首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— The enzymes for the biosynthesis of phosphatidic acid from acyl dihydroxyacetone phosphate were shown to be present in rat brain. These enzymes were mainly localized in the microsomal fraction of 12–14 day old rat brains. The brain microsomal acyl CoA: dihydroxyacetone phosphate acyl transferase (EC 2.3.1.42), exhibited a broad pH optimum between pH 5 and 9 with maximum activity at pH 5.4. K m for DHAP at pH 5.4 was 0.1 m m and V max was 0.86nmol/min/mg of microsomal protein. The corresponding microsomal enzyme for the glycerophosphate pathway (acyl CoA: sn -glycerol-3-phosphate acyl transferase EC 2.3.1.15) was shown to have a different pH optimum (pH 7.6). On the basis of the differences in pH optima, differential effects of sodium cholate in the enzymes and a common substrate competition study, these acyl transferases were postulated to be two different microsomal enzymes.
Acyl DHAP:NADPH oxidoreductase (EC 1.1.1.101) in brain microsomes was found to be quite specific for NADPH as cofactor, being able to utilize NADH only at very high concentrations. This enzyme exhibited a K m of 8.6 μ m with NADPH and V mx of 0.81 nmol/min/mg protein. The presence of these two enzymes and the known presence of l-acyl- sn -glycerol-3-phosphate: acyl CoA acyl transferase in brain (F leming & H ajra , 1977) demonstrated the biosynthesis of phosphatidic acid in brain via acyl dihydroxyacetone phosphate. Phosphatidic acid was shown to form when dihydroxyacetone phosphate, acyl CoA, NADPH and other cofactors were incubated together with brain microsomes. Further properties of the enzymes and the probable importance of the presence of this pathway in brain were discussed.  相似文献   

2.
The information provided by completely sequenced genomes can yield insights into the multi-level organization of organisms and their evolution. At the lowest level of molecular organization individual enzymes are formed, often through assembly of multiple polypeptides. At a higher level, sets of enzymes group into metabolic networks. Much has been learned about the relationship of species from phylogenetic trees comparing individual enzymes. In this article we extend conventional phylogenetic analysis of individual enzymes in different organisms to the organisms' metabolic networks. For this purpose we suggest a method that combines sequence information with information about the underlying reaction networks. A distance between pathways is defined as incorporating distances between substrates and distances between corresponding enzymes. The new analysis is applied to electron-transfer and amino acid biosynthesis networks yielding a more comprehensive understanding of similarities and differences between organisms. Received: 14 August 2000 / Accepted: 4 January 2001  相似文献   

3.
Recent finding that a prokaryote synthesizes lysine through the α-aminoadipate pathway demonstrates that the lysine synthesis through the α-aminoadipate pathway is not typical of fungi. However, the fungal lysine biosynthesis is not completely the same as the prokaryotic one. We point out that α-aminoadipate reductase is a key enzyme to the evolution of fungal lysine synthesis. In addition, fungi have two different saccharopine dehydrogenases, which is also characteristic of fungi. Received: 18 February 2000 / Accepted: 19 June 2000  相似文献   

4.
Recruiting complex metabolic reaction networks for chemical synthesis has attracted considerable attention but frequently requires optimization of network composition and dynamics to reach sufficient productivity. As a design framework to predict optimal levels for all enzymes in the network is currently not available, state-of-the-art pathway optimization relies on high-throughput phenotype screening. We present here the development and application of a new in vitro real-time analysis method for the comprehensive investigation and rational programming of enzyme networks for synthetic tasks. We used this first to rationally and rapidly derive an optimal blueprint for the production of the fine chemical building block dihydroxyacetone phosphate (DHAP) via Escherichia coli's highly evolved glycolysis. Second, the method guided the three-step genetic implementation of the blueprint, yielding a synthetic operon with the predicted 2.5-fold-increased glycolytic flux toward DHAP. The new analytical setup drastically accelerates rational optimization of synthetic multienzyme networks.  相似文献   

