首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The Ca2+-dependent regulation of smooth muscle actomyosin involves a myosin light chain kinase (ATP: myosin light chain phosphotransferase). It has been shown (Dabrowska, R., Aromatorio, D., Sherry, J.M.F., and Hartshorne, D.J. 1977, Biochem. Biophys. Res. Commun. 78, 1263) that the kinase is composed of two proteins of approximate molecular weights 105 000 and 17 000. In this communication it is demonstrated that the 17 000 component is the modulator protein. This conclusion is based on: (1) the identical behavior of the 17 000 kinase component and modulator protein in assays of actomyosin Mg2+-ATPase activity, phosphorylation of myosin, and phosphodiesterase activity, and, (2) the similarity of the 17 000 kinase component and the modulator protein with respect to amino acid composition, absorption spectrum, and electrophoresis in urea-polyacrylamide gels. It is shown also that the modulator protein from smooth muscle and troponin C are distinct proteins.  相似文献   

2.
Myosin light chain kinase which phosphorylates g2 light chain of skeletal muscle myosin requires an activator for the activity (Yazawa, M., and Yagi, K (1977) J. Biochem. (Tokyo) 82, 287-289). This activator has now been identified as the modulator protein known to be a Ca2+-dependent regulator for phosphodiesterase, adenylate cyclase, and ATPases. The identification is based on the quantitative cross-reactivity of muscle activator protein and brain modulator protein in activating myosin light chain kinase and brain phosphodiesterase and identical properties of both proteins in regard to sensitivities to Ca2+, UV absorption spectra, UV absorption difference spectra with or without Ca2+, and mobilities upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In the presence of modulator protein, the activity of myosin light chain kinase was reversibly controlled by the physiological concentration of Ca2+. We suggest that two Ca2+-receptive proteins, i.e. modulator protein and troponin-C, may play roles in the contraction-relaxation cycle of skeletal muscle.  相似文献   

3.
A protease-activated protein kinase that phosphorylates the P light chain of myosin in the absence of Ca2+ and calmodulin has been isolated from rabbit skeletal muscle. The enzyme has properties similar to protease-activated kinase I from rabbit reticulocytes [S. M. Tahara and J. A. Traugh (1981) J. Biol. Chem. 256, 11588-11564], which has been shown to phosphorylate the P light chain of myosin [P. T. Tuazon, J. T. Stull, and J. A. Traugh (1982) Biochem. Biophys. Res. Commun. 108, 910-917]. The protease-activated kinase from skeletal muscle has been partially purified by chromatography on DEAE-cellulose, phosphocellulose and hydroxyapatite. The enzyme phosphorylates histone as well as the P light chain of myosin following activation by proteolysis. Stoichiometric phosphorylation of myosin light chain was observed with the protease-activated kinase and myosin light chain kinase. The sites phosphorylated by the protease-activated kinase and myosin light chain kinase were examined by two-dimensional peptide mapping following chymotryptic digestion. The phosphopeptides observed with the protease-activated kinase were different from those obtained with the Ca2+-dependent myosin light chain kinase, indicating that the two enzymes phosphorylated different sites on the P light chain of skeletal muscle myosin. When actomyosin from skeletal muscle was examined as substrate, the P light chain was phosphorylated following activation of the protease-activated kinase by limited proteolysis.  相似文献   

4.
We have purified a cofactor protein previously shown (Pollard, T. D., and Korn, E. D. (1973) J. Biol. Chem. 248, 4691-4697) to be required for actin activation of the Mg2+-ATPase activity of Acanthamoeba myosin I. The purified cofactor protein is a novel myosin kinase that phosphorylates the single heavy chain, but neither of the two light chains, of Acanthamoeba myosin I. Phosphorylation of Acanthamoeba myosin I by the purified cofactor protein requires ATP and Mg2+ but is Ca2+-independent. The Mg2+-ATPase activity of phosphorylated Acanthamoeba myosin I is highly activated by F-actin in the absence of cofactor protein. Actin-activated Mg2+-ATPase activity is lost when phosphorylated Acanthamoeba myosin I is dephosphorylated by platelet phosphatase. Phosphorylation and dephosphorylation have no effect on the (K+,EDTA)-ATPase and Ca2+-ATPase activities of Acanthamoeba myosin I. These results show that cofactor protein is an Acanthamoeba myosin I heavy chain kinase and that phosphorylation of the heavy chain of this myosin is required for actin activation of its Mg2+-ATPase activity.  相似文献   

