibitors of PP1 and PP2A, calyculin-A (CAL-A) and okadaic acid (OKA). CAL-A and OKA could augment all-trans retinoic acid (ATRA)-induced granulocytic differentiation, whereas the differentiation toward macrophage lineage by 12-o-tetradecanoylphorbol acetate (TPA) was unchanged in the presence of CAL-A. CAL-A augmented the phosphorylation of 18K, 23K and 30K proteins induced by ATRA. The PP1 and PP2A were identified and were present mainly in the cytosol of HL-60 cells. These results suggest that either PP1 or PP2A or both may be involved in regulating granulocytic differentiation of HL-60 cells.  相似文献   

6.
S Ohta  K Goto  H Arai  Y Kagawa 《FEBS letters》1987,226(1):171-175
Mitochondrial hinge protein is a subunit of ubiquinol-cytochrome-c reductase in the respiratory chain and 'hinges' cytochrome c with cytochrome c1. The protein is encoded in the nuclear genome, synthesized in the cytosol and then imported into the mitochondria. The cDNA of the human hinge protein has been cloned and its nucleotide sequence was determined. The deduced primary structure of the amino-terminal presequence consists of 13 amino acid residues, of which 4 amino acids are acidic and only one is basic. Since the presequences of most other precursors are rich in basic amino acids, this sequence is unique for targeting mitochondria. Expression of the gene was repressed in the presence of a phorbol ester in human promyelocyticleukemia cells (HL-60), and this repression was greater than that of the ADP/ATP translocator. These findings suggest that the hinge protein, the expression of which is well regulated, is imported into mitochondria via a specific pathway.  相似文献   

7.
最近研究表明,DJ-1在许多肿瘤中过表达,而且DJ-1的核表达与肿瘤的生物学行为有关. 本文主要研究二烯丙基二硫(DADS)对DJ-1核定位高表达人白血病HL-60细胞生物行为学的影响,阐明DJ-1在细胞核内的功能,为临床诊断及治疗过程提供一个潜在的治疗靶点. 通过基因转染技术建立核内高表达HL-60细胞株(DJ-1/HL-60),利用软琼脂集落形成实验、 MTT法、间接免疫荧光细胞化学实验、硝基蓝四氮唑( NBT)还原比色实验评估HL-60细胞的增殖与分化,DJ-1核定位过表达促进HL-60细胞的增殖并抑制其分化. Transwell迁移侵袭小室实验表明DJ-1核定位过表达可以促进HL-60的迁移和侵袭能力. Western blot结果表明DADS具有抑制HL-60细胞中核内DJ-1蛋白表达的能力. 说明DJ-1核定位高表达具有促进HL-60细胞增殖和迁移侵袭及抑制HL-60细胞分化的作用,DADS可以诱导DJ-1核定位高表达HL-60细胞分化及抑制迁移侵袭, DJ-1核定位高表达可减弱DADS抑制HL-60细胞增殖的作用.  相似文献   

8.
Purification of type 2A protein phosphatase (PP2A) from rabbit skeletal muscle resulted in the isolation of a trimeric phosphatase which is composed of a catalytic (PP2Ac), a structural (PR65alpha/Aalpha), and a regulatory (PR55alpha/Balpha) subunit, together with translation termination factor 1 (eRF1) and another protein of 55 kD (EMBO J., 15, 101-112). Yeast two-hybrid system analysis demonstrated that the eRF1 interacted with PP2Acalpha but not with PR65alpha/Aalpha or PR55alpha/Balpha. The N-terminal region of PP2Acalpha, comprising 50 amino acid residues, and the C-terminal part of eRF1, corresponding to an internal region between amino acids 338-381, were found to be necessary for eRF1--PP2Acalpha interaction in yeast. Immunoprecipitations using 12CA5 antibodies and extracts from COS1 cells transiently transfected with eRF1 tagged with 9-amino acid epitope from influenza hemagglutinin (HA) demonstrated the presence of eRF1--PP2Acalpha--PR65alpha/Aalpha complex in these cells. In addition, polysomes obtained from COS1 cells overexpressing HA--eRF1 displayed several-fold higher PP2A activity than control polysomes. No effect of either PP2Ac or dimeric and trimeric PP2A holoenzymes on the rate of translation termination was detected using an in vitro reconstituted translation termination assay. In summary, eRF1 appears to represent a novel PP2A-targeting subunit that brings this phosphatase in contact with putative ribosomal substrate(s). It remains to be established whether termination of translation requires dephosphorylation of participating protein factor(s).  相似文献   