5.
Fungi have evolved a unique α-aminoadipate pathway for lysine biosynthesis. The fungal-specific enzyme homoaconitate hydratase from this pathway is moderately similar to the aconitase-family proteins from a diverse array of taxonomic groups, which have varying modes of obtaining lysine. We have used the similarity of homoaconitate hydratase to isopropylmalate isomerase (serving in leucine biosynthesis), aconitase (from the tricarboxylic acid cycle), and iron-responsive element binding proteins (cytosolic aconitase) from fungi and other eukaryotes, eubacteria, and archaea to evaluate possible evolutionary scenarios for the origin of this pathway. Refined sequence alignments show that aconitase active site residues are highly conserved in each of the enzymes, and intervening sequence sites are quite dissimilar. This pattern suggests strong purifying selection has acted to preserve the aconitase active site residues for a common catalytic mechanism; numerous other substitutions occur due to adaptive evolution or simply lack of functional constraint. We hypothesize that the similarities are the remnants of an ancestral gene duplication, which may not have occurred within the fungal lineage. Maximum likelihood, neighbor joining, and maximum parsimony phylogenetic comparisons show that the α-aminoadipate pathway enzyme is an outgroup to all aconitase family proteins for which sequence is currently available. Received: 7 October 1997  相似文献   

6.
Stereoselective carbon–carbon bond formation with aldolases has become an indispensable tool in preparative synthetic chemistry. In particular, the dihydroxyacetone phosphate (DHAP)-dependent aldolases are attractive because four different types are available that allow access to a complete set of diastereomers of vicinal diols from achiral aldehyde acceptors and the DHAP donor substrate. While the substrate specificity for the acceptor is rather relaxed, these enzymes show only very limited tolerance for substituting the donor. Therefore, access to DHAP is instrumental for the preparative exploitation of these enzymes, and several routes for its synthesis have become available. DHAP is unstable, so chemical synthetic routes have concentrated on producing a storable precursor that can easily be converted to DHAP immediately before its use. Enzymatic routes have concentrated on integrating the DHAP formation with upstream or downstream catalytic steps, leading to multi-enzyme arrangements with up to seven enzymes operating simultaneously. While the various chemical routes suffer from either low yields, complicated work-up, or toxic reagents or catalysts, the enzymatic routes suffer from complex product mixtures and the need to assemble multiple enzymes into one reaction scheme. Both types of routes will require further improvement to serve as a basis for a scalable route to DHAP.  相似文献   

7.
The evolutionary origin of the Krebs citric acid cycle has been for a long time a model case in the understanding of the origin and evolution of metabolic pathways: How can the emergence of such a complex pathway be explained? A number of speculative studies have been carried out that have reached the conclusion that the Krebs cycle evolved from pathways for amino acid biosynthesis, but many important questions remain open: Why and how did the full pathway emerge from there? Are other alternative routes for the same purpose possible? Are they better or worse? Have they had any opportunity to be developed in cellular metabolism evolution? We have analyzed the Krebs cycle as a problem of chemical design to oxidize acetate yielding reduction equivalents to the respiratory chain to make ATP. Our analysis demonstrates that although there are several different chemical solutions to this problem, the design of this metabolic pathway as it occurs in living cells is the best chemical solution: It has the least possible number of steps and it also has the greatest ATP yielding. Study of the evolutionary possibilities of each one-taking the available material to build new pathways-demonstrates that the emergence of the Krebs cycle has been a typical case of opportunism in molecular evolution. Our analysis proves, therefore, that the role of opportunism in evolution has converted a problem of several possible chemical solutions into asingle-solution problem, with the actual Krebs cycle demonstrated to be the best possible chemical design. Our results also allow us to derive the rules under which metabolic pathways emerged during the origin of life.  相似文献   

8.
The fatty acid of acyl dihydroxyacetone phosphate can be exchanged enzymatically for another fatty acid. It has been shown that this reaction proceeds by cleavage of the oxygen bound to C-1 of the dihydroxyacetone phosphate (DHAP) moiety rather than by the more common cleavage at the acyl to oxygen bond. In the present study, the stereochemistry of this reaction was defined further; using deuterated substrates and fast atom bombardment-mass spectrometry, it was shown that the fatty acid exchange involves the stereospecific labilization of the pro-R hydrogen at C-1 of the DHAP moiety of acyl DHAP. The mechanism of ether bond formation, in which acyl DHAP is converted to O-alkyl DHAP, also proceeds via labilization of the pro-R hydrogen and cleavage of the fatty acid at the C-1 to oxygen bond. In addition, other workers have provided evidence that the enzyme responsible for the exchange reaction is O-alkyl DHAP synthetase. Therefore, the present results support the hypothesis that the acyl exchange is the reverse reaction of the first step in O-alkyl DHAP synthesis; in both of these reactions the pro-R hydrogen of C-1 of the DHAP moiety of acyl DHAP and the fatty acid moiety are labilized with cleavage of the fatty acid at the DHAP C-1 to oxygen bond.  相似文献   