5.
Stimulation of tracheal smooth muscle cells in culture with ionomycin resulted in a rapid increase in cytosolic free Ca2+ concentration ([Ca2+]i) and an increase in both myosin light chain kinase and myosin light chain phosphorylation. These responses were markedly inhibited in the absence of extracellular Ca2+. Pretreatment of cells with 1-[N-O-bis(5-isoquinolinesulfonyl)-N- methyl-L-tyrosyl]-4-phenylpiperazine (KN-62), a specific inhibitor of the multifunctional calmodulin-dependent protein kinase II (CaM kinase II), did not affect the increase in [Ca2+]i but inhibited ionomycin-induced phosphorylation of myosin light chain kinase at the regulatory site near the calmodulin-binding domain. KN-62 inhibited CaM kinase II activity toward purified myosin light chain kinase. Phosphorylation of myosin light chain kinase decreased its sensitivity to activation by Ca2+ in cell lysates. Pretreatment of cells with KN-62 prevented this desensitization to Ca2+ and potentiated myosin light chain phosphorylation. We propose that the Ca(2+)-dependent phosphorylation of myosin light chain kinase by CaM kinase II decreases the Ca2+ sensitivity of myosin light chain phosphorylation in smooth muscle.  相似文献   

6.
A multifunctional calmodulin-dependent protein kinase in the canine cardiac cytosol was purified to near homogeneity. The purified enzyme inactivated glycogen synthase by means of phosphorylation. The enzyme also phosphorylated phospholamban and several other proteins. In view of its physicochemical properties and substrate specificity, the enzyme differed from myosin light chain kinase and phosphorylase kinase, and was considered to belong to a class of similar calmodulin-dependent protein kinases from brain, liver, and skeletal muscle. The results suggest that the enzyme mediates multiple Ca2+-dependent functions in the heart.  相似文献   

7.
Regulation of embryonic smooth muscle myosin by protein kinase C   总被引:2,自引:0,他引:2  
Phosphorylation of the 20-kDa light chain regulates adult smooth muscle myosin; phosphorylation by the Ca2+/calmodulin-dependent enzyme myosin light chain kinase stimulates the actomyosin ATPase activity of adult smooth muscle myosin; the simultaneous phosphorylation of a separate site on the 20-kDa light chain by the Ca2+/phospholipid-dependent enzyme protein kinase C attenuates the myosin light chain kinase-induced increase in the actomyosin ATPase activity of adult myosin. Fetal smooth muscle myosin, purified from 12-day-old fertilized chicken eggs, is structurally different from adult smooth muscle myosin. Nevertheless, phosphorylation of a single site on the 20-kDa light chain of fetal myosin by myosin light chain kinase results in stimulation of the actomyosin ATPase activity of this myosin. Protein kinase C, in contrast, phosphorylates three sites on the fetal myosin 20-kDa light chain including a serine or threonine residue on the same peptide phosphorylated by myosin light chain kinase. Interestingly, phosphorylation by protein kinase C stimulates the actomyosin ATPase activity of fetal myosin. Moreover, unlike adult myosin, there is no attenuation of the actomyosin ATPase activity when fetal myosin is simultaneously phosphorylated by myosin light chain kinase and protein kinase C. These data demonstrate, for the first time, the in vitro activation of a smooth muscle myosin by another enzyme besides myosin light chain kinase and raise the possibility of alternate pathways for regulating smooth muscle myosin in vivo.  相似文献   

8.
A high salt extract of bovine brain was found to contain a protein kinase which catalyzed the phosphorylation of heavy chain of brain myosin. The protein kinase, designated as myosin heavy chain kinase, has been purified by column chromatography on phosphocellulose, Sephacryl S-300, and hydroxylapatite. During the purification, the myosin heavy chain kinase was found to co-purify with casein kinase II. Furthermore, upon polyacrylamide gel electrophoresis of the purified enzyme under non-denaturing conditions, both the heavy chain kinase and casein kinase activities were found to comigrate. The purified enzyme phosphorylated casein, phosvitin, troponin T, and isolated 20,000-dalton light chain of gizzard myosin, but not histone or protamine. The kinase did not require Ca2+-calmodulin, or cyclic AMP for activity. Heparin, which is known to be a specific inhibitor of casein kinase II, inhibited the heavy chain kinase activity. These results indicate that the myosin heavy chain kinase is identical to casein kinase II. The myosin heavy chain kinase catalyzed the phosphorylation of the heavy chains in intact brain myosin. The heavy chains in intact gizzard myosin were also phosphorylated, but to a much lesser extent. The heavy chains of skeletal muscle and cardiac muscle myosins were not phosphorylated to an appreciable extent. Although the light chains isolated from brain and gizzard myosins were efficiently phosphorylated by the same enzyme, the rates of phosphorylation of these light chains in the intact myosins were very small. From these results it is suggested that casein kinase II plays a role as a myosin heavy chain kinase for brain myosin rather than as a myosin light chain kinase.  相似文献   

