首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cowpea (Vigna unguiculata) and mung bean (Vigna radiata) are important legume crops yet their rhizobia have not been well characterized. In the present study, 62 rhizobial strains isolated from the root nodules of these plants grown in the subtropical region of China were analyzed via a polyphasic approach. The results showed that 90% of the analyzed strains belonged to or were related to Bradyrhizobium japonicum, Bradyrhizobium liaoningense, Bradyrhizobium yuanmingense and Bradyrhizobium elkanii, while the remaining represented Rhizobium leguminosarum, Rhizobium etli and Sinorhizobium fredii. Diverse nifH and nodC genes were found in these strains and their symbiotic genes were mainly coevolved with the housekeeping genes, indicating that the symbiotic genes were mainly maintained by vertical transfer in the studied rhizobial populations.  相似文献   

2.
The effects of drought on chlorophyll fluorescence characteristics of PSII, photosynthetic pigments, thylakoid membrane protein (D1), and proline content in different varieties of mung bean plants were studied. Drought stress inhibits PSII activity and induces alterations in D1 protein. We observed a greater decline in the effective quantum yield of PSII, electron transport rate, and saturating photosynthetically active photon flux density (PPFDsat) under drought stress in var. Anand than var. K-851 and var. RMG 268. This may possibly be due to either downregulation of photosynthesis or photoinhibition process. Withholding irrigation resulted in gradual diminution in total Chl content at Day 4 of stress. HPLC analysis revealed that the quantity of β-carotene in stressed plants was always higher reaching maxima at Day 4. Photoinactivation of PSII in var. Anand includes the loss of the D1 protein, probably from greater photosynthetic damage caused by drought stress than the other two varieties.  相似文献   

3.
In the present study, photosynthetic parameters including gas exchanges, pigment contents, and chlorophyll fluorescence, were compared in two contrasting local Medicago truncatula lines TN6.18 and TN8.20, in response to salt added to the nutrient solution. Plants were cultivated under symbiotic nitrogen fixation (SNF) after inoculation with a reference strain Sinorhizobium meliloti 2011, a very tolerant strain to salinity (700 mM NaCl), and grown in a controlled glasshouse. On one month old plants (with active SNF), salt treatment (75 mM NaCl) was gradually applied. Photosynthesis, assimilating pigments and chlorophyll fluorescence were monitored throughout the experiment during both short and long terms, compared to control (non-saline) conditions. A genotypic variation in salt tolerance was found; TN6.18 was the more sensitive to salinity. The relative tolerance of TN8.20 was concomitant with the highest photochemical quenching coefficient (qP) affecting the maximum quantum yield of PSII (Y); the real quantum yield (?exc) was the most affected in the sensitive line. Moreover, stomatal and PSII reaction centers activities differed clearly between the studied lines. We found that the effect of salinity on photosynthesis of M. truncatula was related to PSII activity reduction rather than to stomatal conductance limitation. Photosynthesis was reduced by the inhibition of CO2 assimilation caused by PSII damage. This was clearly estimated by the Y, ?exc and especially by the quantum yield of electron transport of PSII (ΦPSII). Thus, on the basis of our results on the two local M. truncatula lines, we recommend the use of chlorophyll fluorescence as non-destructive screening method to discriminate susceptible and resistant legumes to salt stress.  相似文献   

4.
McDonald  G.K.  Paulsen  G.M. 《Plant and Soil》1997,196(1):47-58
Effects of high temperature on photosynthesis, and its interaction with water relations in common bean (Phaseolus vulgaris), cowpea (Vigna unguiculata), faba bean (Vicia faba), and five cultivars of field pea (Pisum sativum) were investigated. Responses of all species were compared at 20/15, 30/15, or 30/25 °C day/night, and cowpea and pea were compared at 20/15 and 30/25 °C under well-watered and limited-water conditions. Response of pea to 20/15 and 30/25 °C during flowering was ascertained, and sensitivity of the photosystem of pea and faba bean to 40 °C was determined.High temperature decreased chlorophyll variable fluorescence (Fv), a measure of injury to photosynthesis, in all species except cowpea, which was highly tolerant. Leaf chlorophyll and most measures of growth were favored by high day temperature but not by high night temperature, and photosynthetic rates were enhanced by high temperatures that increased leaf chlorophyll and nitrogen (N) contents. High temperature diminished growth less than water deficiency and increased water use of all three species but only lowered the water potential in faba bean. Water deficiency generally decreased growth, water use, and water potential more at 30/25 °C than at 20/15 °C. Stress from high temperature during flowering of pea decreased all components of yield at maturity, particularly at nodes that flowered latest. Whole-chain photosynthetic activity in thylakoids of pea, faba bean, and wheat (Triticum aestivum) were equally sensitive to high temperature, suggesting that Photosystem Il was the most labile component. The results show that high temperature affects photosynthesis, growth, and water relations of grain legumes, and sensitivity to the stress differs among species and genotypes.  相似文献   

