首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We reported previously that, when exposed to high osmotic pressure, Lactobacillus acidophilus IFO 3532 cells accumulated N,N,N-trimethylglycine (glycine betaine), which serves as a compatible intracellular solute. When grown in medium with high osmotic pressure, these cells also accumulated one amino acid, proline. The uptake of [3H]proline by resting, glucose-energized cells was stimulated by increasing the osmotic pressure of the assay medium with 0.5 to 1.0 M KCl, 1.0 M NaCl, or 0.5 M sucrose. The accumulated [3H]proline was not metabolized further. In contrast, there was no osmotic stimulation of [3H]leucine uptake. The uptake of proline was activated rather than induced by exposure of the cells to high osmotic pressure. Only one proline transport system could be discerned from kinetics plots. The affinity of the carrier for proline remained constant over a range of osmotic pressures from 650 to 1,910 mosM (Kt, 7.8 to 15.5 mM). The Vmax, however, increased from 15 nmol/min/mg of dry weight in 0.5 M sucrose to 27 and 40 nmol/min/mg of dry weight in 0.5 M KCl and in 1.0 M KCl or NaCl, respectively. The efflux of proline from preloaded cells occurred rapidly when the osmotic pressure of the suspending buffer was lowered.  相似文献   

2.
Unlike most Lactobacillus acidophilus strains, a specific strain, L. acidophilus IFO 3532, was found to grow in rich medium containing 1 M sodium acetate, KCl, or NaCl. This strain could also grow with up to 1.8 M NaCl or 3 M nonelectrolytes (fructose, xylose, or sorbitol) added. Thus, this strain was tolerant to osmotic pressures up to 2.8 osM. A search for an intracellular solute which conferred osmoprotection led to the identification of glycine betaine (betaine). Betaine was accumulated to high concentrations in cells growing in MRS medium supplemented with 1 M KCl or NaCl. Uptake of [14C]betaine by L. acidophilus 3532 cells suspended in buffer was stimulated by increasing the medium osmotic pressure with 1 M KCl or NaCl. The accumulated betaine was not metabolized further; transport was relatively specific for betaine and was dependent on an energy source. Other lactobacilli, more osmosensitive than strain 3532, including L. acidophilus strain E4356, L. bulgaricus 8144, and L. delbrueckii 9649, showed lower betaine transport rates in response to an osmotic challenge than L. acidophilus 3532. Experiments with chloramphenicol-treated L. acidophilus 3532 cells indicated that the transport system was not induced but appeared to be activated by an increase in osmotic pressure.  相似文献   

3.
Uptake of [14C]choline upon hyperosmotic stress of exponential-phase Staphylococcus aureus cultures in a complex medium occurred after a delay of 2.5 to 3.5 h. This uptake could be prevented by chloramphenicol, suggesting that it occurred via an inducible transport system. Radioactivity from [14C]choline was accumulated as [14C]glycine betaine. However, neither choline nor glycine betaine could act as the major carbon and energy source for the organism, suggesting that choline was not metabolized beyond glycine betaine. Assay of choline transport activity in cells grown under different conditions in defined media revealed that osmotic stress was mainly responsible for the induction, but choline gave a further increase in induction. The system was not induced in anaerobically grown cells. Choline transport activity was repressed by glycine betaine and proline betaine, suggesting that these compounds are corepressors. Choline transport activity was not induced in cells osmotically stressed by 1 M potassium phosphate or 0.5 M sodium phosphate, but was induced in cells grown in low-phosphate medium in the absence of osmotic stress. This suggests that there is a connection between the phosphate and osmotic stress regulons. Choline transport was energy and Na+ dependent and had a Km of 46 microM and a maximum rate of transport (Vmax) of 54 nmol/min/mg (dry weight). The results of competition studies suggested that N-methyl and an alcohol group or aldehyde groups at the ends of the molecule were important in its recognition by the system. Glycine betaine was not a highly effective competitor, suggesting that its transport system and the choline transport system were distinct from each other. Choline transport was highly susceptible to a variety of inhibitors, which may be related to the greater dependence on respiratory metabolism of cells grown in the presence of high NaC1 concentrations.  相似文献   