9.
Conformational studies of myosin phosphorylated by protein kinase C   总被引:2,自引:0,他引:2  
Smooth muscle myosin from chicken gizzard is phosphorylated by Ca2+-activated phospholipid-dependent protein kinase, protein kinase C, as well as by Ca2+/calmodulin-dependent kinase, myosin light chain kinase (Endo, T., Naka, M., and Hidaka, H. (1982) Biochem. Biophys. Res. Commun. 105, 942-948). We have now demonstrated the effect of phosphorylation by protein kinase C on the smooth muscle myosin molecule. In glycerol/urea polyacrylamide gel electrophoresis the 20,000-dalton light chain phosphorylated by protein kinase C co-migrated with that phosphorylated by myosin light chain kinase. Moreover, the light chain phosphorylated by both kinases migrated more rapidly than did the light chain phosphorylated by either myosin light chain kinase or protein kinase C alone. Myosin phosphorylated by protein kinase C formed a bent 10 S monomer while that phosphorylated by myosin light chain kinase was an unfolded and extended 6 S monomer in the presence of 0.2 M KCl. In addition, myosin phosphorylated by kinases had a sedimentation velocity of 7.3 S, thereby suggesting that the myosin was partially unfolded. The unfolded myosin was visualized electron microscopically. The fraction in the looped form was higher when for myosin phosphorylated by both kinases higher than for that phosphorylated by light chain kinase alone. Therefore, phosphorylation by protein kinase C does not lead to the change in myosin conformation seen with myosin light chain kinase.  相似文献   

10.
Myosin light-chain kinase was purified from porcine myometrium to apparent homogeneity at about 262-fold with an Mr of 130 000 as determined by SDS-polyacrylamide gel electrophoresis and a sedimentation coefficient of 4.5 S. The approximate content of the soluble myosin light-chain kinase was estimated to be about 0.85 microM. The purified enzyme exhibited strict substrate specificity only for 20-kDa myosin light chain and Ka values of 0.6 nM and 0.3 microM for calmodulin and Ca2+, respectively. The enzyme was phosphorylated by the catalytic subunit of cyclic AMP-dependent protein kinase, which resulted in a decrease in the affinity for calmodulin of 4-7-fold without effect on the Vmax. The maximal amount of phosphate incorporated into the enzyme was 0.5-0.8 and 1.0-1.4 mol per mol of the enzyme in the presence and absence of Ca2+ and calmodulin, respectively. In the presence of a subsaturating concentration of calmodulin, the enzyme showed a lower sensitivity for Ca2+ by phosphorylation.  相似文献   

11.
The purified Ca2+- and calmodulin-dependent protein kinase from rat brain, which has a M.W. of 120,000 by gel filtration analysis, showed a broad substrate specificity. In addition to myosin light chain from chicken gizzard, the enzyme phosphorylated myelin basic protein, casein and two endogenous substrates in a Ca2+- and calmodulin-dependent manner. In contrast, chicken gizzard myosin light chain kinase exclusively phosphorylated myosin light chain.  相似文献   