5.
Changes in chlorophyll fluorescence emission from maize ( Zea mays L. cv. Northern Belle) seedlings chilled at 1.5°C in the dark for 3–30 h were compared with the ability of plants to resume growth in the immediate post-chilling period and with the development of visible symptoms of injury to the leaves. During chilling, the maximal rate of increase of the induced chlorophyll fluorescence rise. FR, was measured on secondary leaf tissue. FR decreased exponentially, at approximately the same rate in plants grown and chilled in hydroponic pots, in leaves detached from similar plants and in plants that were removed from the hydroponic pots and laid on wet filter paper adjacent to the detached leaves. The half-fall time for FR in the 3 treatments was 7.8 ± 1.3 h, 8.6 ± 0.6 h and 8.8 ± 1.0 h, respectively. Following seedling removal from 1.5°C and return to 25/15°C, relative growth rates were determined from daily measurements of plant fresh weight gain. Compared with non-chilled seedlings, plants chilled for 3 h and longer showed depressed rates of growth. Inhibition of growth in the immediate post-chilling period (0–27 h) was linearly related to the duration of the chilling period and had a high positive correlation with the decrease in chlorophyll fluorescence (linearly related to log FR) sustained during the chilling exposure. Visible symptoms of chilling injury developed during the post-chilling period on seedlings chilled for longer than 3 h. The decrease in log FR during chilling was also linearly correlated with the severity of visual symptoms of chilling injury expressed in the post-chilling period. It is concluded that the extent of chilling injury in maize can be rapidly and non-destructively assessed from measurements of chlorophyll fluorescence.  相似文献   

6.
The temperature dependence of the yield of in vivo prompt and delayed chlorophyll fluorescence was investigated in maize and barley leaves. In the chilling-sensitive maize, delayed fluorescence at steady-state level showed a maximum near the temperature at which thylakoid membrane lipids undergo a phase transition as revealed by differential scanning calorimetry measurements. In the chilling-resistant barley, no phase transition was detected above 0°C and the delayed light emission varied in a monotonic fashion. It was shown that measurements of delayed luminescence intensity in vivo can provide a rapid and sensitive method for detecting the phase change of membrane lipids in intact leaves of chilling-sensitive plant species such as tomato, cotton, cucumber, castor bean or avocado. In contrast, the use of steady-state prompt chlorophyll fluorescence as an indicator of membrane fluidity change was not successful.  相似文献   

7.
Photoinhibition and recovery kinetics after short exposure to solar radiation following three different irradiance treatments of irradiances (PAR, PAR+UVA and PAR+UVA+UVB) was assessed in two intertidal species of the genus Gelidium, Gelidium sesquipedale and G. latifolium, collected from Tarifa (southern Spain) using in vivo chlorophyll fluorescence (PAM fluorometry). After 3 h UV radiation exposure, optimal quantum efficiency (Fv/Fm) in G. sesquipedale decreased between 25 and 35% relative to the control. Under PAR alone, values decreased to 60%. In G. latifolium, photoinhibition did not exceed 40%. Similar results were found for the effective quantum yield (ΔF/Fm′), however, no marked differences in relation to light treatments were seen. When plants were shaded for recovery from stress, only in G. latifolium a significant increase in photosynthesis was observed (between 80 and 100% of control). In contrast, photosynthesis of G. sesquipedale suffered a chronic photoinhibition or photodamage under the three light irradiances. Full solar radiation (PAR+UVA+UVB) affected also the electron transport rate in both species. Here, initial slopes of electron transport vs. irradiance curves decreased up to 60% of controls. Although the recovery kinetic under PAR+UVA+UVB conditions was delayed in G. latifolium, after 24 h recovery this species reached significantly higher than G. sesquipedale. PAR impaired electron trasport only in G. sesquipedale. Overall, both species are characterized by different capacity to tolerate enhanced solar radiation. G. latifolium is a sun adapted plant, well suited to intertidal light conditions, whereas G. sesquipedale, growing at shaded sites in the intertidal zone, is more vulnerable to enhanced UV radiation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
A microscope for imaging of chlorophyll fluorescence kinetics was equipped with a chamber that allows the growth of an immobilised population of algae and their study under well-defined conditions. Single cells of the chlorococcal alga Scenedesmus quadricauda were grown and recorded for periods of whole cell cycles (up to 48 h) displaying a normal course of cell development. Heterogeneity in fluorescence yield among individual coenobia in the population and among different cells in one coenobium were analysed. Differences were observed both in the shape of Kautsky transients and in the modulation of fluorescence parameter values during the progress of the cell cycle. The extent of heterogeneity in fluorescence parameters was cell cycle dependent – in some phases of the cycle, the population was almost homogeneous, while distinct heterogeneity was observed, in particular between the protoplast division and the release of the daughter coenobia. The heterogeneity was not random but reflected developmental processes.  相似文献   

