首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SYNOPSIS. Food vacuole-free P. multimicronucleatum and T. pyriformis readily ingest non-nutritive Dow polystyrene latex particles (PLP) and form vacuoles containing PLP at a rate comparable to the formation of vacuoles containing bacteria. The particles aggregate within the vacuoles and are egested as balls of the size of the vacuoles. PLP containing vacuoles rapidly acquire acid phosphatase activity, which is demonstrated by histochemical (alpha-naphthyl phosphatehexazonium salt or lead phosphate) methods as a peripheric staining. The total activity of the cell does not significantly change as a consequence of PLP uptake as suggested by the histochemical preparations and confirmed in T. pyriformis by measuring the splitting of p-nitrophenyl phosphate at pH 5. Accordingly, no selection between nutritive and non-nutritive particles could be revealed. The vacuole formation is induced by the mechanical action of the particles. The appearance of acid phosphatase activity in the vacuole seems to be dependent on the vacuole formation and not on its content. This early appearance of activity is due to a redistribution of the preexistent activity.  相似文献   

2.
Callus calcifying cartilage alkaline phosphatase was resolved by DEAE-cellulose column chromatography into two distinct phsophatase activities. The phosphatase activity which was eluted first from the column, (phosphatase I), was active towards a variety of phosphate esters, sodium pyrophosphatase and several linear polyphosphates, while the second phosphatase activity , (phosphatase II), was active toward simple phosphate esters but not towards sodium pyrophosphate and linear oligo or polyphosphates. All the phosphate esters, sodium pyrophosphate and polyphosphates at higher concentrations were inhibitory for phosphatase I. The modulating effects of magnesium, calcium, zinc and other phosphatase modulators have been investigated. Both phosphatases from callus calcifying cartilage were found to be substrates of neuraminidase with sialic acid as the product. Besides the difference in their specificity, the phosphatases were found to be immunologically different and to have different molecular weights, strong indication that they are different enzymes.  相似文献   

3.
Potato acid phosphatase (EC 3.1.3.2) was used to remove the eight phosphate groups from alphas1-casein. Unlike most acid phosphatases, which are active at pH 6.0 or below, potato acid phosphatase can catalyze the dephosphorylation of alphas1-casein at pH 7.0. Although phosphate inhibition is considerable (K1=0.42 mM phosphate), the phosphate ions produced by the dephosphorylation of casein can be removed by dialysis, allowing the reaction to go to completion. The dephosphorylated alphas1-casein is homogeneous on gel electrophoresis with a slower mobility than native alphas1-casein and has an amino acid composition which is identical to native alphas1-casein. Thus the removal of phosphate groups from casein does not alter its primary structure. Potato acid phosphatase also removed the phosphate groups from other phosphoproteins, such as beta-casein, riboflavin binding protein, pepsinogen, ovalbumin, and phosvitin.  相似文献   

4.
Human liver acid phosphatases.   总被引:2,自引:0,他引:2  
Human liver contains three chromatographically distinct forms of non-specific acid phosphatase (EC 3.1.3.2). Acid phosphatases I, II and III have molecular weights of greater than 200 000, of 107 000, and of 13 400, respectively. Following partial purification, isoenzyme II was obtained as a single activity band, as assessed by activity staining with p-nitrophenyl phosphate and alpha-naphthyl phosphate on polyacrylamide gels run at several pH values. With 50mM p-nitrophenyl phosphate as a substrate, enzymes II and III exhibit plateaus of activity over the pH range 3 - 5 and 3.5 - 6, respectively.Acid phosphatase II is not significantly inhibited by 0.5% formaldehyde. The activity of human liver acid phosphatase II and of human prostatic acid phosphatase towards several substrates is compared. The liver enzyme, is marked contrast to the prostatic enzyme, does not hydrolyze O-phosphoryl choline.  相似文献   