9.
A double label design was used to study the in vivo incorporation of [U-14C] and [2-3H]glycerol into total and individual phospholipids of various brain subcellular fractions isolated from 20-day old normal and undernourished rats. In control animals, synthesis of glycerophospholipids of microsomes, mitochondria and nerve endings seems to occur through the glycerol-3-phosphate (G-3-P) pathway while a large part of the synthesis of myelin glycerophospholipids appears to proceed through the dihydroxyacetone phosphate (DHAP) pathway. In starved animals, on the other hand the incorporation of phospholipid precursors through the DHAP pathway was found to be lower than in controls while synthesis of phospholipids in the other subcellular fractions was unaffected.The possible relationship between the synthesis of glycerophospholipids and especially plasmalogens of the myelin membrane and microperoxisomes of oligodendroglial cells, where the enzymes of the DHAP pathway are located, is discussed.  相似文献   

10.
Chain Length specificity in alkyl glycerolipid biosynthesis was studied with microsomal preparations from 19-day-old rat brain. Saturated alcohols ranging from 12 to 22 carbon atoms were incorporated at different rates into alkyl dihydroxyacetone phosphate, the first intermediate in ether lipid biosynthesis. The rate of alkyl dihydroxyacetone phosphate formation was highest with hexadecanol and alcohols of either longer or shorter chain length were utilized much less efficiently. The monounsaturated octadecenol was incorporated more readily than any of the saturated alcohols. Rat brain microsomes were also found to reduce saturated fatty acids ranging from 12 to 22 carbon atoms, and oleic acid to the corresponding alcohols in the presence of ATP, coenzyme A, Mg2+, and NADPH. Chain length selectivity in the reduction was less pronounced than that in alkyl DHAP synthesis. The data indicate that the alkyl and alk-1-enyl composition of rat brain ether lipids is controlled by substrate specificity in the formation of both fatty alcohol and alkyl dihydroxyacetone phosphate.  相似文献   

11.
The structure of the metabolic network is highly conserved, but we know little about its evolutionary origins. Key for explaining the early evolution of metabolism is solving a chicken–egg dilemma, which describes that enzymes are made from the very same molecules they produce. The recent discovery of several nonenzymatic reaction sequences that topologically resemble central metabolism has provided experimental support for a “metabolism first” theory, in which at least part of the extant metabolic network emerged on the basis of nonenzymatic reactions. But how could evolution kick-start on the basis of a metal catalyzed reaction sequence, and how could the structure of nonenzymatic reaction sequences be imprinted on the metabolic network to remain conserved for billions of years? We performed an in vitro screening where we add the simplest components of metabolic enzymes, proteinogenic amino acids, to a nonenzymatic, iron-driven reaction network that resembles glycolysis and the pentose phosphate pathway (PPP). We observe that the presence of the amino acids enhanced several of the nonenzymatic reactions. Particular attention was triggered by a reaction that resembles a rate-limiting step in the oxidative PPP. A prebiotically available, proteinogenic amino acid cysteine accelerated the formation of RNA nucleoside precursor ribose-5-phosphate from 6-phosphogluconate. We report that iron and cysteine interact and have additive effects on the reaction rate so that ribose-5-phosphate forms at high specificity under mild, metabolism typical temperature and environmental conditions. We speculate that accelerating effects of amino acids on rate-limiting nonenzymatic reactions could have facilitated a stepwise enzymatization of nonenzymatic reaction sequences, imprinting their structure on the evolving metabolic network.