4.
L-Proline enhanced the growth of Staphylococcus aureus in high-osmotic-strength medium, i.e., it acted as an osmoprotectant. Study of the kinetics of L-[14C]proline uptake by S. aureus NCTC 8325 revealed high-affinity (Km = 1.7 microM; maximum rate of transport [Vmax] = 1.1 nmol/min/mg [dry weight]) and low-affinity (Km = 132 microM; Vmax = 22 nmol/min/mg [dry weight]) transport systems. Both systems were present in a proline prototrophic variant grown in the absence of proline, although the Vmax of the high-affinity system was three to five times higher than that of the high-affinity system in strain 8325. Both systems were dependent on Na+ for activity, and the high-affinity system was stimulated by lower concentrations of Na+ more than the low-affinity system. The proline transport activity of the low-affinity system was stimulated by increased osmotic strength. The high-affinity system was highly specific for L-proline, whereas the low-affinity system showed a broader substrate specificity. Glycine betaine did not compete with proline for uptake through either system. Inhibitor studies confirmed that proline uptake occurred via Na(+)-dependent systems and suggested the involvement of the proton motive force in creating an Na+ gradient. Hyperosmotic stress (upshock) of growing cultures led to a rapid and large uptake of L-[14C]proline that was not dependent on new protein synthesis. It is suggested that the low-affinity system is involved in adjusting to increased environmental osmolarity and that the high-affinity system may be involved in scavenging low concentrations of proline.  相似文献   

5.
Abstract. Regulation of the concentration of osmotic solutes was studied in Chlorella emersonii grown at external osmotic pressures (II) ranging between 0.08 and 1.64MPa. NaCl was used as osmoticum. The total solute content of the cells was manipulated by applying 2 mol m−3 3- O -methylglucose (MG), which was not metabolized, and accumulated at concentrations ranging between 60 and 230 mol m−3 within 4 h after its addition to the medium. Methylglucose uptake resulted in decreases in concentrations of proline and sucrose, the two solutes mainly responsible for osmotic adaptation of C. emersonii to high external II. The responses were consistent with the hypothesis that proline and sucrose concentrations are controlled by a system of osmotic regulation, with turgor and/or volume as a primary signal. Short-term experiments showed that even very small increases in turgor and/or volume, due to accumulation of methylglucose, resulted in large decreases in proline and sucrose. Over the first 30-60 min the total solute concentration in the cells increased by at most 15 osmol m−3 which would represent an increase in turgor pressure of at most 0.04 M Pa. Yet, the decreases in proline and sucrose were as fast as those in cells exposed to a sudden decrease of 0.25 MPa in external II, when the turgor pressure would have increased by at least 0.15 MPa. High concentrations of methylglucose in cells grown at high II did not affect the rapid synthesis of proline and sucrose which started when the cells were transferred to yet higher II. Thus, methylglucose had no direct effects on proline and sucrose metabolism, and it has been assumed that it acted solely as an inert osmotic solute within the cell.  相似文献   

6.
A method is described for measuring the cell volume of the unicellular green alga Chlorococcum submarinum, which depends on measurements of bromide concentration before and after disruption of the cells by ammonium hydroxide. Simultaneous equations are derived, which along with direct determination of cell water weight, allow the calculation of the intracellular volume in three different ways. The volumes calculated are in agreement indicating the validity of the method. The cell volumes and internal concentrations of glycerol, proline, potassium and sodium were determined for algae adapted to three salinities, 0.1, 0.5 and 1.0 M NaCl. The results showed that glycerol was the major internal solute and that the total measured solutes balanced the external osmotic pressure at all three salinities.Abbreviations DMSO dimethyl sulphoxide - Hepes N-[2-hydroxyethyl]piperazine-N-2-ethane sulfonic acid - TCA trichloroacetic acid - Tris tris[hydroxymethyl]aminoethane  相似文献   

7.
L-Proline, which is accumulated by Escherichia coli during growth in media of high osmolality, also induces the synthesis of the enzyme degrading it to glutamate. To determine if proline catabolism is inhibited during osmotic stress, proline utilization and the formation of proline dehydrogenase were examined in varying concentrations of NaCl and sucrose. Although the specific growth rate of E. coli with proline as the sole nitrogen source diminished as the solute osmolality increased, a comparable reduction in growth rate occurred with ammonium as the primary nitrogen source. Proline catabolism, as measured in whole cells by the conversion of [14C]proline to [14C]glutamate, was only slightly inhibited by solute osmolalities up to 1.0 osmol/kg; more than 50% of the initial activity was still found at 2.0 osmol/kg. By contrast, the specific activity of proline dehydrogenase in bacteria grown in the presence of added solutes decreased to less than 20% of the control level. This reduction was related to a lower rate of synthesis, but was independent of genes currently known to be involved in osmoregulation or proline metabolism. The specific activities of tryptophanase, beta-galactosidase, and histidinol dehydrogenase were also reduced under similar growth conditions. These results indicate that while proline catabolism is not directly inhibited by high solute concentrations, prolonged exposure to osmotic stress leads to its reduction as part of a more general metabolic response.  相似文献   