9.
Seven plant species were exposed in open-top chambers to four levels of ozone (O3) during two growing seasons and screened for treatment effects on the fast chlorophylla(Chl) fluorescence transient kinetics of dark-adapted leaves, and on the fluorescence signals obtained from the same leaves in illuminated steady-state. The aim was to identify the nature of O3 effects on PSII, and to determine inter-specific differences. In dark-adapted leaves, O3 caused a reduction in variable fluorescence (FV : F0), indicating an overall reduction in the efficiency of primary photochemistry. A large increase in excitation energy dissipation per active reaction centre (DI0/RC) and a smaller increase in the trapping rate of excitons (TR0/RC), showed that a fraction of the reaction centres was inactivated while the rest sustained full functionality. The magnitude of the effect increased in the order ofBromus erectusCentaurea jacea Trisetum flavescens Rumex obtusifolius Plantago lanceolataTrifolium pratense Knautia arvensis. The inter-specific variability in PSII responses could not be explained solely by specific differences in modelled O3 uptake by the leaves. Visible leaf injury was not related to changes in fluorescence emission. In illuminated steady-state, O3 sensitivity was most expressed in the change in quantum yield of photosynthetic electron transport (ΦPSII). The ranking of species differed from the ranking obtained in dark-adapted leaves. These results suggest that the mechanistic basis for O3 effects on PSII is similar in all species, but that inter-specific differences exist in the magnitude of change which cannot be explained solely by different O3 uptake rates. The observed changes in fluorescence signals are not O3-specific.  相似文献   

10.
低温胁迫对水稻幼苗不同叶龄叶片叶绿素荧光特性的影响   总被引:6,自引:0,他引:6  
以‘蜀恢162’(‘Shuhui 162’)、‘糯89-1’(‘Nuo 89-1’)、‘蜀恢162/糯89-1’(‘Shuhui 162/Nuo 89-1’)、‘奇妙香’(‘Qimiaoxiang’)和早黄矮(‘Zaohuang’ai’)5个水稻(Oryza sativa L.)品种(系)为研究对象,采用叶绿素荧光成像系统研究了低温(4℃)胁迫对水稻3叶期幼苗不同叶龄叶片叶绿素荧光特性的影响。结果表明:经低温胁迫处理后,5个水稻品种(系)幼苗3个叶龄叶片的各叶绿素荧光参数变化有明显差异,其中第一叶的各项参数均降至0。经低温处理后5个水稻品种(系)幼苗3片叶片的PSⅡ最大光化学量子产量(Fv/Fm)均明显小于对照(25℃),其中第一叶的降低幅度最大、第三叶最小。经低温胁迫处理后,5个水稻品种(系)幼苗第三叶的非光化学淬灭系数(qN)均显著大于对照,耐冷性品种‘糯89-1’幼苗第二叶的qN较对照显著增大,而其他水稻品种(系)幼苗第二叶的qN均显著小于对照;‘糯89-1’幼苗第二叶的光化学淬灭系数(qP)较对照略有增大,第三叶的qP显著大于对照;‘早黄矮’幼苗第三叶的qP也大于对照但差异不显著,而其余水稻品种(系)幼苗第二叶和第三叶的qP均显著小于对照。经低温胁迫后5个水稻品种(系)幼苗3片叶片的PSⅡ最大相对电子传递速率(rETRmax)和半饱和光强(Ik)均显著小于对照;除‘糯89-1’幼苗第三叶外,5个水稻品种(系)幼苗3片叶片的快速光响应曲线初始斜率(α)也均显著小于对照,总体上第一叶的rETRmax、Ik和α下降幅度最大、第三叶最小。研究结果揭示:受低温胁迫后,叶片自身生理差异是导致水稻幼苗不同叶龄叶片受伤害程度不同的主要因素。  相似文献   