The evolutionary origins of metabolism are largely unknown. This study shows that the prebiotically available proteinogenic amino acid cysteine can promote the metabolism-like rate-limiting formation of ribose-5-phosphate, suggesting that early metabolic pathways could have emerged thought the stepwise enzymatization of non-enzymatic reaction sequences.  相似文献   

12.
13.
Members of the transketolase group of thiamine-diphosphate-dependent enzymes from 17 different organisms including mammals, yeast, bacteria, and plants have been used for phylogenetic reconstruction. Alignment of the amino acid and DNA sequences for 21 transketolase enzymes and one putative transketolase reveals a number of highly conserved regions and invariant residues that are of predicted importance for enzyme activity, based on the crystal structure of yeast transketolase. One particular sequence of 36 residues has some similarities to the nucleotide-binding motif and we designate it as the transketolase motif. We report further evidence that the recP protein from Streptococcus pneumoniae might be a transketolase and we list a number of invariant residues which might be involved in substrate binding. Phylogenies derived from the nucleotide and the amino acid sequences by various methods show a conventional clustering for mammalian, plant, and gram-negative bacterial transketolases. The branching order of the gram-positive bacteria could not be inferred reliably. The formaldehyde transketolase (sometimes known as dihydroxyacetone synthase) of the yeast Hansenula polymorpha appears to be orthologous to the mammalian enzymes but paralogous to the other yeast transketolases. The occurrence of more than one transketolase gene in some organisms is consistent with several gene duplications. The high degree of similarity in functionally important residues and the fact that the same kinetic mechanism is applicable to all characterized transketolase enzymes is consistent with the proposition that they are all derived from one common ancestral gene. Transketolase appears to be an ancient enzyme that has evolved slowly and might serve as a model for a molecular clock, at least within the mammalian clade. Received: 13 September 1995 / Accepted: 14 November 1996  相似文献   

14.
The orchestration of a multitude of enzyme catalysts allows cells to carry out complex and thermodynamically unfavorable chemical conversions. In an effort to recruit these advantages for in vitro biotransformations, we have assembled a 10‐step catalytic system—a system of biotransformations (SBT)—for the synthesis of unnatural monosaccharides based on the versatile building block dihydroxyacetone phosphate (DHAP). To facilitate the assembly of such a network, we have insulated a production pathway from Escherichia coli's central carbon metabolism. This pathway consists of the endogenous glycolysis without triose‐phosphate isomerase to enable accumulation of DHAP and was completed with lactate dehydrogenase to regenerate NAD+. It could be readily extended for the synthesis of unnatural sugar molecules, such as the unnatural monosaccharide phosphate 5,6,7‐trideoxy‐D ‐threo‐heptulose‐1‐phosphate from DHAP and butanal. Insulation required in particular inactivation of the amn gene encoding the AMP nucleosidase, which otherwise led to glucose‐independent DHAP production from adenosine phosphates. The work demonstrates that a sufficiently insulated in vitro multi‐step enzymatic system can be readily assembled from central carbon metabolism pathways. Biotechnol. Bioeng. 2010; 106: 376–389. © 2010 Wiley Periodicals, Inc.  相似文献   

15.
To disclose the addition of some strong promotional amino acids (namely glycine, glutamate, lysine and aspartic acid) is how to improve the glycerol productivity of Candida glycerinogenes. An amino acid addition strategy based on dynamic enzyme activity was applied to improve glycerol productivity and decrease the byproducts formation in a fermentation of C. glycerinogenes in a 7-1 bioreactor. Compared with the control, after feeding glycine, glutamate, lysine and aspartic acid, glycerol productivity obtained an increase of 22.3, 25.6, 23.5 and 28.6%, respectively; meanwhile, the amounts of ethanol, acetic acid and pyruvate decreased largely. Whichever glycine, lysine, glutamate or aspartic acid was fed could elevate the activities of glucose-6-phosphate dehydrogenase (G6PDH), citrate synthase (CIT), triosephosphate isomerase (TPI) and cytoplasmic NAD+AEAAKw-dependent glycerol-3-phosphate dehydrogenase (ctGPD), and reduce the activities of pyruvate kinase (PYK), phosphofructokinase (PFK) and alcohol dehydrogenase (ADH). The reason of glycerol overproduction by the yeasts after feeding glycine, glutamate, lysine or aspartic acid is that the anaplerosis of intermediate metabolites in TCA cycle for amino acid degradation can decrease the flux from Embden-Meyerhof-Parnas (EMP) pathway to TCA cycle and enhance the flux through glycerol biosynthesis pathway. Above all, not only the high active hexose monophosphate (HMP) pathway but also the high dihydroxyacetone phosphate (DHAP) level plays an important role in the high glycerol productivity of C. glycerinogenes. The strategy of amino acid supplement is significant and can be economically implemented by an online process control strategy for higher yield of glycerol in industrial scale. Published in Russian in Prikladnaya Biokhimiya i Mikrobiologiya, 2009, Vol. 45, No. 3, pp. 338–343. The article is published in the original.  相似文献   