8.
9.
Among the Rhizobiaceae, Bradyrhizobium japonicum strain USDA110 appears to be extremely salt sensitive, and the presence of glycine betaine cannot restore its growth in medium with an increased osmolarity (E. Boncompagni, M. Osteras, M. C. Poggi, and D. Le Rudulier, Appl. Environ. Microbiol. 65:2072-2077, 1999). In order to improve the salt tolerance of B. japonicum, cells were transformed with the betS gene of Sinorhizobium meliloti. This gene encodes a major glycine betaine/proline betaine transporter from the betaine choline carnitine transporter family and is required for early osmotic adjustment. Whereas betaine transport was absent in the USDA110 strain, such transformation induced glycine betaine and proline betaine uptake in an osmotically dependent manner. Salt-treated transformed cells accumulated large amounts of glycine betaine, which was not catabolized. However, the accumulation was reversed through rapid efflux during osmotic downshock. An increased tolerance of transformant cells to a moderate NaCl concentration (80 mM) was also observed in the presence of glycine betaine or proline betaine, whereas the growth of the wild-type strain was totally abolished at 80 mM NaCl. Surprisingly, the deleterious effect due to a higher salt concentration (100 mM) could not be overcome by glycine betaine, despite a significant accumulation of this compound. Cell viability was not significantly affected in the presence of 100 mM NaCl, whereas 75% cell death occurred at 150 mM NaCl. The absence of a potential gene encoding Na(+)/H(+) antiporters in B. japonicum could explain its very high Na(+) sensitivity.  相似文献   

10.
Osmotic adjustment in the filamentous fungus Aspergillus nidulans.   总被引:5,自引:0,他引:5       下载免费PDF全文
Aspergillus nidulans was shown to be xerotolerant, with optimal radial growth on basal medium amended with 0.5 M NaCl (osmotic potential [psi s] of medium, -3 MPa), 50% optimal growth on medium amended with 1.6 M NaCl (psi s of medium, -8.7 MPa), and little growth on medium amended with 3.4 M NaCl (psi s of medium, -21 MPa). The intracellular content of soluble carbohydrates and of selected cations was measured after growth on basal medium, on this medium osmotically amended with NaCl, KCl, glucose, or glycerol, and also after hyperosmotic and hypoosmotic transfer. The results implicate glycerol and erythritol as the major osmoregulatory solutes. They both accumulated during growth on osmotically amended media, as well as after hyperosmotic transfer, except on glycerol-amended media, in which erythritol did not accumulate. Furthermore, they both decreased in amount after hypoosmotic transfer. With the exception of glycerol, the extracellular osmotic solute did not accumulate intracellularly when mycelium was grown in osmotically amended media, but it accumulated after hyperosmotic transfer. It was concluded that the extracellular solute usually plays only a transient role in osmotic adaptation. The intracellular content of soluble carbohydrates and cations measured could reasonably account for the intracellular osmotic potential of mycelium growing on osmotically amended media.  相似文献   

11.
Growth of Escherichia coli K-12 in a modified Davis minimal medium was inhibited under high osmolarity, but it recovered remarkably with the addition of 1 mM proline. The co-existence of K+ with proline enhanced the recovery of growth under high osmolarity more than that in the presence of proline alone. The same was true for the activities of respiration and glucose uptake. A similar supplementary effect of K+ was observed for the activities of proline uptake under high osmolarity. These results suggest that K+ and proline support not only growth but respiration and uptake of the respiratory substrate glucose in the cell cytoplasm when exposed to high osmolarity. External K+ almost disappeared with 1 h of incubation at low osmolarity, indicating that active accumulation of K+ in the cells occurred. On the other hand, a gradual accumulation of K+ was recognized at high osmolarity in the presence of 1 M NaCl, especially at > 2 h of incubation. This study of L-[5-3H]proline uptake in the cell cytoplasm indicates that proline was incorporated as a substrate of protein synthesis in the absence of NaCl, but was efficiently utilized as a compatible solute in the presence of high concentrations of NaCl.  相似文献   