11.
Lu Y  Li XR  He MZ  Su YG  Zeng FJ 《应用生态学报》2011,22(4):936-942
以骆驼蓬幼苗为材料,采用盆栽试验研究不同浓度(0、50、100、200、400 mg·kg-1)Ni、Cu处理对骆驼蓬叶片光合作用、叶绿素荧光特性及生长状况的影响.结果表明:随着Ni浓度的增加,骆驼蓬幼苗叶片的光合色素含量、净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)、PS Ⅱ最大光化学效率(Fv/Fm)、PS Ⅱ电子传递量子产率(φpsⅡ)、光化学猝灭系数(qp)及各项生长指标均呈显著下降趋势,而细胞间隙CO2浓度(Ci)和非光化学猝灭系数(qn)呈显著增加趋势,其中Pn的下降主要是由非气孔限制所致;骆驼蓬幼苗叶片的光合色素含量、Pn、Gs、Tr、Ci、Fv/Fm、φpsⅡ、qp及各项生长指标均在50 mg·kg-1Cu处理时达到峰值,叶绿素a和b、Pn、Gs、Tr、Ci、Fv/Fm及各项生长指标值在100 mg·kg-1Cu处理时仍微高于对照,而后随Cu浓度的增加,光合色素含量、Pn、Gs、Tr、Ci、Fv/Fm、φpsⅡ、qp及各项生长指标均呈下降趋势,qN呈增加趋势,其中Pn的下降主要是由气孔限制所致.  相似文献   

12.
The properties of cell wall pectinesterase (EC 3.1.1.11) from Vigna radiata (L.) Wilczek hypocotyl were investigated with immobilized and solubilized wall enzymes. Along the hypocotyl, the decrease of growth potential coincides with significant changes of the characteristics of the pectinesterase activities. As hypocotyl cells grow older, the proportion of ionically bound enzymes decreases and pH profile, sensitivity to cations and affinity for pectin change. The possible significance of these observations is discussed.  相似文献   

13.
14.
Quantitative imaging of chlorophyll fluorescence   总被引:7,自引:0,他引:7  
  相似文献   

15.
Interspecific ecophysiological differences in response to different light environments are important to consider in regeneration behavior and forest dynamics. The diurnal changes in leaf gas exchange and chlorophyll fluorescence of two dipterocarps, Shorea leprosula (a high light-requiring) and Neobalanocarpus heimii (a low light-requiring), and a pioneer tree species (Macaranga gigantea) growing in open and gap sites were examined. In the open site, the maximum net photosynthetic rate (Pn), photosystem II (PSII) quantum yield (; F/Fm), and relative electron transport rate (r-ETR) through PSII at a given photosynthetic photon flux density (PPFD) was higher in S. leprosula and M. gigantea than in N. heimii, while non-photochemical quenching (NPQ) at a given PPFD was higher in N. heimii. The maximum values of net photosynthetic rate (Pn) in M. gigantea and S. leprosula was higher in the open site (8–11 mol m–2 s–1) than in the gap site (5 mol m–2 s–1), whereas that in N. heimii was lower in the open site (2 mol m–2 s–1) than in the gap site (4 mol m–2 s–1), indicating that N. heimii was less favorable to the open site. These data provide evidence to support the hypothesis that ecophysiological characteristics link with plants regeneration behavior and successional status. Although Pn and stomatal conductance decreased at midday in M. gigantea and S. leprosula in the open site, both r-ETR and leaf temperature remained unchanged. This indicates that stomatal closure rather than reduced photochemical capacity limited Pn in the daytime. Conversely, there was reduced r-ETR under high PPFD conditions in N. heimii in the open site, indicating reduced photochemical capacity. In the gap site, Pn increased in all leaves in the morning before exposure to direct sunlight, suggesting a relatively high use of diffuse light in the morning.  相似文献   