12.
M Ito  T Tanaka  M Inagaki  K Nakanishi  H Hidaka 《Biochemistry》1986,25(15):4179-4184
Naphthalenesulfonamide derivatives were used to study the mechanism of regulation of Ca2+-dependent smooth muscle myosin light chain phosphorylation catalyzed by Ca2+-activated, phospholipid-dependent protein kinase (protein kinase C) and myosin light chain kinase. Derivatives such as N-(6-phenylhexyl)-5-chloro-1-naphthalenesulfonamide (SC-9), with a hydrophobic residue at the end of a hydrocarbon chain, stimulated Ca2+-activated, phospholipid-dependent myosin light chain phosphorylation in a Ca2+-dependent fashion. There was no significant effect of these compounds on Ca2+-calmodulin (CaM) dependent myosin light chain phosphorylation. On the other hand, derivatives with the guanidino or amino residue at the same position had an inhibitory effect on both Ca2+-phospholipid- and Ca2+-CaM-dependent myosin light chain phosphorylation. These observations suggest that activation of Ca2+-activated, phospholipid-dependent myosin light chain phosphorylation by naphthalenesulfonamide derivatives depends on the chemical structure at the end of hydrocarbon chain of each compound. SC-9 was similar to phosphatidylserine with regard to activation, and the apparent Km values for Ca2+ of the enzyme with this compound and phosphatidylserine were 40 microM and 80 microM, respectively. Kinetic analysis indicated that 12-O-tetradecanoylphorbol 13-acetate increased the affinity of the enzyme with SC-9 for calcium ion. However, kinetic constants revealed that the Km value of protein kinase C activated by SC-9 for substrate myosin light chain was 5.8 microM, that is, about 10 times lower than that of the enzyme with phosphatidylserine, and that the Vmax value with SC-9 was 0.13 nmol X min-1, that is, 3-fold smaller than that seen with phosphatidylserine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Myosin light chain kinase, which is located primarily in the soluble fraction of bovine myocardium, has been isolated and purified approximately 1200-fold with 16% yield by a three-step procedure. The approximate content of soluble myosin light chain kinase in heart is calculated to be 0.63 microM. The isolated kinase is active only as a ternary complex consisting of the kinase, calmodulin, and Ca2+; the apparent Kd for calmodulin is 1.3 nM. The enzyme also exhibits a requirement for Mg2+ ions. Myosin light chain kinase is a monomeric enzyme with Mr = 85,000. The enzyme exhibits a Km for ATP of 175 microM, and a K0.5 for the regulatory light chain of cardiac myosin of 21 microM. The optimum pH is 8.1. Kinase activity is specific for the regulatory light chain of myosin. The specific activity of the isolated enzyme (30 nmol 32P/min/mg of protein) is considerably less than and corresponding values reported for the skeletal and smooth muscle light chain kinases. This is probably due to proteolysis during extraction of the myocardium, a phenomenon which has, as yet, proven impossible to eliminate. In contrast to the smooth muscle enzyme (Adelstein, R.S., Conti, M.A., Hathaway, D.R., and Klee, C.B. (1978) J. Biol. Chem. 253, 8347-8350), the cardiac kinase is not phosphorylated by the catalytic subunit of cAMP-dependent protein kinase.  相似文献   

14.
Smooth muscle myosin light chain kinase, a calmodulin-dependent enzyme, binds 1 mol of calmodulin/mol of kinase in the presence of calcium (Adelstein, R. S., and Klee, C. B. (1981) J. Biol. Chem. 256, in press. This enzyme is a substrate for cAMP-dependent protein kinase whether or not calmodulin is bound. When calmodulin is not bound to myosin kinase, protein kinase incorporates phosphate into two sites in myosin kinase. Under these circumstances, phosphorylation markedly lowers the rate of myosin kinase activity. The decrease in myosin kinase activity is due to a 10-20-fold increase in the amount of calmodulin necessary for 50% activation of kinase activity. The effect of phosphorylation on the activity of myosin kinase can be reversed by dephosphorylation using a purified phosphatase (Pato, M. D., and Adelstein, R. S. (1980) J. Biol. Chem. 255, 6535-6538) isolated from smooth muscle. When calmodulin is bound to myosin kinase, phosphate is incorporated into a single site with no effect on myosin kinase activity. The presence of at least two sites that can be phosphorylated in myosin kinase was confirmed by tryptic digestion of denatured myosin kinase.  相似文献   

15.
Octopus calmodulin was purified to homogeneity and shown to contain 0.1 residue each of epsilon-N-monomethyl-lysine, epsilon-N-dimethyllysine, and epsilon-N-trimethyllysine/mol. With the exception of this partial methylation and of a single tyrosyl residue, it shared all the characteristic properties of mammalian calmodulin in terms of molecular weight, amino acid composition, electrophoretic behavior in the presence or absence of Ca2+ ions, and activation of calcium/calmodulin-dependent myosin light chain kinase. In fact, Octopus calmodulin proved to be slightly more effective than ram testis calmodulin in activating both skeletal and smooth muscle myosin light chain kinases in the presence of Ca2+. This provides conclusive evidence that (a) stoichiometric trimethylation of lysine 115 is not required for enzyme activation, and (b) the inability of troponin C to activate myosin light chain kinase (Walsh, M. P., Vallet, B., Cavadore, J. C., and Demaille, J. G.  相似文献   

16.
Modulator-deficient myosin light-chain kinase from rabbit skeletal muscle was purified by modulator protein-Sepharose 4B affinity chromatography. The purified protein showed a single band (MW 80,000) on polyacrylamide gel electrophoresis in sodium dodecyl sulfate, and it exists as a monomer in the native state as determined by gel filtration. The modulator-deficient myosin light-chain kinase (MW 80,000), modulator protein (MW 16,500) and Ca2+ were essential for the kinase activity. The half-maximal activity of the kinase in the presence of excess modulator protein with 10 mM MgCl2 was at pCa 5.1, where full activity of actomyosin-ATPase is observed in the presence of the troponin--tropomyosin system. Assuming a rapid equilibrium between myosin light-chain kinase and two substrates, ATP and g2 light-chain, Km values for ATP and g2 light chain were evaluated as 0.28 mM and 0.024 mM, respectively. Vm/e was 5.7 s-1.  相似文献   