12.
In order to determine the response of Corynebacterium glutamicum to osmotic stress under different growth conditions, the bacteria were grown in glucose-limited continuous cultures at osmotic pressures of 0.4–2.4 osmol kg–1 by addition of NaCl to the culture medium. Steady-state continuous cultures were obtained for all investigated osmotic pressures. Increasing the medium osmolality resulted in a higher specific glucose-uptake rate, a lower glucose-to-biomass conversion yield, as well as important changes in the cellular content. A short-term response to the addition of NaCl to a continuous culture was the rapid but transient uptake of Na+ ions. At steady state a higher osmotic pressure resulted in a strong increase of the intracellular concentrations of proline, from 5 mg/g to 125 mg/g dry weight, and of trehalose from 20 mg/g to 60 mg/g dry weight. The level of glutamate, which was the dominant intracellular amino acid at low osmotic pressure at 55 mg/g dry weight, was not affected by the addition of NaCl. The influence of the specific growth rate, between 0.1 h–1 and 0.4 h–1, on the intracellular metabolite concentration was also determined. The level of proline was found to increase strongly with the growth rate, whereas the trehalose content decreased slightly and the glutamate content did not change. The observed net increase in accumulated metabolites may be related to a requirement of a higher turgor pressure for rapid cell growth.  相似文献   

13.
The moderately halophilic bacterium Vibrio costicola accumulates α-aminoisobutyric acid (AIB) by active transport. Substantial amounts of Na+ ions are needed for this transport. This is not due to an ionic requirement for respiration; cells respire as well as KCl as in NaCl but do not transport AIB in KCl. In cells grown in the presence of 1.0 or 2.0 M NaCl, AIB transport took place in higher NaCl concentrations than in cells grown in the presence of 0.5 M NaCl. The latter cells developed salt-resistant transport when they were exposed to 1.0 M NaCl in the presence of chloramphenicol and other antibiotics that inhibit protein synthesis. Two levels of salt-resistant transport were observed. One level (resistance to 3.0 M NaCl) developed in 1.0 M NaCl without the addition of nutrients, did not seem to require an increase in internal solute concentration, and was not lost when cells grown in 1.0 M NaCl were suspended in 0.5 M NaCl. The second level (resistance to 4.0 M NaCl) developed in 1.0 M NaCl only when nutrients were added, may have required an increased internal solute concentration, and was lost when 1.0 M NaCl-grown cells were suspended in 0.5 M NaCl or KCl. Among the substances that stimulated the development of salt-resistant AIB transport, betaine was especially active. Furthermore, direct addition of betaine permitted cells to transport AIB at higher NaCl concentrations. High salt concentrations inhibited endogenous respiration to a lesser extent than AIB transport, especially in 0.5 M NaCl-grown cells. Thus, these concentrations of salt did not inhibit AIB transport by inhibiting respiration. However, oxidation of glucose and oxidation of succinate were at least as sensitive to high salt concentrations as AIB transport, suggesting that a salt-sensitive transport step(s) is involved in the oxidation of these substrates.  相似文献   

14.
M Farwick  R M Siewe    R Krmer 《Journal of bacteriology》1995,177(16):4690-4695
Osmoregulatory uptake of glycine betaine in whole cells of Corynebacterium glutamicum ATCC 13032 (wild type) was studied. The cells actively take up glycine betaine when they are osmotically shocked. The total accumulation and uptake rate were dependent on the osmotic strength of the medium. Kinetic analysis revealed a high-affinity transport system (Km, 8.6 +/- 0.4 microM) with high maximum velocity (110 nmol.min-1.mg [dry weight]-1). Glycine betaine functioned as a compatible solute when added to the medium and allowed growth at an otherwise inhibitory osmotic strength of 1.5 M NaCl. Proline and ectoine could also be used as osmoprotectants. Glycine betaine is neither synthesized nor metabolized by C. glutamicum. The glycine betaine transport system is constitutively expressed at a basal level of activity. It can be induced up to eightfold by osmotic stress and is strongly regulated at the level of activity. The transport system is highly specific and has its pH optimum in the slightly alkaline range at about pH 8. The uptake of the zwitterionic glycine betaine is mediated by a secondary symport system coupled to cotransport of at least two Na+ ions. It is thus driven both by the membrane potential and the Na+ gradient. An extremely high accumulation (internal/external) ratio of up to 4 x 10(6) was measured, which represents the highest accumulation ratio observed for any transport system.  相似文献   