16.
Fructose 1,6-diphosphate (FDP) is a widely used medicine and is also a precursor of two important three-carbon phosphates – glyceraldehyde 3-phosphate (GA3P) and dihydroxyacetone phosphate (DHAP) for the biosynthesis of numerous fine chemicals. An in vitro synthetic cofactor-free enzymatic pathway comprised of four hyperthermophilic enzymes was designed to produce FDP from starch and pyrophosphate. All of four hyperthermophilic enzymes (i.e., alpha-glucan phosphorylase from Thermotaga maritima, phosphoglucomutase from Thermococcus kodakarensis, glucose 6-phosphate isomerase from Thermus thermophilus, and pyrophosphate phosphofructokinase from T. maritima) were overexpressed in E. coli BL21(DE3) and purified by simple heat precipitation. The optimal pH and temperature of one-pot biosynthesis were 7.2 and 70 °C, respectively. The optimal enzyme ratios of αGP, PGM, PGI and PFK were 2:2:1:2 in terms of units. Via step-wise addition of new substrates, up to 125 ± 4.6 mM FDP was synthesized after 7-h reaction. This de novo ATP-free enzymatic pathway comprised of all hyperthermophilic enzymes could drastically decrease the manufacturing costs of FDP and its derivatives GA3P and DHAP, better than those catalyzed by ATP-regeneration cascade biocatalysis, the use of mesophilic enzymes, whole cell lysates, and microbial cell factories.  相似文献   

17.
The photosynthetic cyanobacterium Synechocystis sp. strain PCC6803 possesses homologs of known genes of the non-mevalonate 2-C-methyl-D-erythritol 2-phosphate (MEP) pathway for synthesis of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). Isoprenoid biosynthesis in extracts of this cyanobacterium, measured by incorporation of radiolabeled IPP, was not stimulated by pyruvate, an initial substrate of the MEP pathway in Escherichia coli, or by deoxyxylulose-5-phosphate, the first pathway intermediate in E. coli. However, high rates of IPP incorporation were obtained with addition of dihydroxyacetone phosphate (DHAP) and glyceraldehyde 3-phosphate (GA3P), as well as a variety of pentose phosphate cycle compounds. Fosmidomycin (at 1 micro M and 1 mM), an inhibitor of deoxyxylulose-5-phosphate reductoisomerase, did not significantly inhibit phototrophic growth of the cyanobacterium, nor did it affect [(14)C]IPP incorporation stimulated by DHAP plus GA3P. To date, it has not been possible to unequivocally demonstrate IPP isomerase activity in this cyanobacterium. The combined results suggest that the MEP pathway, as described for E. coli, is not the primary path by which isoprenoids are synthesized under photosynthetic conditions in Synechocystis sp. strain PCC6803. Our data support alternative routes of entry of pentose phosphate cycle substrates derived from photosynthesis.  相似文献   