5.
A partially purified bovine cortical bone acid phosphatase, which shared similar characteristics with a class of acid phosphatase known as tartrate-resistant acid phosphatase, was found to dephosphorylate phosphotyrosine and phosphotyrosyl proteins, with little activity toward other phosphoamino acids or phosphoseryl histones. The pH optimum was about 5.5 with p-nitrophenyl phosphate as substrate but was about 6.0 with phosphotyrosine and about 7.0 with phosphotyrosyl histones. The apparent Km values for phosphotyrosyl histones (at pH 7.0) and phosphotyrosine (at pH 5.5) were about 300 nM phosphate group and 0.6 mM, respectively, The p-nitrophenyl phosphatase, phosphotyrosine phosphatase, and phosphotyrosyl protein phosphatase activities appear to be a single protein since these activities could not be separated by Sephacryl S-200, CM-Sepharose, or cellulose phosphate chromatographies, he ratio of these activities remained relatively constant throughout the purification procedure, each of these activities exhibited similar thermal stabilities and similar sensitivities to various effectors, and phosphotyrosine and p-nitrophenyl phosphate appeared to be alternative substrates for the acid phosphatase. Skeletal alkaline phosphatase was also capable of dephosphorylating phosphotyrosyl histones at pH 7.0, but the activity of that enzyme was about 20 times greater at pH 9.0 than at pH 7.0. Furthermore, the affinity of skeletal alkaline phosphatase for phosphotyrosyl proteins was low (estimated to be 0.2-0.4 mM), and its protein phosphatase activity was not specific for phosphotyrosyl proteins, since it also dephosphorylated phosphoseryl histones. In summary, these data suggested that skeletal acid phosphatase, rather than skeletal alkaline phosphatase, may act as phosphotyrosyl protein phosphatase under physiologically relevant conditions.  相似文献   

6.
A new form of alkaline phosphatase (orthophosphoric-monoester phosphohydrolase (alkaline optimum), EC 3.1.3.1) has been identified in the yeast Saccharomyces cerevisiae. Utilizing either synthetic or natural substrates, the enzyme exhibited a broad pH activity curve with maximum activity between 8.5 and 9.0. The enzyme was nonspecific with respect to substrate, attacking a variety of compounds containing phosphomonoester linkages, but has no detectable activity against polyphosphate, pyrophosphate or phosphodiester linkages. The enzyme exhibited an apparent Km of 0.25 mM with respect to p-nitrophenyl phosphate, 0.38 mM with respect to α-naphthyl phosphate, and 1.0 mM with respect to 5′ AMP. The enzyme is regulated in a constitutive manner and its activity does not increase during phosphate starvation or sporulation, as does the repressible alkaline phosphatase. The enzyme is tightly bound to a particulate fraction of the cell, tentatively identified as the tonoplast membrane. It is not solubilized by treatment with high concentrations of NaCl, KH2PO4 or chaotropic agents. Triton X-100 (0.1%) solubilizes 12% of the particulate activity. This enzyme is differentiated from the other alkaline phosphatases found in yeast by its chromatographic elution from DEAE-cellulose, kinetic parameters, heat stability and pH stability, as well as its particulate nature. This particulate alkaline phosphatase was found in every strain examined. It has a significantly lower specific activity in the phoH mutant and a higher activity in the acid phosphatase constitutive mutant A137.  相似文献   

7.
Soluble epoxide hydrolase (sEH) is a bifunctional enzyme that has a C-terminus epoxide hydrolase domain and an N-terminus phosphatase domain. The endogenous substrates of epoxide hydrolase are known to be epoxyeicosatrienoic acids, but the endogenous substrates of the phosphatase activity are not well understood. In this study, to explore the substrates of sEH, we investigated the inhibition of the phosphatase activity of sEH toward 4-methylumbelliferyl phosphate by using lecithin and its hydrolyzed products. Although lecithin itself did not inhibit the phosphatase activity, the hydrolyzed lecithin significantly inhibited it, suggesting that lysophospholipid or fatty acid can inhibit it. Next, we investigated the inhibition of phosphatase activity by lysophosphatidyl choline, palmitoyl lysophosphatidic acid, monopalmitoyl glycerol, and palmitic acid. Palmitoyl lysophosphatidic acid and fatty acid efficiently inhibited phosphatase activity, suggesting that lysophosphatidic acids (LPAs) are substrates for the phosphatase activity of sEH. As expected, palmitoyl, stearoyl, oleoyl, and arachidonoyl LPAs were efficiently dephosphorylated by sEH (Km, 3-7 μM; Vmax, 150-193 nmol/min/mg). These results suggest that LPAs are substrates of sEH, which may regulate physiological functions of cells via their metabolism.  相似文献   