15.
Gas exchange parameters, water relations and Na+/Cl- content were measured on leaves of one-year-old sweet orange ( Citrus sinensis [L.] Osbeck cv. Hamlin) seedlings grown at increasing levels of salinity. Different salts (NaCl, KCl and NaNO3) were used to separate the effects of Cl and Na+ on the investigated parameters. The chloride salts reduced plant dry weight and increased defoliation. Accumulation of Cl in the leaf tissue caused a sharp reduction in photosynthesis and stomatal conductance. By contrast, these parameters were not affected by leaf Na+ concentrations of up to 478 m M in the tissue water. Leaf water potentials reached values near −1.8 MPa at high NaCl and KCl supplies. This reduction was offset by a decrease in the osmotic potential so that turgor was maintained at or above control values. The changes in osmotic potential were closely correlated with changes in leaf proline concentrations. Addition of Ca2+ (as calcium acetate) increased growth and halved defoliation of salt stressed plants. Furthermore, calcium acetate decreased the concentration of Cl and Na+ in the leaves, and increased photosynthesis and stomatal conductance. Calcium acetate also counteracted the reductions in leaf water and osmotic potentials induced by salinity. In addition, calcium acetate inhibited the accumulation of proline in the leaves which affected the reduction in osmotic potential. These results indicate that adverse effects of salinity in Citrus leaves are caused by accumulation of chloride.  相似文献   

16.
Abstract. The type of endogenous osmotic solute accumulated by Chlorella emersonii grown at high external osmotic pressure (πext) depended on the light/dark conditions: proline accumulated to high concentrations in cells in the light, while sucrose accumulated to high concentrations in the dark. These findings were made during the alternating light dark cycles used to obtain synchronized cultures, i.e. cultures containing cells at only one stage of development at any one time. Similar decreases in proline and increases in sucrose in the dark were found for cells previously grown in continuous light to obtain non-synchronized cultures, i.e. cultures containing cells at all stages of development.
In cultures synchronized at 200 mol m −3 NaCl (πext= 1.01 MPa), recently divided 'daughter cells' at the beginning of the light periods contained 60 mol m−3 proline and 100mol m−3 sucrose, while mature cells towards the end of light periods contained 130 mol m proline and 20 mol m−3 sucrose. The changes in proline and sucrose which occurred in synchronized cultures were due mainly to light/dark conditions and to a much lesser extent to different stages of cell development. The proportion of proline to sucrose in daughter cells collected from non-synchronized cultures in continuous light was not different from the proportion in heterogeneous populations of cells.
Results are discussed in relation to the accumulations of two, rather than one, endogenous osmotic solute and to growth reductions of C. emersonii exposed to high external osmotic pressures.  相似文献   

17.
To further study mechanisms of coping with osmotic stress-low water activity, mutants of Staphylococcus aureus with transposon Tn917-lacZ-induced NaCl sensitivity were selected for impaired ability to grow on solid defined medium containing 2 M NaCl. Southern hybridization experiments showed that NaCl-sensitive mutants had a single copy of the transposon inserted into a DNA fragment of the same size in each mutant. These NaCl-sensitive mutants had an extremely long lag phase (60 to 70 h) in defined medium containing 2.5 M NaCl. The osmoprotectants glycine betaine and choline (which is oxidized to glycine betaine) dramatically shortened the lag phase, whereas L-proline and proline betaine, which are effective osmoprotectants for the wild type, were ineffective. Electron microscopic observations of the NaCl-sensitive mutant under NaCl stress conditions revealed large, pseudomulticellular cells similar to those observed previously in the wild type under the same conditions. Glycine betaine, but not L-proline, corrected the morphological abnormalities. Studies of the uptake of L-[14C]proline and [14C]glycine betaine upon osmotic upshock revealed that the mutant was not defective in the uptake of either osmoprotectant. Comparison of pool K+, amino acid, and glycine betaine levels under NaCl stress conditions in the mutant and the wild type revealed no striking differences. Glycine betaine appears to have additional beneficial effects on NaCl-stressed cells beyond those of other osmoprotectants. The NaCl stress protein responses of the wild type and the NaCl-sensitive mutant were characterized and compared by labeling with L-[35 S]methionine and two-dimensional gel electrophoresis. The synthesis of 10 proteins increased in the wild type in response to NaCl stress, whereas the synthesis of these 10 proteins plus 2 others increased in response to NaCl stress in the NaCl-sensitive mutant. Five proteins, three of which were NaCl stress proteins, were produced in elevated amounts in the NaCl-sensitive mutant under unstressed conditions compared to the wild type. The presence of glycine betaine during NaCl stress decreased the production of three NaCl stress proteins in the mutant versus one in the wild type.  相似文献   