9.
The cytoskeletal and/or nuclear matrix molecules responsible for morphological changes associated with apoptosis were identified using monoclonal antibodies (mAbs). We developed mAbs against Triton X-100-insoluble components of HL-60 cells pretreated with all-trans retinoic acid. In particular, one mAb recognized a 22-kDa protein that exhibited intriguing behavior by forming an aggregate and appearing as a speck during apoptosis induced by retinoic acid and other anti-tumor drugs. Cloning and sequencing of its cDNA revealed that this protein comprises 195 amino acids and that its C-terminal half has a caspase recruitment domain (CARD) motif, characteristic of numerous proteins involved in apoptotic signaling. We referred to this protein as ASC (apoptosis-associated speck-like protein containing a CARD). The ASC gene was mapped on chromosome 16p11.2-12. The antisense oligonucleotides of ASC were found to reduce the expression of ASC, and consequently, etoposide-mediated apoptosis of HL-60 cells was suppressed. Our results indicate that ASC is a novel member of the CARD-containing adaptor protein family.  相似文献   

10.
By a number of criteria, we have demonstrated that the translation termination factor eRF1 (eukaryotic release factor 1) associates with protein phosphatase 2A (PP2A). Trimeric PP2A1 was purified from rabbit skeletal muscle using an affinity purification step. In addition to the 36 kDa catalytic subunit (PP2Ac) and established regulatory subunits of 65 kDa (PR65) and 55 kDa (PR55), purified preparations contained two proteins with apparent Mrs of 54 and 55 kDa. Protein microsequencing revealed that the 55 kDa component is a novel protein, whereas the 54 kDa protein was identified as eRF1, a protein that functions in translational termination as a polypeptide chain release factor. Using the yeast two-hybrid system, human eRF1 was shown to interact specifically with PP2Ac, but not with the PR65 or PR55 subunits. By deletion analysis, the binding domains were found to be located within the 50 N-terminal amino acids of PP2Ac, and between amino acid residues 338 and 381 in the C-terminal part of human eRF1. This association also occurs in vivo, since PP2A can be co-immunoprecipitated with eRF1 from mammalian cells. We observed a significant increase in the amount of PP2A associated with the polysomes when eRF1 was transiently expressed in COS1 cells, and eRF1 immunoprecipitated from those fractions contained associated PP2A. Since we did not observe any dramatic effects of PP2A on the polypeptide chain release activity of eRF1 (or vice versa), we postulate that eRF1 also functions to recruit PP2A into polysomes, thus bringing the phosphatase into contact with putative targets among the components of the translational apparatus.  相似文献   

11.
The protein phosphatase 2A (PP2A) holoenzyme is structurally conserved among eukaryotes. This reflects a conservation of function in vivo because the human catalytic subunit (PP2Ac) functionally replaced the endogenous PP2Ac of Saccharomyces cerevisiae and bound the yeast regulatory PR65/A subunit (Tpd3p) forming a dimer. Yeast was employed as a novel system for mutagenesis and functional analysis of human PP2Ac, revealing that the invariant C-terminal leucine residue, a site of regulatory methylation, is apparently dispensable for protein function. However, truncated forms of human PP2Ac lacking larger portions of the C terminus exerted a dominant interfering effect, as did several mutant forms containing a substitution mutation. Computer modeling of PP2Ac structure revealed that interfering amino acid substitutions clustered to the active site, and consistently, the PP2Ac-L199P mutant protein was catalytically impaired despite binding Tpd3p. Thus, interfering forms of PP2Ac titrate regulatory subunits and/or substrates into non-productive complexes and will serve as useful tools for studying PP2A function in mammalian cells. The transgenic approach employed here, involving a simple screen for interfering mutants, may be applicable generally to the analysis of structure-function relationships within protein phosphatases and other conserved proteins and demonstrates further the utility of yeast for analyzing gene function.  相似文献   