8.
A Pseudomonas monteilli strain (designated C11) that uses the phosphotriester coroxon as its sole phosphorus source has been isolated. Native PAGE and activity staining identified a single isozyme with significant phosphotriesterase activity in the soluble fraction of the cell. This phosphotriesterase could hydrolyse both coumaphos and coroxon. The hydrolysis product of coroxon, diethylphosphate, and the thion analogue, coumaphos, could not serve as phosphorus sources when added to the growth medium. The majority of the phosphotriesterase and phosphatase activity was contained in the soluble fraction of the cell. Phosphatase activity was inhibited by vanadate as well as by dialysis against the metal chelator, EDTA. Phosphotriesterase activity was not affected by either vanadate or dialysis with EDTA or 1,10-phenanthroline. Phosphotriesterase activity was regulated by the amounts of both phosphate and coroxon in the medium, whereas total phosphatase activity was regulated by phosphate but not coroxon. A lack of hybridisation using a probe against the opd (organophosphate degradation) gene encoding a phosphotriesterase from Flavobacterium sp. ATCC27551 against bulk DNA from P. monteilli C11 suggested that this strain does not contain opd. The work presented here indicates the presence of a novel phosphotriesterase in P. monteilli C11.  相似文献   

9.
In Pseudomonas aeruginosa, choline or betaine employed as the sole carbon and nitrogen source in a high phosphate medium induced a phospholipase C and an acid phosphatase activity but not an alkaline phosphatase activity. The P. aeruginosa strain utilized in this work does not possess a constitutive phospholipase C, since under culture conditions identical to those utilized by other authors (J. Bacteriol. 93, 670-674 (1967) and J. Bacteriol. 150, 730-738 (1982), our phospholipase C proved to be an inorganic phosphate-repressible enzyme. These findings enable us to conclude that although the phosphate control for the synthesis of phospholipase C may exist, it is expressed only under certain favorable culture conditions.  相似文献   

10.
Low phosphorous availability, a common condition of many soils, is known to stimulate phosphatase activity in plants; however, the molecular details of this response remain mostly unknown. We purified and sequenced the N-terminal region of a phosphate starvation induced acid phosphatase (AtACP5) from Arabidopsis thaliana, and cloned its cDNA and the corresponding genomic DNA. The nucleotide sequence of the cDNA predicted that AtACP5 is synthesised as a 338 amino acid-long precursor with a signal peptide. AtACP5 was found to be related to known purple acid phosphatases, especially to mammal type 5 acid phosphatases. Other similarities with purple acid phosphatases, which contain a dinuclear metal centre, include the conservation of all residues involved in metal ligand binding and resistance to tartrate inhibition. In addition, AtACP5, like other type 5 acid phosphatases, displayed peroxidation activity. Northern hybridisation experiments, as well as in situ glucuronidase (GUS) activity assays on transgenic plants harbouring AtACP5:GUS translational fusions, showed that AtACP5 is not only responsive to phosphate starvation but also to ABA and salt stress. It is also expressed in senescent leaves and during oxidative stress induced by H2O2, but not by paraquat or salicylic acid. Given its bifunctionality, as it displays both phosphatase and peroxidation activity, we propose that AtACP5 could be involved in phosphate mobilisation and in the metabolism of reactive oxygen species in stressed or senescent parts of the plant.  相似文献   