16.
The kinetics of auxin-induced elongation of segments from Vigna radiata (L.) Wilczek hypocotyls have been investigated using auxanometer measurements. Doseresponse curves were established for several well-defined parameters of the growth response. The experimental data revealed that different kinetic parameters were affected differently by increasing auxin concentrations. The dose-response curves are slightly sigmoid for fresh weight, nearly bell-shaped for total elongation or maximal elongation rate, and nearly linear for maximal growth acceleration. The effects of auxin concentration on regulation of growth orientation are discussed.
A biphasic response is observed mainly with segments taken from the middle of the hypocotyl ('C') which exhibit maximal growth rates. Segments from other levels, with lesser growth potentials, exhibit a very weak response. The two successive phases may then require different maturation states. Kinetics of the acceleration curves are very similar all along the hypocotyl and remain very homogeneous with increasing IAA concentrations.  相似文献   

17.
Temperature is one of the main environmental factors affecting the formation and function of the photosynthetic apparatus[1]. It also affects the distribu-tion of plant species, genotypes and yield due to thedifferences of their thermostability. Moderately ele-vated temperature in the range of 32—38℃ fre-quently occurs in the field in summer[2]. In recent years, global change of the climate has led to a re-markable elevation of temperature, which reached up to 42℃ in some area last year. In…  相似文献   

18.
草莓叶绿素荧光参数日变化的研究   总被引:5,自引:0,他引:5  
以草莓(Fragaria ananassa Duch)为材料,研究其叶片叶绿素荧光参数的日变化。在自然光下,草莓叶片的最大荧光(Fm)、PSⅡ光化学效率(Fv/Fm)、PSⅡ光量子效率(Yield)和光化学猝灭系数(qP)从6:00-18:00均先下降后上升,其中在下午14:00最低;而非光化学猝灭系数(qN)先上升后下降,其中在下午14:00最高。表明在中午强光下,草莓叶片遭受了强烈的光抑制,而热耗散是其主要的光保护机制。  相似文献   

19.
A transient in chlorophyll fluorescence, which is associated with a transient in 9-aminoacridine fluorescence and a perturbation in the rate of oxygen evolution, has been observed in intact spinach chloroplasts. The results indicate that changes in the redox state of Q are, at least partially, responsible for the transient in chlorophyll fluorescence. The size of the transient is highly dependent upon the concentration of inorganic phosphate and upon the pH of the medium. The properties of the transient are consistent with the suggestion that it reflects changes in the levels of stromal intermediates during induction.Abbreviations BES NN-Bis(2-hydroxyethyl)2-aminoethanesulphonic acid dihydroxyacetone-P(DHAP): dihydroxyacetone phosphate glycerate-3-P (PGA): glycerate-3-phosphate - HEPES N-2-Hydroxyethylpiperazine-N-2-ethanesulphonic acid - MES 2-(N-Morpholino)ethanesulphonic acid - Pi inorganic phosphate - qE quenching of chlorophyll fluorescence by the energisation of the thylakoid membrane - qQ quenching of chlorophyll fluorescence by oxidised Q, the electron acceptor of photosystem 2 - ribose-5-P (R5P) ribose-5-phosphate - Rbu-5-P ribulose-5-phosphate  相似文献   

20.
两种石楠叶绿素荧光参数日变化的比较研究   总被引:3,自引:0,他引:3  
以红叶石楠和光叶石楠为试验材料,研究了两种石楠叶绿素荧光参数的日变化。结果表明:随着日间光照强度的不断变化,即时最大荧光产量(Fm')、光系统Ⅱ实际量子产量(Yield)和光化学淬灭(qP)呈现出“V”型曲线;非光化学淬灭(qN)呈现出单峰曲线;表观光合电子传递速率(ETR)则呈现出双峰曲线;到黄昏时各参数基本恢复至早晨的水平,表明两种石楠均未发生光合机构的破坏。红叶石楠的Fm’、Yield、ETR、qP均高于光叶石楠,说明红叶石楠对光能的利用效率高于光叶石楠,表现出对当地环境更高的适应性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号