18.
In the yeast Saccharomyces cerevisiae lipid particles harbor two acyltransferases, Gat1p and Slc1p, which catalyze subsequent steps of acylation required for the formation of phosphatidic acid. Both enzymes are also components of the endoplasmic reticulum, but this compartment contains additional acyltransferase(s) involved in the biosynthesis of phosphatidic acid (K. Athenstaedt and G. Daum, J. Bacteriol. 179:7611-7616, 1997). Using the gat1 mutant strain TTA1, we show here that Gat1p present in both subcellular fractions accepts glycerol-3-phosphate and dihydroxyacetone phosphate as a substrate. Similarly, the additional acyltransferase(s) present in the endoplasmic reticulum can acylate both precursors. In contrast, yeast mitochondria harbor an enzyme(s) that significantly prefers dihydroxyacetone phosphate as a substrate for acylation, suggesting that at least one additional independent acyltransferase is present in this organelle. Surprisingly, enzymatic activity of 1-acyldihydroxyacetone phosphate reductase, which is required for the conversion of 1-acyldihydroxyacetone phosphate to 1-acylglycerol-3-phosphate (lysophosphatidic acid), is detectable only in lipid particles and the endoplasmic reticulum and not in mitochondria. In vivo labeling of wild-type cells with [2-3H, U-14C]glycerol revealed that both glycerol-3-phosphate and dihydroxyacetone phosphate can be incorporated as a backbone of glycerolipids. In the gat1 mutant and the 1-acylglycerol-3-phosphate acyltransferase slc1 mutant, the dihydroxyacetone phosphate pathway of phosphatidic acid biosynthesis is slightly preferred as compared to the wild type. Thus, mutations of the major acyltransferases Gat1p and Slc1p lead to an increased contribution of mitochondrial acyltransferase(s) to glycerolipid synthesis due to their substrate preference for dihydroxyacetone phosphate.  相似文献   

19.
We have used a fluorescence-activated cytotoxicity protocol, 9-(1'-pyrene)nonanol (P9OH)/UV selection (Morand, O. H., Allen, L.-A. H., Zoeller, R. A., and Raetz, C. R. H. (1990) Biochim. Biophys. Acta 1034, 132-141), to isolate a series of plasmalogen-deficient mutants in a murine, macrophage-like cell line, RAW 264.7. Three of these mutants, RAW.7, RAW.12, and RAW.108, displayed varying degrees of plasmalogen deficiency (48, 17, and 14% of wild-type levels, respectively), and all three mutants were deficient in peroxisomal dihydroxyacetone phosphate (DHAP) acyltransferase activity (5% of wild-type). Unlike previously described Chinese hamster ovary (CHO) cell mutants, the RAW mutants contained intact, functional, peroxisomes and normal levels of alkyl-DHAP synthase activity, a peroxisomal, membrane-bound enzyme. In RAW.7 and RAW.108 cells, the loss of peroxisomal DHAP acyltransferase is the primary lesion. RAW.12 displayed not only a deficiency in the DHAP acyltransferase activity, but also displayed a second lesion in the biosynthetic pathway, a deficiency in delta 1'-desaturase activity (plasmanylethanolamine desaturase, EC 1.14.99.19), the final step in plasmenylethanolamine biosynthesis. The deficiencies expressed in the mutants represent unique lesions in plasmalogen biosynthesis. Since the RAW cell line is a macrophage-like responsive cell line, these mutants can be used to examine the role of plasmalogens in cellular functions such as arachidonic acid metabolism, prostaglandin synthesis, protein secretion, and signal transduction.  相似文献   

20.
Two isozymes of dihydroxyacetone phosphate reductase in dunaliella   总被引:1,自引:0,他引:1       下载免费PDF全文
Two isoforms of dihydroxyacetone phosphate reductase were present in Dunaliella tertiolecta. The major form was located in the chloroplast and the minor form in the cytosol. The chloroplastic reductase eluted first from a DEAE cellulose column followed immediately by the cytosolic form. Both forms were unstable and cold labile. Addition of 5 millimolar dithiothreitol helped to stabilize the enzymes. The cytosolic isoform of DHAP reductase was detected only if the cells were in an active log phase of growth. Then its activity was 20 to 30% of the total reductase activity. When cell cultures entered late log phase of growth the activity of the cytosolic form of the enzyme disappeared, but the chloroplastic form remained. The cytosolic DHAP reductase from Dunaliella has some properties similar to the cytosolic isoform from spinach leaves. Detergents inhibited both enzymes. However, neither form of the algal dihydroxyacetone phosphate reductase was stimulated by fructose 2,6-bisphosphate. In Dunaliella the properties of the chloroplastic form were those expected for glycerol production for osmoregulation, whereas the cytosolic form, like the reductases in leaves, is more likely involved in glycerol phosphate formation for lipid synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号