11.
Analysis of the ACP1 gene product: classification as an FMN phosphatase.   总被引:1,自引:0,他引:1  
The relationship between the ACP1 gene product, an 18kDa acid phosphatase (E.C. 3.1.3.2) postulated to function as a protein tyrosyl phosphatase, and the cellular flavin mononucleotide (FMN) phosphatase has been examined in vitro and by using cultured Chinese hamster ovary (CHO) cells. Kinetic analysis indicated that at pH 6 the acid phosphatase utilized a variety of phosphate monoesters as substrates. While small molecules such as FMN were effectively utilized as substrates (kcat/Km = 7.3 x 10(3) s-1M-1), the tyrosyl phosphorylated form of the adipocyte lipid binding protein was a relatively poor substrate (kcat/Km = 1.7 x 10(-1) s-1M-1) suggesting a role for the phosphatase in flavin metabolism. Fractionation of CHO cell extracts revealed that 90% of the FMN phosphatase activity was soluble and that all of the soluble activity eluted from a Sephadex G-75 column with the acid phosphatase. All of the soluble FMN phosphatase activity was inhibited by immunospecific antibodies directed against the bovine heart ACP1 gene product. These results suggest that the ACP1 gene product functions cellularly not as a protein tyrosyl phosphatase but as a soluble FMN phosphatase.  相似文献   

12.
An acid phosphatase activity that displayed phosphotyrosyl-protein phosphatase has been purified from bovine cortical bone matrix to apparent homogeneity. The overall yield of the enzyme activity was greater than 25%, and overall purification was approximately 2000-fold with a specific activity of 8.15 mumol of p-nitrophenyl phosphate hydrolyzed per min/mg of protein at pH 5.5 and 37 degrees C. The purified enzyme was judged to be purified based on its appearance as a single protein band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (silver staining technique). The enzyme could be classified as a band 5-type tartrate-resistant acid phosphatase isoenzyme. The apparent molecular weight of this enzyme activity was determined to be 34,600 by gel filtration and 32,500 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the presence of reducing agent, indicating that the active enzyme is a single polypeptide chain. Kinetic evaluations revealed that the acid phosphatase activity appeared to catalyze its reaction by a pseudo Uni Bi hydrolytic two-step transfer reaction mechanism and was competitively inhibited by transition state analogs of Pi. The enzyme activity was also sensitive to reducing agents and several divalent metal ions. Substrate specificity evaluation showed that this purified bovine skeletal acid phosphatase was capable of hydrolyzing nucleotide tri- and diphosphates, phosphotyrosine, and phosphotyrosyl histones, but not nucleotide monophosphates, phosphoserine, phosphothreonine, phosphoseryl histones, or low molecular weight phosphoryl esters. Further examination of the phosphotyrosyl-protein phosphatase activity indicated that the optimal pH at a fixed substrate concentration (50 nM phosphohistones) for this activity was 7.0. Kinetic analysis of the phosphotyrosyl-protein phosphatase activity indicated that the purified enzyme had an apparent Vmax of approximately 60 nmol of [32P]phosphate hydrolyzed from [32P]phosphotyrosyl histones per min/mg of protein at pH 7.0 and an apparent Km for phosphotyrosyl proteins of approximately 450 nM phosphate group. In summary, the results of these studies represent the first purification of a skeletal acid phosphatase to apparent homogeneity. Our observation that this purified bovine bone matrix acid phosphatase was able to dephosphorylate phosphotyrosyl proteins at neutral pH is consistent with our suggestion that this enzyme may function as a phosphotyrosyl-protein phosphatase in vivo.  相似文献   

13.
The lipidic metabolite, diacylglycerol pyrophosphate (DGPP), in its dioctanoyl form (DGPP 8:0), has been described as an antagonist for mammalian lysophosphatidic acid (LPA) receptors LPA1 and LPA3. In this study we show that DGPP 8:0 does not antagonize LPA dependent activation of ERK(1/2) MAP kinases but strongly stimulated them in various mammalian cell lines. LPA and DGPP 8:0 stimulation of ERK(1/2) occurred through different pathways. The DGPP 8:0 effect appeared to be dependent on PKC, Raf and MEK but was insensitive to pertussis toxin and did not involve G protein activation. Finally we showed that DGPP 8:0 effect on ERK(1/2) was dependent on its dephosphorylation by a phosphatase activity sharing lipid phosphate phosphatase properties. The inhibition of this phosphatase activity by VPC32183, a previously characterized LPA receptor antagonist, blocked the DGPP 8:0 effect on ERK(1/2) activation. Moreover, down-regulation of lipid phosphate phosphatase 1 (LPP1) expression by RNA interference technique also reduced DGPP 8:0-induced ERK(1/2) activation. Consistently, over expression of LPP1 in HEK293 cells increases DGPP 8:0 hydrolysis and this increased activity was inhibited by VPC32183. In conclusion, DGPP 8:0 does not exert its effect by acting on a G protein coupled receptor, but through its dephosphorylation by LPP1, generating dioctanoyl phosphatidic acid which in turn activates PKC. These results suggest that LPP1 could have a positive regulatory function on cellular signaling processes such as ERK(1/2) activation.  相似文献   