18.
A common cellular mechanism of osmotic-stress adaptation is the intracellular accumulation of organic solutes (osmolytes). We investigated the mechanism of osmotic adaptation in the diazotrophic bacteria Azotobacter chroococcum, Azospirillum brasilense, and Klebsiella pneumoniae, which are adversely affected by high osmotic strength (i.e., soil salinity and/or drought). We used natural-abundance 13C nuclear magnetic resonance spectroscopy to identify all the osmolytes accumulating in these strains during osmotic stress generated by 0.5 M NaCl. Evidence is presented for the accumulation of trehalose and glutamate in Azotobacter chroococcum ZSM4, proline and glutamate in Azospirillum brasilense SHS6, and trehalose and proline in K. pneumoniae. Glycine betaine was accumulated in all strains grown in culture media containing yeast extract as the sole nitrogen source. Alternative nitrogen sources (e.g., NH4Cl or casamino acids) in the culture medium did not result in measurable glycine betaine accumulation. We suggest that the mechanism of osmotic adaptation in these organisms entails the accumulation of osmolytes in hyperosmotically stressed cells resulting from either enhanced uptake from the medium (of glycine betaine, proline, and glutamate) or increased net biosynthesis (of trehalose, proline, and glutamate) or both. The preferred osmolyte in Azotobacter chroococcum ZSM4 shifted from glutamate to trehalose as a consequence of a prolonged osmotic stress. Also, the dominant osmolyte in Azospirillum brasilense SHS6 shifted from glutamate to proline accumulation as the osmotic strength of the medium increased.  相似文献   

19.
We compared the function of L- and D-proline as compatible solute inEscherichia coli K-12 cells under high osmolarity. Growth ofE. coli K-12 in a Davis minimal medium was inhibited at 0.5 M and 1 M NaCl, but it was recovered by the addition of L-proline. Glucose uptake was reduced with increase of external NaCl concentrations, but it was improved by the addition of L-proline. On the other hand, the addition of D-proline did not show the role of compatible solute although accumulated in cells. On the analysis ofE. coli proline transporter mutants, difference of the affinity of proline transporters for D-proline was observed at PutP and ProP. These results presumed that the functional disorder of D-proline as compatible solute was caused by its structural feature in cells.  相似文献   

20.
Bacteria respond to changes in medium osmolarity by varying the concentrations of specific solutes in order to maintain constant turgor pressure. The cytoplasmic pools of K+, proline, glutamate, alanine, and glycine of Lactobacillus plantarum ATCC 14917 increased when the osmolarity of the growth media was raised from 0.20 to 1.51 osmol/kg by KCL. When glycine-betaine was present in a high-osmolarity chemically defined medium, it was accumulated to a high cytoplasmic concentration, while the concentrations of most other osmotically important solutes decreased. These observations, together with the effects of glycine-betaine on the specific growth rate under high-osmolarity conditions, suggest that glycine-betaine is preferentially accumulated in L. plantarum. Uptake of glycine-betaine, proline, glutamate, and alanine was studied in cells that were alternately exposed to hyper- and hypo-osmotic stresses. The rate of uptake of proline and glycine-betaine increased instantaneously upon increasing the osmolarity, whereas that of other amino acids did not. This activation occurred also under conditions in which protein synthesis was inhibited was most pronounced when cells were pregrown at high osmolarity. The duration of net transport was a function of the osmotic strength of the assay medium. Glutamate uptake was not activated by an osmotic upshock, and the uptake of alanine was low under all conditions tested. When cells were subjected to osmotic downshock, a rapid efflux of accumulated glycine-betaine, proline, and alanine occurred whereas the pools of other amin acids remained unaffected. The results indicate that osmolyte efflux is, at least to some extent, mediated via specific osmotically regulated efflux systems and not via nonspecific mechanisms as has been suggested previously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号