12.
Both bryostatin 1 and 4 beta-phorbol 12,13-dibutyrate (PBt2) activate Ca2+- and phospholipid-dependent protein kinase (protein kinase C) at the plasma membrane in HL-60 cells (Kraft, A. S., Baker, V. V., and May, W. S. (1987) Oncogene 1, 91-100). However, whereas PBt2 causes HL-60 cells to cease dividing and differentiate, bryostatin 1 antagonizes this effect and allows cells to continue proliferating. To test whether these divergent effects could be due to the differential activation of protein kinase C at the nuclear level, the phosphorylation of nuclear envelope polypeptides was evaluated in cells treated with either bryostatin 1 or PBt2. Bryostatin 1, either alone or in combination with PBt2, but not PBt2 alone, mediates rapid and specific phosphorylation of several nuclear envelope polypeptides. A major target for bryostatin-induced phosphorylation is the major nuclear envelope polypeptide lamin B (Mr = 67,000, pI 6.0). In vitro studies combining purified protein kinase C and HL-60 cell nuclear envelopes demonstrate that bryostatin activates protein kinase C to phosphorylate lamin B, whereas PBt2 does so only weakly, suggesting selective activation of this enzyme toward this substrate. Comparative phosphopeptide and phosphoamino acid analyses demonstrate that bryostatin induces phosphorylation of identical serine sites on lamin B both in whole cells and in vitro. Treatment of whole cells with bryostatin, but not PBt2, leads to specific translocation of activated protein kinase C to the nuclear envelope. Since phosphorylation of lamin B is known to be involved in nuclear lamina depolymerization at the time of mitosis, it is possible that bryostatin-activated protein kinase C activity is involved in this process. Finally, specific activation of protein kinase C at the nuclear membrane could explain, at least in part, the divergent effects of bryostatin 1 and PBt2 on HL-60 cell growth.  相似文献   

13.
Ribosomal protein L5 is part of the 60 S ribosomal subunit and localizes in both the cytoplasm and the nucleus of eukaryotic cells, accumulating particularly in the nucleoli. L5 is known to bind specifically to 5 S rRNA and is involved in nucleocytoplasmic transport of this rRNA. Here, we report a detailed analysis of the domain organization of the human ribosomal protein L5. We show that a signal that mediates nuclear import and nucleolar localization maps to amino acids 21-37 within the 297-amino acid L5 protein. Furthermore, carboxyl-terminal residues at positions 255-297 serve as an additional nuclear/nucleolar targeting signal. Domains involved in 5 S rRNA binding are located at both the amino terminus and the carboxyl terminus of L5. Microinjection studies in somatic cells demonstrate that a nuclear export signal (NES) that maps to amino acids 101-111 resides in the central region of L5. This NES is characterized by a pronounced clustering of critical leucine residues, which creates a peptide motif not previously observed in other leucine-rich NESs. Finally, we present a refined model of the multidomain structure of human ribosomal protein L5.  相似文献   

14.
We previously reported that human promyelocytic leukemia HL-60 cells, when treated with various inducers in magnesium-deficient medium, became committed to differentiate but did not express the differentiation-related phenotypes (Okazaki et al., J. Cell. Physiol., 131:50-57, 1987). In the present study we demonstrated the existence of an intracellular differentiation-inducing activity (int-DIA) in differentiation-committed phenotype-nonexpressing HL-60 cells by using cybrid formation between untreated HL-60 cells and cytoplasts from HL-60 cells treated in magnesium-deficient medium with 100 nM 1 alpha,25-dihydroxyvitamin D3 (1,25(OH)2D3). Cell extracts from similarly treated HL-60 cells also showed int-DIA, which when added (10 mg total protein/ml) to culture of untreated HL-60 cells, could increase the percentages of nitroblue tetrazolium (NBT)- and nonspecific esterase (NSE)-positive cells from 1% to 53%, and from 0 to 32%, respectively. They also induced differentiation of human monoblastic leukemia U-937 cells and of human myeloblastic leukemia KG-1 cells but not of erythroleukemia K-562 cells. These results suggested that the int-DIA had a common effect on differentiation induction in several human myeloid cell lines and may be involved in inducing cells to proceed from a commitment to a phenotype-expression step during human myeloid cell differentiation.  相似文献   