14.
The lipidic metabolite, diacylglycerol pyrophosphate (DGPP), in its dioctanoyl form (DGPP 8:0), has been described as an antagonist for mammalian lysophosphatidic acid (LPA) receptors LPA1 and LPA3. In this study we show that DGPP 8:0 does not antagonize LPA dependent activation of ERK1/2 MAP kinases but strongly stimulated them in various mammalian cell lines. LPA and DGPP 8:0 stimulation of ERK1/2 occurred through different pathways. The DGPP 8:0 effect appeared to be dependent on PKC, Raf and MEK but was insensitive to pertussis toxin and did not involve G protein activation. Finally we showed that DGPP 8:0 effect on ERK1/2 was dependent on its dephosphorylation by a phosphatase activity sharing lipid phosphate phosphatase properties. The inhibition of this phosphatase activity by VPC32183, a previously characterized LPA receptor antagonist, blocked the DGPP 8:0 effect on ERK1/2 activation. Moreover, down-regulation of lipid phosphate phosphatase 1 (LPP1) expression by RNA interference technique also reduced DGPP 8:0-induced ERK1/2 activation. Consistently, over expression of LPP1 in HEK293 cells increases DGPP 8:0 hydrolysis and this increased activity was inhibited by VPC32183. In conclusion, DGPP 8:0 does not exert its effect by acting on a G protein coupled receptor, but through its dephosphorylation by LPP1, generating dioctanoyl phosphatidic acid which in turn activates PKC. These results suggest that LPP1 could have a positive regulatory function on cellular signaling processes such as ERK1/2 activation.  相似文献   

15.
Summary Acid phosphatase cytochemistry using lead salt methods was performed on rat peritoneal macrophages obtained by the intraperitoneal injection of dextran five days previously. Lead precipitate was present in the nuclear envelope, the rough endoplasmic reticulum, Golgi apparatus and lysosomes in about 50% of these cells. The formation of reaction product appeared to be substrate-specific and was sensitive to sodium fluoride in all these sites. However, only in the nuclear envelope, the rough endoplasmic reticulum and Golgi apparatus could lead salt precipitation be prevented by (a) omission of the washing procedure following the incubation step, (b) postincubation in a medium containing sodium fluoride, or (c) washing in buffer containing lead salt. It is concluded that precipitation of lead salt does not prove the presence of acid phosphatase activity in these organelles. The formation of precipitate in these sites is probably due to a local matrix effect, facilitated by the persistence of acid phosphatase activity in the lysosomes and a suboptimal trapping efficiency of phosphate ions during the washing procedure which follows in the incubation step.  相似文献   

16.
Molecular analysis of the PHO81 gene of Saccharomyces cerevisiae.   总被引:2,自引:0,他引:2       下载免费PDF全文
The PHO81 gene product is a positive regulatory factor required for the synthesis of the phosphate repressible acid phosphatase (encoded by the PHO5 gene) in Saccharomyces cerevisiae. Genetic analysis has suggested that PHO81 may be the signal acceptor molecule; however, the biochemical function of the PHO81 gene product is not known. We have cloned the PHO81 gene and sequenced the promoter. A PHO81-LacZ fusion was shown to be a valid reporter since its expression is regulated by the level of inorganic phosphate and is controlled by the same regulatory factors that regulate PHO5 expression. To elucidate the mechanism by which PHO81 functions, we have isolated and cloned dominant mutations in the PHO81 gene which confer constitutive synthesis of acid phosphatase. We have demonstrated that overexpression of the negative regulatory factor, PHO80, but not the negative regulatory factor PHO85, partially blocks the constitutive acid phosphatase synthesis in a strain containing a dominant constitutive allele of PHO81. This suggests that PHO81 may function by interacting with PHO80 or that these molecules compete for the same target.  相似文献   