17.
A cyclic nucleotide-independent protein kinase of human platelets, which phosphorylated histones, myelin basic protein and protamine and did not catalyze the phosphorylation of acidic proteins such as casein, phosvitin and myosin light chain, has been purified approx. 1,500-fold from the crude extract by steps of DEAE-cellulose, Sephadex G-200, hydroxylapatite and phosphoryl cellulose column chromatography. The substrate phosphorylation by this kinase was markedly enhanced by calmodulin even in the absence of Ca2+, when mixed histone was used as a substrate. The interaction of the kinase with mixed histone resulted in an irreversible inactivation of the enzyme. Calmodulin prevented this inactivation, and this compound produced an apparent increase in histone phosphorylation by the kinase. It should be noted that acidic polypeptides such as troponin-C, phospholipids and nucleic acids have a similar ability. The addition of Ca2+ reduced the effect of calmodulin more than the effects of other acidic compounds.  相似文献   

18.
M Nomura  J T Stull  K E Kamm  M C Mumby 《Biochemistry》1992,31(47):11915-11920
Smooth muscle myosin light chain kinase is phosphorylated at two sites (A and B) by different protein kinases. Phosphorylation at site A increases the concentration of Ca2+/calmodulin required for kinase activation. Diphosphorylated myosin light chain kinase was used to determine the site-specificity of several forms of protein serine/threonine phosphatase. These phosphatases readily dephosphorylated myosin light chain kinase in vitro and displayed differing specificities for the two phosphorylation sites. Type 2A protein phosphatase specifically dephosphorylated site A, and binding of Ca2+/calmodulin to the kinase had no effect on dephosphorylation. The purified catalytic subunit of type 1 protein phosphatase dephosphorylated both sites in the absence of Ca2+/calmodulin but only dephosphorylated site A in the presence of Ca2+/calmodulin. A protein phosphatase fraction was prepared from smooth muscle actomyosin by extraction with 80 mM MgCl2. On the basis of sensitivity to okadaic acid and inhibitor 2, this activity was composed of multiple protein phosphatases including type 1 activity. This phosphatase fraction dephosphorylated both sites in the absence of Ca2+/calmodulin. However, dephosphorylation of both sites A and B was completely blocked in the presence of Ca2+/calmodulin. These results indicate that two phosphorylation sites of myosin light chain kinase are dephosphorylated by multiple protein serine/threonine phosphatases with unique catalytic specificities.  相似文献   

19.
A myosin light chain kinase has been obtained in a partially purified form from human blood platelets and bovine brain. The kinase from both sources required Ca2+ and the modulator protein for its activity. The subunit molecular weight is approximately 105,000 daltons. These kinases are therefore similar to the smooth muscle kinase (Dabrowska, R., Aromatorio, D., Sherry, J. M. F., and Hartshorne, D. J. (1977) Biochem. Biophys. Res. Commun. 78, 1263–1272). It is suggested that the role of the myosin light chain kinase is similar in both muscle and non-muscle cells and serves to activate the contractile apparatus, via the phosphorylation of myosin, in response to an increase in the intracellular free Ca2+ concentration.  相似文献   

20.
A calmodulin-activated phosphorylation activity was identified in microsomal (endoplasmic reticulum) preparations from rat adipocytes. Activity was not detected in mitochondrial or plasma membrane fractions. Although the phosphorylation of several proteins was enhanced by addition of calmodulin, the major calmodulin-sensitive protein had a molecular weight of 54,000. A series of experiments were conducted to determine if the microsomal phosphorylation was either calmodulin-containing phosphorylase kinase or calmodulindependent myosin light chain kinase. The phosphorylation of the 54,000 Dalton band in microsomal preparations was 1) not significantly reduced by potential competing protein substrates, e.g. actomyosin or phosphorylase b, 2) nearly equally well phosphorlyated at pH 8.6 or pH 7.0, unlike actomyosin or phosphorylase b, and 3) not increased by addition of phosphorylase kinase or myosin light chain kinase. The results demonstrate that this microsomal calmodulinactivated phosphorylation is catalysed by a protein kinase distinct from phosphorylase kinase or myosin light chain kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号