15.
We have characterized the induction of mRNA and protein products of the human IFI 16 gene in response to IFN-γ, IFN-α, and IFN-β2 (IL-6). We demonstrate that the IFI 16 gene product is a novel nucleoprotein expressed in association with the differentiation of myeloid precursor cell lines. In Northern blots, IFI 16 mRNA was increased ~25-fold above barely detectable levels in unstimulated promyelocytic HL-60 cells, in response to IFN-γ. Other myeloid cell lines, U937 and K562, also demonstrated a marked IFN-γ-inducibility of IFI 16 mRNA. However, all three cell lines were far less responsive to IFN-α, and there was no response to IL-6. By comparison, a panel of T and B cell lines demonstrated high constitutive expression of IFI 16 mRNA that was not regulated by these cytokines. Culture of HL-60 cells in medium containing dimethylsulfoxide, retinoic acid, and 1,25 dihydroxyvitamin D3, agents that stimulate the differentiation of HL-60 along myeloid pathways, also caused the induction of IFI 16 mRNA. To characterize the protein product of IFI 16, a monoclonal antibody was raised against a recombinant bacterial protein comprising the amino terminal 159 amino acids of IFI 16 fused to glutathione S-transferase. The antibody, designated 1G7, was used in Western blotting to demonstrate the strong induction of a cluster of proteins of 85–95 kDa in the nuclear extracts of IFN-γ-treated HL-60. The nuclear localization of IFI 16 antigen was confirmed by immunohistochemical staining of HL-60 cells treated with IFN-γ, dimethylsulfoxide, and retinoic acid. IFI 16 was also detected in the nuclei of monocytes, neutrophils, and lymphocytes in normal peripheral blood. Database comparisons of the IFI 16 amino acid sequence revealed 51% identity with the recently cloned myeloid cell nuclear differentiation antigen (MNDA), and extensive similarity to protein products of the Gene 200 cluster of IFN-inducible genes, Ifi 202 and Ifi 204. The amino terminal domain of IFI 16 encodes a putative nuclear localization signal, 124PGAQKRKK, which is strongly conserved in MNDA and 204. Nuclear IFI 16 was able to bind double-stranded DNA in vitro and exhibited a similar elution profile from DNA-cellulose as previously observed for MNDA and 204. Therefore, IFI 16 and MNDA are members of a novel family of human DNA-binding proteins whose expression is associated with myeloid cell differentiation induced by cytokines and chemical agents.  相似文献   

16.
It is clear that mTORC1 (mammalian target of rapamycin complex 1) is regulated by the presence of ambient amino acid nutrients. However, the mechanism by which amino acids regulate mTORC1 is still open to question, despite extensive efforts. Our recent work has revealed that PR61?, a B56 family regulatory subunit of PP2A (protein phosphatase 2A), associates with and regulates the activity of MAP4K3 (mitogen-activated protein kinase kinase kinase kinase 3), a protein kinase regulated by amino acid sufficiency that acts upstream of mTORC1. In searching for a physiological process regulated by amino acids, we have demonstrated recently that arginine plays a role in the activation of LPS (lipopolysaccharide)-induced MEK [MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) kinase]/ERK signalling in macrophages. PP2A similarly associates with the upstream regulator of MEK in this signalling pathway, TPL-2 (tumour progression locus-2), in response to arginine availability. Thus PP2A is a negative regulator of both MAP4K3 and TPL-2 in both mTORC1 and MEK/ERK signalling pathways.  相似文献   

17.
To investigate the intracellular molecular events during leukemic cell proliferation, we have examined the method of ghost-mediated microinjection of macromolecules into leukemic cell line cells (HL-60). Samples were packed into red cell ghosts. Microinjection was performed by the fusion of ghosts and HL-60 cells using the hemagglutinating virus of Japan (HVJ). Fusion rate was about 80–90%, when determined by the injection of FITC-labeled globulins (IgG) or diphtheria toxin fragment A into HL-60 cells. When the nuclear protein extract from normal granulocytes was injected into HL-60 cells, their growth was significantly suppressed. The injection of the nuclear protein extract from HL-60 itself into HL-60 cells did not inhibit their growth. This finding suggests that leukemic cells may be deficient in intracellular regulatory factors which have suppressive activity on cell growth.  相似文献   