17.
The rate kinetics of growth and acid phosphate formation in the batch culture of Saccharomyces carlsbergensis LAM 1068 was studied under varying degrees of phosphate limitation. The mathematical model that was developed is concerned with the time lag for exponential growth, the biphasic growth on a substrate (glucose) and its product (ethanol), sustained growth on conservative phosphate, and the derepression of acid phosphatase. The numerical calculations using appropriate parametric constants successfully described the variation in the cell mass, glucose, ethanol, and inorganic phosphate concentrations, and the enzyme activity of acid phosphatase during aerobic growth of S. carlsbergensis under five different conditions of phosphate starvation. A simulation study revealed that the optimum initial phosphate concentration in the medium giving a high productivity of acid phosphatase was 2.0 mg phosphorus/g glucose liter.  相似文献   

18.
Simian virus 40 large T antigen is a phosphoprotein with two clusters of phosphorylation sites. Each cluster includes four serine residues and one threonine residue. In vitro treatment with intestinal alkaline phosphatase removes the phosphate groups from the serine but not from the threonine residues. Potato acid phosphatase additionally dephosphorylates the phosphothreonine (Thr-124) in the N-terminal cluster but does not attack the phosphothreonine in the C-terminal cluster (Thr-701). Two biochemical functions of untreated and partially dephosphorylated T antigen were assayed, namely, its specific DNA-binding property and its DNA helicase activity. After treatment with alkaline phosphatase, T antigen had a severalfold higher affinity for the specific binding sites in the viral genomic control region, in particular, for binding site II in the origin of replication. However, T antigen, when dephosphorylated by acid phosphatase, had DNA-binding properties similar to those of the untreated control. Neither alkaline nor acid dephosphorylation affected the DNA helicase activity of T antigen.  相似文献   

19.
Acid phosphatase activity has been demonstrated in rat liver with the semipermeable membrane technique using naphthol AS-BI phosphate as substrate and hexazotized pararosaniline (HPRA) as simultaneous coupling agent. With this method the final reaction product (FRP) appeared in rat liver as intensely colored red granules in liver parenchymal cells and in Küpffer cells. The absorbance spectrum of the FRP peaks between 510 and 550 nm. A nonspecific reaction product, as has been found in skeletal muscle, did not occur in rat liver. A substrate concentration of 5 mM and a HPRA concentration of 10 mM result in optimum localization and activity. We concluded from the results with different enzyme inhibitors that lysosomal acid phosphatase was demonstrated. The mean absorbance of the FRP increased linearly with incubation time (15-60 min). Furthermore, we found a linear increase of the FRP with increasing section thickness (4-10 micron). When the simultaneous coupling method was replaced by a post-coupling technique, the colored reaction product was diffusely located throughout the cytoplasm. In conclusion, the simultaneous coupling technique in combination with the semipermeable membrane method is a valuable tool for detecting and quantifying lysosomal acid phosphatase activity in rat liver. We demonstrated that acid phosphatase activity is 1.2 times higher periportally than pericentrally in rat liver, and that 24 hr fasting before the experiments did not change the acid phosphatase activity.  相似文献   

20.
In order to study the mechanism of the digestive process of Armillaria mellea in Castrodia data, electron microscopy and cytochemical method for determination of acid phosphatase activity was employed. The provacuoles were formed by means of expanded or convoluted ER under the stimulation of cortical cells and large cells of Gastrodia data by Armillaria mellea. A product of acid phosphatase (lead phosphate deposits) occured on the tonoplast. The papillae were produced in the cell wall of cortex in Gastrodia data when Armillaria mellea penetrated into its cortex. Our results showed that the enzyme was not released from cell of Armillaria mellea. A number of small vacuoles in the cortical cells disappeared. At the same time, lead phosphate deposits on the Armillaria mellea hyphae wall were observed and than Armillaria mellea hyphae wall was going to be digested, and the hyphae lost their structure. The activity of Armillaria mellea hyphae was not observed in the large cell of Gastrodia data. A great deal of small vacuoles and mitochondria were produced, at the same time the renewable nuclei and nuclolar vacuoles etc. appeared in the large cells of Gastrodia data under the stimulation of Armillaria mellea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号