18.
Polyomavirus middle T antigen (MT) is the major transforming protein of the virus. It functions through interactions with a number of cellular proteins involved in cell proliferation. MT forms complexes with protein phosphatase 2A (PP2A), pp60c-src, phosphatidylinositol 3-kinase, and Shc. We introduced both deletion and point mutations into three regions of MT and examined their ability to associate with PP2A and pp60c-src. The first 25 amino acid residues of MT are required for association with PP2A and pp60c-src. Amino acids 105 to 111, comprising the sequence Cys-Arg-Met-Pro-Leu-Thr-Cys, is also required for complex formation between MT and PP2A. However, the sequence Asp-Lys-Gly-Gly (amino acids 44 to 47), also found in the B subunit of PP2A, is dispensable for complex formation between MT and PP2A. We find a strict correlation between the ability of MT to associate with PP2A and the ability of MT to associate with pp60c-src. One mutant, L5E, associates with a phosphatase other than PP2A, pp60c-src, and phosphatidylinositol 3-kinase in a manner similar to that of wild-type MT yet is reduced in its transforming ability on NIH 3T3 cells.  相似文献   

19.
NIPP1 is a regulatory subunit of a species of protein phosphatase-1 (PP1) that co-localizes with splicing factors in nuclear speckles. We report that the N-terminal third of NIPP1 largely consists of a Forkhead-associated (FHA) protein interaction domain, a known phosphopeptide interaction module. A yeast two-hybrid screening revealed an interaction between this domain and a human homolog (CDC5L) of the fission yeast protein cdc5, which is required for G(2)/M progression and pre-mRNA splicing. CDC5L and NIPP1 co-localized in nuclear speckles in COS-1 cells. Furthermore, an interaction between CDC5L, NIPP1, and PP1 in rat liver nuclear extracts could be demonstrated by co-immunoprecipitation and/or co-purification experiments. The binding of the FHA domain of NIPP1 to CDC5L was dependent on the phosphorylation of CDC5L, e.g. by cyclin E-Cdk2. When expressed in COS-1 or HeLa cells, the FHA domain of NIPP1 did not affect the number of cells in the G(2)/M transition. However, the FHA domain blocked beta-globin pre-mRNA splicing in nuclear extracts. A mutation in the FHA domain that abolished its interaction with CDC5L also canceled its anti-splicing effects. We suggest that NIPP1 either targets CDC5L or an associated protein for dephosphorylation by PP1 or serves as an anchor for both PP1 and CDC5L.  相似文献   

20.
Protein Ser/Thr phosphatase-1 (PP1) is a ubiquitous eukaryotic enzyme that controls numerous cellular processes by the dephosphorylation of key regulatory proteins. PP1 is expressed in various cellular compartments but is most abundant in the nucleus. We have examined the determinants for the nuclear localization of enhanced green fluorescent protein-tagged PP1 in COS1 cells. Our studies show that PP1gamma(1) does not contain a functional nuclear localization signal and that its nuclear accumulation does not require Sds22, which has previously been implicated in the nuclear accumulation of PP1 in yeast (Peggie, M. W., MacKelvie, S. H., Bloecher, A., Knatko, E. V., Tatchell, K., and Stark, M. J. R. (2002) J. Cell Sci. 115, 195-206). However, the nuclear targeting of PP1 isoforms was alleviated by the mutation of their binding sites for proteins that interact via an RVXF motif. Moreover, one of the mutants with a cytoplasmic accumulation and decreased affinity for RVXF motifs (PP1gamma(1)-F257A) could be re-targeted to the nucleus by the overexpression of nuclear interactors (NIPP1 (nuclear inhibitor of PP1) and PNUTS (PP1 nuclear targeting subunit)) with a functional RVXF motif. Also, the addition of a synthetic RVXF-containing peptide to permeabilized cells resulted in the loss of nuclear enhanced green fluorescent protein-PP1gamma(1). Finally, NIPP1(-/-) mouse embryos showed a nuclear hyperphosphorylation on threonine, consistent with a role for NIPP1 in the nuclear targeting and/or retention of PP1. Our data suggest that both the nuclear translocation and the nuclear retention of PP1 depend on its binding to interactors with an RVXF motif.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号